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Abstract

The estimation of risk measured in terms of a risk measure is typically done in two steps:
in the first step, the distribution is estimated by statistical methods, either parametric or non-
parametric. In the second step, the estimated distribution is considered as true distribution
and the targeted risk-measure is computed. In the parametric case this is achieved by using the
formula for the risk-measure in the model and inserting the estimated parameters. It is well-
known that this procedure is not efficient because the highly nonlinear mapping from model
parameters to the risk-measure introduces an additional biases. Statistical experiments show
that this bias leads to a systematic underestimation of risk.

In this regard we introduce the concept of unbiasedness to the estimation of risk. We show
that an appropriate bias correction is available for many well known estimators. In particular,
we consider value-at-risk and tail value-at-risk (expected shortfall). In the special case of normal
distributions, closed-formed solutions for unbiased estimators are given. For the general case we
propose a bootstrapping algorithm and illustrate the outcomes by several data experiments.

Keywords: value-at-risk, tail value-at-risk, expected shortfall, risk measure, estimation of risk
measures, risk estimation, back-test, bias.

1 Introduction

The estimation of measures of risk is an area of highest importance in the financial industry. Risk
measures play a major role in the risk-management and the computation of regulatory capital. We
refer to [23] for an in-depth treatment of the topic. In particular, in [13] the authors highlight that
a major part of quantitative risk management is actually of statistical nature. This article takes
this challenge seriously and does not target risk measures themselves, but estimated risk measures.
Statistical aspects in the estimation of risk measures recently raised a lot of attention, see the
related articles [12] and [29, 16, 2]. A careful analysis of the risk estimators shows that in general
the estimators are biased, and systematically underestimate risk.

Surprisingly, it turns out that statistical properties of risk estimators have not yet been analysed
thorougly. It is our main goal to give a definition of unbiasedness that has both economic and
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statistical sense for risk estimators. While the classical (statistical) definition of bias is always
desirable from a theoretical point of view, it might be not prioritised by financial institutions or
regulators, for whom the back-tests are the main source of estimation accuracy.

Not surprisingly, the occurrence of biasses in risk estimation plays an important role in practice:
the Basel III project [7] suggests to change value-at-risk into expected shortfall and consider stressed
scenarios where the risk level is replaced with a different level (97.5%). In fact, such a correction
may reduce the bias, however only in the right scenarios. Our goal is to systematically study biases
of risk estimators and provide a theoretical foundation together with empirical evidence propagating
the use of unbiased estimators.

We begin by a motivation in the parametric case. Parametric estimation of risk measures in
finance is typically done in two steps: starting from a parametric model for the financial market,
the parameters of the model are estimated from historical data. Then, the estimator of the risk-
measure is computed by using the formula for the risk-measure in the model and inserting the
estimated parameters. In statistical theory it is well-known that this is not efficient because the
highly nonlinear mapping from model parameters to the risk-measure introduces an additional
biases. Statistical experiments show that this bias leads to a systematic underestimation of risk.

Consider i.i.d. Gaussian data with unknown mean and variance, and assume we were interested
in estimating the value-at-risk (V@R) at the level α ∈ (0, 1). Denote by x = (x1, . . . , xn) the
observed data. The unbiased estimator under normality obtained by the methodology we propose
is given by

ˆV@Ru
α(x1, . . . , xn) := −

(
x̄+ σ̄(x)

√
n+ 1

n
t−1
n−1(α)

)
, (1.1)

where t−1
n−1 is the inverse of the cumulative distribution function of the Student-t-distribution with

n − 1 degrees of freedom, x̄ denotes the sample mean and σ̄(x) denotes the sample standard
deviation. We call this estimator the Gaussian unbiased estimator and use this name throughout
as reference to (1.1). Comparing this estimator to standard estimators on NASDAQ data provides
some motivating insights which we detail in the following paragraph.

Backtesting value-at-risk estimating procedures. To analyse the performance of various
estimators of value-at-risk we performed a standard back-testing procedure. First, we estimated
the risk measures using a learning period and then tested it’s adequacy in the back-testing period.
The test was based on the failure rate procedure as suggested in [20]. More precisely, given a data
sample of size n, the first k observations were used for estimating the value-at-risk at level α = 95%,
denoted by V@R0.95. Afterwards it was counted how many times the actual loss in the following
n− k observations exceeded the estimate. For good estimators, we would expect that the number
of exceptions divided by (n− k) should be close to 5%.

More precisely, we considered returns based on (adjusted) closing prices of the NASDAQ100
index in the period from 1999-01-01 to 2014-11-25. The sample size is n = 4000, which corresponds
to the number of trading days in this period. The sample was split into 80 separate subsets, each
consisting of consecutive 50 trading days. The back-testing procedure consisted in using the i-th
subset for estimating the value of V@R0.95 and counting the number of exceptions in the (i+ 1)-th
subset. The total number of exceptions in the 79 periods was divided by 79 · 50. We compared
the performance of the Gaussian unbiased estimator to the three most common estimators of
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Estimator NASDAQ NORMAL
exceeds percentage exceeds percentage

Percentile ˆV@Remp
α (x) 272 0.069 253 0.064

Modified C-F ˆV@Rmod
α (x) 249 0.063 230 0.058

Gaussian ˆV@Rnorm
α (x) 241 0.061 221 0.056

Gaussian unbiased ˆV@Ru
α(x) 217 0.055 197 0.050

Table 1: Estimates of V@R0.95 for NASDAQ 100 (first column) and for simulated i.i.d.normal
distributed random variables with the mean and variance fitted to the NASDAQ data (second
column), both for 4.000 data points. Exceeds reports the number of exceptions in the sample,
where the actual loss exceeded the risk estimate. The expected rate of 0.05 is only reached by the
Gaussian unbiased estimator.

value-at-risk: the empirical 0.95%-percentile (sometimes called historical estimator); the modified
Cornish-Fisher estimator (see [3]); and the classical Gaussian estimator, which is obtained by
assuming that the log-returns are normally distributed and estimating the parameters with the
maximum-likelihood estimators. These estimators are given by:

ˆV@Remp
α (x) := −x(bnαc+1), (1.2)

ˆV@Rmod
α (x) := −

(
x̄+ σ̄(x)Z̄αCF (x)

)
, (1.3)

ˆV@Rnorm
α (x) := −

(
x̄+ σ̄(x)Φ−1(α)

)
, (1.4)

where x(k) is the k-th order statistic of x = (x1, . . . , xn), the value bzc denotes the integer part of
z ∈ R, and Φ denotes the cumulative distribution function of the standard normal distribution.
For a deeper discussion of the empirical value-at-risk estimator see Section 5. Moreover,

Z̄αCF (x) = qα +
1

6
(q2
α − 1)S̄(x) +

1

24
(q3
α − 3qα)K̄(x)− 1

36
(2q3

α − 5qα)S̄2(x),

for S̄(x) and K̄(x) being standard estimators of skewness and excess kurtosis and qα = Φ−1(α).
The results of the back-test are shown in Table 1. Surprisingly, the standard estimators show a

rather poor performance. Indeed, one would expect a failure rate of 0.05 when using an estimator
for the V@R0.95 and the standard estimators show a clear underestimation of the risk, i.e. an
exceedance rate higher than the expected rate. Only the Gaussian unbiased estimator is close
to the expected rate, the percentile estimator having an exceedance rate which is 25% higher in
comparison. Also a Student-t-plug-in estimation performs poorly, compare Section 7.2.

To exclude possible disturbances of these findings by a bad fit of the Gaussian model to the
data or possible dependences we additionally performed a simulation study: in this regard, we
simulated an i.i.d. sample of normally distributed random variable with mean and variance fitted
to the NASDAQ data and repeated the back-testing on this data.

The results are shown in the second column of Table 1. The bias decreases in a moderate way,
but is still present in all three alternative estimation procedures. The percentile estimator shows
an exceedance rate being 28% percent higher compared to the Gaussian unbiased estimator, which
in turn perfectly meets the level α = 0.05. More empirical studies are provided in Section 7.
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The structure of the paper is as follows: in Section 2, estimators of risk measures are formally
introduced. Section 3 discusses the frequently used concept of plug-in estimators. Section 4 in-
troduces the main concept of the paper, unbiasedness, and gives a number of first examples while
Section 5 considers asymptotically unbiased estimators. When the estimator is not known, we
proposed some bootstrapping procedures, which are given in Section 6. Section 7 gives a detailed
empirical study of the proposed estimators and we conclude in Section 8.

2 Estimation of risk

In this section we study the estimation of risk, measured by a risk measure. Our focus lies on
the most popular family of risk measures, so-called law-invariant risk measures. These measures
solely depend on the distribution of the underlying losses, see [23] for an outline and practical
applications of risk measurement. Law-invariant risk measures for example contain the special
cases value-at-risk, tail value-at-risk or the spectral risk measure.

We consider the estimation problem in a parametric setup. If the parameter space is chosen
infinite-dimensional, this also contains the non-parametric formulation of the problem. In this
regard, let (Ω,A) be a measurable space and (Pθ : θ ∈ Θ) be a family of probability measures on
this measurable space parametrized by θ, an element of the parameter space Θ. For simplicity,
we assume that the measures Pθ are equivalent, such that their null-sets coincide. Otherwise it
could be possible that some of the probability measures would be excluded almost surely by some
observation which in turn would lead to unnecessarily complicated expressions. By L0 := L0(Ω,A)
we denote the (equivalence classes of) real-valued and measurable functions. In our context, the
space L0 typically corresponds to discounted cash flows or financial positions return rates.

For the estimation, we assume that we have a sample X1, X2, . . . , Xn of observations at hand
and we want to estimate the risk of a future position X. Sometimes, we consider x = (x1, . . . , xn)
to distinguish specific realizations of X1, . . . , Xn from the sample random variables. In particular,
we know that xi = Xi(ω) for some ω ∈ Ω.

Example 2.1 (The i.i.d.-case). Assume that the future position X as well as the historical ob-
servations are independent and identically distributed (i.i.d.). This is the case, for example in the
Black-Scholes model when one considers log-returns. More generally, this also holds in the case
where the considered stock price S follows a geometric Lévy process (see [4, Section 5.6.2] and
references therein). If ti, i = 0, . . . , n + 1 denote equidistant times with ∆ = ti − ti−1, then the
log-returns Xi := log(Sti) − log(Sti−1), i = 1, . . . , n are i.i.d. and the risk of the future position
Stn+1 can be described in terms of X := log(Stn+1)− log(Stn).

Consider the problem of estimating the risk of a future position X. To quantify the risk
associated with the position X ∈ L0, we introduce a concept of a risk measure.

Definition 2.2. A risk measure ρ is a mapping from L0 to R ∪ {+∞}.

Typically, one assumes additional properties for ρ given in Definiton 2.2 such as counter mono-
tonicity, convexity and translation invariance. For details, see [18] and references therein. For
brevity, as we are interested in problems related to estimation of ρ, we have decided not to repeat
detailed definitions here. Let us alone mention that from a financial point of view the value ρ(X)
is a quantification of risk for financial future position X and is often interpreted as the amount of
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money one has to add to the position X such that X becomes acceptable. Hence, positions X with
ρ(X) ≤ 0 are considered acceptable (without adding additional money).

A priori, the definition of a risk measure is formulated without any relation to the underlying
probability. However, in most practical applications this is not the case. One rather considers the
following class of law-invariant risk-measures: roughly spoken, a risk-measure is called law-invariant
with respect to a probability measure P , if ρ(X) = ρ(X̃) whenever the laws of X and X̃ coincide
under P , see for example Section 5 in [17].

Hence, ρ typically depends on the underlying probability measure Pθ and consequently, we
obtain a family of risk-measures (ρθ)θ∈Θ, which we again denote by ρ. Here, ρθ is the risk-measure
obtained under Pθ. Being law-invariant, the risk-measure can be identified with a function of the
cumulative distribution function of X. More precisely, we obtain the following definition. Denote
by D the convex space of cumulative distribution functions of real-valued random variables.

Definition 2.3. The family of risk-measures (ρθ)θ∈Θ is called law-invariant, if there exists a func-
tion R : D → R ∪ {+∞} such that for all θ ∈ Θ and X ∈ L0

ρθ(X) = R(FX(θ)), (2.1)

FX(θ) = Pθ(X ≤ ·) denoting the cumulative distribution function of X under the parameter θ.

We aim at estimating the risk of the future position where θ ∈ Θ is unknown. If θ were
known, we could directly compute the corresponding risk measure ρθ from Pθ and would not need
to consider the family (ρθ)θ∈Θ. Various estimation methodologies are at hand, the most common
one being the plug-in estimation (see Section 3 for details).

We recall that we are interested in estimating the risk-measure ρ(X) of the future position X
from a sample x1, . . . , xn. A typical setting is the i.i.d.-case from Example 2.1.

Definition 2.4. An estimator of a risk measure is a Borel function ρ̂n : Rn → R ∪ {+∞}.

Sometimes we will call ρ̂n also risk estimator. The value ρ̂n(x1, . . . , xn) corresponds to the
estimated amount of capital which should classify, after adding the capital to the position, the
future position X acceptable.

Given random sample X1, X2, . . . , Xn, we denote as usual by ρ̂n also the random function

ρ̂n(ω) := ρ̂n(X1(ω), . . . , Xn(ω)), ω ∈ Ω,

corresponding to the estimator ρ̂. By ρ̂ we denote the sequence of risk estimators ρ̂ = (ρ̂n)n∈N. If
there is no ambiguity, we will call ρ̂ also risk estimator.

The concept of estimator given in Definition 2.4 is very general. One very common way in prac-
tical estimation of risk measures is to separate the estimation of the distribution of the underlying
random variable from the estimation of the risk measure. This leads to the well established plug-in
estimators, which we discuss in the following section.

3 Plug-in estimators

A common way to estimate risk are plug-in estimators (cf. [1, 11, 17] and references therein).
The idea behind this approach is to use the highly developed tools for estimating the distribution
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function of X and plug in this estimate into the desired risk measure. For the plug-in procedure
to work, one needs to consider law-invariant risk measures, see (2.1), which we assume for the
following. Given a sample x = (x1, . . . , xn), we denote the estimator of the unknown distribution
by F̂X . Recall the function R from (2.1). Then the plug-in estimator ρ̂plugin is given by

ρ̂plugin(x) := R(F̂X). (3.1)

In particular, in the parametric case, first parameters are estimated, and then plugged into the for-
mula for the risk-measure (3.1). In other words: first, given sample x, one estimates the parameter
θ by a suitable estimator which we denote by θ̂. Second, one plugs the obtained estimate θ̂ into
Equation (2.1) and obtains the plug-in estimator

ρ̂plugin(x) = R(FX(θ̂)) = ρθ̂(X).

Let us now present some specific examples, where we provide explicit formulas for the plug-in
estimators of the considered risk both for non-parametric and parametric case.

Example 3.1 (Empirical distribution plug-in estimation). As an example we could use the em-
pirical distribution for the plug-in estimator. The assumption is that X1, . . . , Xn are independent,
having the same distribution like X, and a sample x = (x1, . . . , xn) is at hand. Then, the empirical
distribution is given by

F̂X(t) :=
1

n

n∑
i=1

1{xi≤t}, t ∈ R,

where 1A is indicator of event A. It is a discrete distribution and hence R(F̂X) is easy to compute.
For example, for value-at-risk the resulting plug-in estimator using the empirical distribution is
given in (1.2).

Example 3.2 (Kernel density estimation). Assuming that X is (absolutely) continuous, one of
the most popular non-parametric estimation techniques for the density of X is the so-called kernel
density estimation, see for example [26, 25]. Instead of estimating the distribution itself, one
focusses on estimating the probability density function, as in the continuous case we could recover
one from another. Given the sample x = (x1, . . . , xn), kernel function K : R → R and bandwidth
parameter h > 0 (see [27] for details), the estimator f̂ for the unknown density f is given by

f̂(z) =
1

nh

n∑
i=1

K

(
z − xi
h

)
, z ∈ R.

The most popular kernel functions are the Gaussian kernel K1 and the Epanechnikov kernel K2,
given by

K1(u) =
1√
2π
e−

1
2
u2 and K2(u) =

3

4
(1− u2) 1{|u|≤1}.

The optimal value of the bandwidth parameter could also be estimated, but this depends on
additional assumptions. For example, one could show that if the sample is Gaussian, then the
optimal choice of bandwidth parameter is approximately 1.06σ̂n−1/5, where σ̂ is the standard
deviation of the sample.
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Example 3.3 (Plug-in estimators under normality). Let us assume that X is normally distributed
under Pθ, for any θ = (θ1, θ2) ∈ Θ = R× R>0, where θ1 and θ2 denote mean and variance, respec-
tively. Given sample x = (x1, . . . , xn), let θ̂1 and θ̂2 denote the estimated parameters (obtained e.g.
using MLE method). Then, assuming that ρ is translation invariant and positively homogenous
(see [18] for details), the classical plug-in estimator ρ̂ can be computed as follows

ρ̂(x) = R(FX(θ̂)) = ρθ̂(X) = ρθ̂

(
θ̂1
X − θ̂2

θ̂1

+ θ̂2

)
= −θ̂2 + θ̂1R(Φ), (3.2)

where Φ denotes the cumulative distribution function of the standard normal distribution. If we are
interested in estimating the value-at-risk, then the estimator (3.2) coincides with the one defined
in (1.4).

Example 3.4 (Plug-in estimator for the t-distribution). Assume now that X has a generalized t-
distribution under Pθ, for any θ = (θ1, θ2, θ3) ∈ Θ = R×R>0×N>2, where θ1, θ2 and θ3 denote mean,
variance and degrees of freedom parameter, respectively. Given the sample x = (x1, . . . , xn), let θ̂1,
θ̂2 and θ̂3 denote the estimated parameters (obtained e.g. using Expectation-Maximization method;
see [15] for details). Then, assuming that ρ is translation invariant and positively homogenous, the
plug-in estimator can be expressed as

ρ̂(x) = −θ̂1 + θ̂2

√
θ̂3 − 2

θ̂3

R(tθ̂3), (3.3)

where tv corresponds to the standard t-distribution with v degrees of freedom. In particular, for
value-at-risk at level α we get R(tθ̂3) = −t−1

θ̂3
(α).

Example 3.5 (Plug-in estimator using extreme-value theory). Let us assume that X is absolutely
continuous for any θ ∈ Θ. For any threshold level u < 0 we define the conditional excess loss
distribution of X under θ ∈ Θ as

[FX ]u(θ, t) = Pθ(X ≤ u+ t|X < u), for t ≤ 0.

Roughly speaking, The Pickands–Balkema–de Haan theorem states that for any θ ∈ Θ, if u→ −∞,
then the conditional excess loss distribution should converge to some Generalized Pareto Distribu-
tion (GPD).1 We refer to [24, 23] and references therein for more details. This result can be used to
provide an approximative formula for the risk measure estimator, if the risk measure solely depends
on the lower tail of X. This is the case e.g. for value-at-risk or expected shortfall, especially when
small risk levels α ∈ (0, 1) are considered. Given threshold level u < 0, sample x = (x1, . . . , xn)
and using so called Historical-Simulation Method (see e.g. [24] for details) we define F̂X for any
t < u setting

F̂X(t) =
k

n

(
1 + ξ̂

u− t
β̂

)−1/ξ̂

, (3.4)

1Under some mild condition imposed on distribution FX(θ). This includes e.g. families of normal, lognormal, χ2,
t, F , gamma, exponential and uniform distributions.
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where k is the number of observations that lie below threshold level u and (ξ̂, β̂) correspond to
shape and scale estimators in the GPD family. The estimators ξ̂ and β̂ can be computed taking
only (negative values of) observations that lie below threshold level u and using e.g. the Probability
Weighted Moments Method (again, see [24] and references therein for details). Now, assuming that
the function R given in (2.1) depends only on the tail of the distribution, i.e. for any θ ∈ Θ we only
need FX(θ)|(−∞,u) to calculate R(FX(θ)), one could obtain the formula for the plug in estimator

using (3.4). In particular, for value-at-risk at level α ∈ (0, 1), if only α < F̂X(u), then we can set

ρ̂(x) = F̂−1
X (α) = −u+

β̂

ξ̂

((αn
k

)−ξ̂
− 1

)
. (3.5)

Please note that this estimator might be in fact considered non-parametric, as it approximates the
value of ρ(X) for a large class of distribution including almost all ones used in practise.

4 Unbiased estimation of risk

As is well-known, under nonlinear mappings, the plug-in procedure introduces a bias. It is one
of our goals to achieve a precise definition of unbiasedness in the context of risk-measures which
reflects the economic meaning of a risk-measure. Let us now present the main concept of this paper,
i.e. the definition of unbiasedness for an estimator of risk.

Definition 4.1. The estimator ρ̂n will be called unbiased for ρ(X), if for all θ ∈ Θ,

ρθ(X + ρ̂n) = 0. (4.1)

An unbiased estimator has the feature, that adding the estimated amount of risk capital ρ̂n to
the position X makes the position X + ρ̂n acceptable under all possible scenarios θ ∈ Θ. Requiring
equality in Equation (4.1) ensures that the estimated capital is not too high. It should be noted, that
except in the i.i.d. case, the distribution of X+ ρ̂n does depend on the dependence of the estimator
ρ̂n and X. Hence the notion of unbiasedness does not only depend on the law of X,X1, . . . , Xn but
also on their dependence structure.

From the financial point of view, given a historical data set, or even a stress scenario (x1, . . . , xn),
the number ρ̂n(x1, . . . , xn) is used to determine the capital reserve for position X, i.e. the minimal
amount for which the risk of the secured position ξn(x1, . . . , xn) := X+ρ̂n(x1, . . . , xn) is acceptable.
As the parameter θ is unknown, it would be highly desirable to minimise the risk of the secured
position ξn. If we do this for any θ ∈ Θ, then our estimated capital reserve would be close to the
real (unknown) one. To do so, we want the (overall) risk of position ξn to be equal to 0, for any
value of θ ∈ Θ. This is precisely the definition of unbiasedness presented in Definition 4.1.

Remark 4.2 (Relation to the statistical definition of unbiasedness). Let us stress out that Definition
4.1 differs from the definition of unbiasedness in the classical sense, i.e. the condition

Eθ[ρ̂n] = ρθ(X), for all θ ∈ Θ, (4.2)

where Eθ denotes the expectation operator under Pθ. An estimator satisfying (4.2) will be called
statistically unbiased. While the condition (4.2) is always desirable from the theoretical point of
view, it might not be prioritised by the institution interested in risk measurement, as the mean
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value of estimated capital reserve does not determine the risk of the secured position X + ρ̂n. Let
us explain this in more detail: In practice, the main goal is to define an estimator in such a way,
that it behaves well in various back-testing or stress-testing procedures. The types of conducted
tests are usually given by the regulator (see for example Basel regulations [8]). In the case of
value-at-risk the so-called failure rate procedure is often considered. As explained in Section 1, this
procedure focus on the rate of exceptions, i.e. ratio of scenarios in which estimated capital reserve
is insufficient. This number might not be directly connected to the average value of estimated
capital reserve, creating the need for different definition of bias. See also Remark 4.3 for further
explanation.

Remark 4.3. In [19], the authors introduced the concept of a probability unbiased estimation: denote
by FX(θ, t) = Pθ(X ≤ t), t ∈ R the cumulative distribution function of X under Pθ. Then the
estimator ρ̂n is called probability unbiased, if

Eθ[FX(θ,−ρ̂n)] = FX(θ,−ρθ(X)), for all θ ∈ Θ. (4.3)

Intuitively, the left hand side corresponds to the average probability, that our estimated capital
reserve would be insufficient, while the right hand side corresponds to the probability of insuffi-
ciency of the theoretical capital reserve. This approach is proper for value-at-risk in the strongly
restricted setting of the i.i.d. Example 2.1. In fact, in that setting, it coincides with our definition of
unbiasedness from Definition 4.1: indeed, assume that FX(θ) is continuous and that X1, . . . , Xn, X
are i.i.d. Then ρ̂n and X are independent and hence

Eθ[FX(θ,−ρ̂n)] = Pθ[X + ρ̂n < 0].

On the other hand we know that, for ρθ being value-at-risk at level α, we obtain FX(θ,−ρθ(X)) = α,
so (4.3) is equivalent to

Pθ[X + ρ̂n < 0] = α.

Now it is easy to show that this is equivalent to

ρθ(X + ρ̂n) = inf{x ∈ R : Pθ[X + ρ̂n + x < 0] ≤ α} = 0.

In the general case we consider here, a more flexible concept is needed to define the risk estimator
bias. In particular, the average probability of insufficiency does not contain information about the
level of capital deficiency. This, however, is a key concept, e.g., when considering tail value-at-risk,
compare Example 4.7.

Let us now present some specific examples, where we could explicitly find the unbiased estima-
tors of the considered risk.

Example 4.4 (Unbiased estimation of the mean). Assume that X is integrable for any θ ∈ Θ, and
consider a position acceptable if it has non-negative mean. This corresponds to the family ρ of risk
measures

ρθ(X) = Eθ[−X], θ ∈ Θ.

Clearly ρ is law-invariant. Corresponding to Equation (4.1), a risk estimator ρ̂ is unbiased in this
setting if

0 = ρθ(X + ρ̂) = Eθ[−(X + ρ̂)] = ρθ(X)− Eθ[ρ̂].
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Therefore, the estimator ρ̂ is unbiased if and only if it is statistically unbiased for any θ ∈ Θ. Hence,
the negative of the sample mean, given by

ρ̂n(x1, . . . , xn) = −
∑n

i=1 xi
n

, n ∈ N,

is an unbiased estimator of the risk measure of position X.

Example 4.5 (Unbiased estimation of value-at-risk under normality). Let X be normally dis-
tributed with mean θ1 and variance θ2 under Pθ, for any θ = (θ1, θ1) ∈ Θ = R× R>0. For a fixed
α ∈ (0, 1), let

ρθ(X) = inf{x ∈ R : Pθ[X + x < 0] ≤ α}, θ ∈ Θ, (4.4)

denote value-at-risk at level α. As X is absolutely continuous, unbiasedness as defined in Equation
(4.1) is equivalent to

Pθ[X + ρ̂ < 0] = α, for all θ ∈ Θ. (4.5)

This concept coincides with the definition of a probability unbiased estimator of value-at-risk (see
Remark 4.3 for details). We define estimator ρ̂, as

ρ̂(x1, . . . , xn) = −x̄− σ̄(x)

√
n+ 1

n
t−1
n−1(α), (4.6)

where tn−1 stands for cumulative distribution function of the student-t distribution with n − 1
degrees of freedom and

x̄ :=
1

n

n∑
i=1

xi, σ̄(x) :=

√√√√ 1

n− 1

n∑
i=1

(xi − x̄)2,

denote the efficient estimators of mean and standard deviation, respectively. We show that the
estimator ρ̂ is an unbiased risk estimator: note that X ∼ N (θ1, (θ2)2) under Pθ. Using the fact
that X, X̄ and σ̄(X) are independent for any θ ∈ Θ (see e.g. [9]), we obtain

T :=

√
n

n+ 1
· X − X̄
σ̄(X)

=
X − X̄√
n+1
n θ2

·
√

n− 1∑n
i=1(Xi−X̄θ2

)2
∼ tn−1.

Thus, the random variable T is a pivotal quantity and

Pθ[X + ρ̂ < 0] = Pθ[T < qtn−1(α)] = α,

which concludes the proof.

Remark 4.6. It follows that the difference between Gaussian unbiased estimator defined in (4.6)
and the classical plug-in Gaussian estimator given in (1.4) is equal to

ˆV@Ru
α(x)− ˆV@Rnorm

α (x) = −σ̄(x)

(√
n+ 1

n
t−1
n−1(α)− Φ−1(α)

)
. (4.7)

10



Consequently, as σ̄(x) is consistent, and√
n+ 1

n
t−1
n−1(α)

n→∞−−−→ Φ−1(α),

we obtain that the bigger the sample, the closer the estimators are to each other – the bias of
plug-in estimator decreases.

The procedure from the previous example can be applied to almost any (reasonable) coherent
risk measure. We choose the famous coherent risk measure expected shortfall (or tail-value-at-risk)
as an example to illustrate how this can be achieved.

Example 4.7 (Unbiased estimation of tail value-at-risk under normality). As before, let X be
normally distributed with mean θ1 and variance θ2 under Pθ, for any θ = (θ1, θ1) ∈ Θ = R× R>0.
Let us fix α ∈ (0, 1). The tail value-at-risk at level α under a continuous distribution is given by

ρθ(X) = Eθ[−X|X ≤ qX(θ, α)], 2

where qX(θ, α) is α-quantile of X under Pθ, that coincides with the negative of value-at-risk at level
α from Equation (4.4). Due to translation invariance and positive homogeneity of ρθ, exploiting
the fact that X, X̄ and σ̄(X) are independent for normally distributed X, a good candidate for ρ̂
is

ρ̂(x1, . . . , xn) = −x̄− σ̄(x)an, (4.8)

for some (an)n∈N, where an ∈ R. There exists a sequence (an)n∈N such that ρ̂ is unbiased: As ρθ is
positively homogeneous, we obtain for all θ ∈ Θ

ρθ(X + ρ̂) = θ2

√
n+ 1

n
ρθ

(
X − X̄ − anσ̄(X)

θ2

√
n+1
n

)

= θ2

√
n+ 1

n
ρθ

(
X − X̄

θ2

√
n+1
n

− an
√
n√

(n− 1)(n+ 1)
·
√
n− 1

σ̄(X)

θ2

)

= θ2

√
n+ 1

n
ρθ

(
Z − an

√
n√

(n− 1)(n+ 1)
Vn

)
, (4.9)

where, Z ∼ N (0, 1), Vn ∼ χn−1 and both being independent. Note that the distribution of (Z, Vn)
does not depend on θ. Thus, it is enough to show that there exists bn ∈ R such that

ρθ (Z + bnVn) = 0. (4.10)

As Vn is non-negative and the risk measure ρθ is counter-monotone, we obtain that (4.10) is
decreasing with respect to bn. Moreover, 0 < ρθ(Z) = ρθ(Z + 0Vn). For bn large enough we get
ρθ(Z + bnVn) < 0, as ρθ(Z + bnVn) = bnρθ(

Z
bn

+ Vn) and

ρθ

( Z
bn

+ Vn

)
bn→∞−−−−→ ρθ(Vn) < 0,

2See, for example, [23], Lemma 2.16.
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due to the Lebesgue continuity property of tail value-at-risk on L1 (see [22, Theorem 4.1]). Thus,
again using continuity of ρθ, we conclude that there exists bn ∈ R such that (4.10) holds. Moreover,
the value of bn is independent of θ, as the family (ρθ)θ∈Θ is law-invariant (see Equation (2.1)) and
Z, Vn are pivotal quantities. Note that we only needed positive homogeneity and monotonicity of
ρθ as well as (4.10) to show the existence of an unbiased estimator. Moreover, the value of bn in
(4.10), and consequently an in (4.8), can be computed numerically without effort.

5 Asymptotically unbiased estimators

Even if the risk estimators from Examples 3.1, 3.2, 3.3, 3.4 and 3.5 are biased (cf. Table 1), one
might still have nice properties in an asymptotic sense. This is what we study in the following.

Definition 5.1. A sequence of risk estimators ρ̂ = (ρ̂n)n∈N will be called unbiased at n ∈ N, if ρ̂n
is unbiased. If unbiasedness holds for all n ∈ N, we call the sequence ρ̂ unbiased. The sequence ρ̂
is called asymptotically unbiased, if

ρθ(X + ρ̂n)
n→∞−−−→ 0, for all θ ∈ Θ.

In many cases the estimators of the distribution are consistent in the sense that F̂X → FX(θ).
Indeed, the Glivenko-Cantelli theorem gives even uniform convergence over convex sets of the
empirical distribution with probability one. Intuitively, if the underlying distribution-based risk
measure admit some sort of continuity, then we could expect that the the plug-in estimator satisfies

ρ̂n
n→∞−−−→ ρθ(X)

almost surely for each θ ∈ Θ. Consequently, for any θ ∈ Θ we also would get

ρθ(X + ρ̂n)
n→∞−−−→ ρθ(X + ρθ(X)) = 0,

which is exactly the definition of asymptotic unbiasedness. Let us now present two examples,
which show asymptotic unbiasedness of the empirical value-at-risk estimator (1.2) and the plug-in
Gaussian estimator for tail value-at-risk.

Remark 5.2. The proposed definition of asymptotical unbiasedness has similarities to the notion of
consistency suggested in [12]. This notion of consistency requires that averages of the calibration
errors converge suitable fast to 0 when the time period tends to infinity. Hence, asymptotically
unbiased risk estimators will be consistent when the calibration error is measured with the risk
measure itself. On the other side, it should be noted that our main goal is to obtain the optimal
risk estimator without averaging out under- or overestimates as they have an asymmetric effect on
the portfolio performance.

We obtain the following result. Recall that we study an i.i.d. sequence X,X1, X2, . . . Let
α ∈ (0, 1) and consider the negative of emprical α-quantile

ρ̂n(x1, . . . , xn) = −x(bnαc+1), n ∈ N, (5.1)

which we call empirical estimator of value-at-risk at level α (compare also (1.2)). By ρ̂n we denote
the random variable ρ̂n(X1, . . . , Xn).
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Proposition 5.3. Assume that X is absolutely continuous under Pθ for any θ ∈ Θ. The sequence
of empirical estimators of value-at-risk given in (5.1) is asymptotically unbiased.

Proof. For any ε > 0 and θ ∈ Θ, let An,ε :=
{
|ρ̂n + F−1

X (θ, α)| ≥ ε
}

, where F−1
X (θ, ·) denotes the

inverse of FX(θ, ·). Then we have that

Pθ[X + ρ̂n < 0] ≥ Pθ[Acn,ε]FX
(
θ, F−1

X (θ, α)− ε
)
− Pθ[An,ε],

Pθ[X + ρ̂n < 0] ≤ Pθ[Acn,ε]FX
(
θ, F−1

X (θ, α) + ε
)

+ Pθ[An,ε].

Using the fact that empirical value-at-risk estimator is consistent [11, Example 2.10], i.e. for any
θ ∈ Θ, under Pθ, we get

ρ̂n
n→∞−−−→ −F−1

X (θ, α) a.s.,

we obtain that Pθ[An,ε]
n→∞−−−→ 0, for any ε > 0 and θ ∈ Θ. Consequently,

FX
(
θ, F−1

X (θ, α)− ε
)
≤ lim

n→∞
Pθ[X + ρ̂n < 0] ≤ FX

(
θ, F−1

X (θ, α) + ε
)
,

for any ε > 0 and θ ∈ Θ. Taking the limit, and noting that FX(θ, ·) is continuous, we get

Pθ[X + ρ̂n < 0]
n→∞−−−→ FX

(
θ, F−1

X (θ, α)
)

= α,

for any θ ∈ Θ, which concludes the proof, due to (4.5).

Slightly changing the proof of Proposition 5.3 one could show that under normality assumption
the sequence of classical plug-in Gaussian estimators of value-at-risk given in (1.4) is asymptotically
unbiased as well. See also Remark 4.6.

In a similar way we obtain asymptotic unbiasedness of the Gaussian plug-in tail value-at-risk
estimator introduced in (3.2): In this regard let X be normally distributed with mean θ1 and
standard deviation θ2 under Pθ, for any (θ1, θ2) = θ ∈ Θ = R× R>0. For a fixed α ∈ (0, 1), let

ρθ(X) = Eθ[−X|X ≤ qX(θ, α)],

denote the tail value-at-risk at level α. Following (3.2), set

ρ̂n(x1, . . . , xn) = −x̄+ σ̄(x)R(Φ), n ∈ N, (5.2)

where Φ is a Gaussian distribution and R(Φ) is the tail value-at-risk at level α under Φ. The
estimator (5.2) corresponds to a standard MLE plug-in estimator, under the assumption that X is
normally distributed

Proposition 5.4. Assume that X,X1, X2, . . . are i.i.d. N (θ1, θ
2
2) for any θ ∈ Θ. The sequence of

estimators of tail value-at-risk given in (5.2) is asymptotically unbiased.

Proof. First, Theorem 4.1 in [22] shows that the tail-value-at-risk is Lebesgue-continuous, which
means that for a sequence Yn converging to Y almost surely and such that all Yn are dominated by
a random variable being an element of Lp, limn→∞ ρ(Yn) = ρ(Y ). Set Yn := −x̄+ σ̄(x)R(Φ), such
that Yn → θ1 + θ2R(Φ) =: Y almost surely as n→∞. But, it follows directly for the tail-value-at
risk under a normal distribution, denoted by ρθ, that

ρθ(−θ1 + θ2R(Φ)) = 0,

hence the claim.
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6 Bootstrapping unbiased estimators

In this section we study the case where explicit unbiased estimators for risk measures are not
available. We propose a bootstrap algorithm for this case. The examples provided in the empirical
study in Section 7 underline the applicability of this approach.

We will utilize a Bayesian approach to effectively incorporate initial information for the min-
imiziation. This will allow as to effectively adjust the fitting quality in an area which is of high
interest to us.

For any risk estimator ρ̂n and any prior distribution π (on Θ), we define the mean absolute
deviation by

Ψπ(ρ̂n) :=

∫
Θ
|ρθ(X + ρ̂n)|π(dθ). (6.1)

If ρ̂n is unbiased, then certainly Ψπ(ρ̂n) = 0. Unfortunately, finding the global minimizer of (6.1) is
a very challenging task, often impossible to achieve. Nevertheless, the goal of this section is to find
a local minimizer within a specific family of risk estimators and use this as a good approximation
of the global minimizer.

The simplest choice of π is a Dirac-measure δθ̂, where θ̂ is a point estimator, given the sample
(x1, . . . , xn). In this case, to minimize (6.1), given a family of risk estimators, we can use a standard
resampling bootstrap algorithm. Two exemplary algorithms, where the family of risk estimators is
the family of plug-in estimators with possible shift in the parameters are presented below.

Algorithm 6.1 (Bootstrapping suggested by Franconi-Herzog for value-at-risk). In [19], the following
algorithm was suggested. The main idea is to replace the level α by a suitable chosen level α′ which
minimizes the averaged distance of the bootstrapped estimators to α.

1. Input: sample x = (x1, . . . , xn) and number of boostrapping steps B ∈ N.

2. Estimate θ̂ using the MLE approach.

3. For i = 1, . . . , B, simulate a sample of size n from Pθ̂ and calculate θ̂i, using the MLE
approach.

4. Set the bootstrapped risk measure estimator to

ρ̂boot1 := F−1

θ̂

(
arg min
α′∈(0,1)

∣∣∣∣∣ 1

B

B∑
i=1

Fθ̂(F
−1

θ̂i
(α′))− α

∣∣∣∣∣
)
. (6.2)

For example, considering the unbiased estimator under normality from (1.1), the above routine
approximates the level α∗, such that

Φ−1(α∗) =

√
n+ 1

n
t−1
n−1(α)

and achieves an approximation of the unbiased estimator through a modification of the confidence
level.

From a theoretical viewpoint it is, however, much more appealing to distort the estimated
parameters θ̂ instead of the confidence level α. Most suitable to the estimators considered here is
a linear distortion and we propose a suitable bootstrapping algorithm in the following.
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We provide an alternative bootstrap algorithm based on the ideas detailed above. Assume that
Θ ⊆ Rm, for a fixed m ∈ N, and denote by

a ◦ θ :=

 a1θ1
...

amθm


the Hadamard-product of the vectors a and θ. The goal of our algorithm is to find a such that
the mean absolute deviation given by (6.1) is minimized. One step of complication is caused by
the choice of the prior distribution π. We choose to set π equal to the Dirac measure at estimated
value of θ. This procedure performs well and reasonably fast in the computations. Recall that
we consider law-invariant risk measures, see (2.1), such that ρθ(X) = R(FX(θ)) with a suitable
function R.

Algorithm 6.2 (Local minimization bootstrap approach). The idea is very simple: We estimate
parameter θ̂ and then try to define risk estimator which (locally) is as unbiased as possible. To
reduce bias, we slightly move the estimated parameters from θ̂ to a ◦ θ̂ and find a such that the
bias is minimized.

1. Input: sample x = (x1, . . . , xn) and number of bootstrappings B ∈ N.

2. Estimate θ̂ (e.g. using x and the MLE approach).

3. For i = 1, . . . , B, simulate a sample of size n from Pθ̂ and compute the estimator θ̂i.

4. Simulate x̂ = (x̂1, . . . , x̂B) from Pθ̂.

5. For any a ∈ Rm let
ya := (x̂1 + ρa◦θ̂1(X), . . . , x̂B + ρa◦θ̂B (X)).

6. Calculate
a∗ := arg min

a∈Rm

∣∣∣R(F̂ya)∣∣∣ ,
where F̂ya(t) := 1

B

∑B
i=1 1{x̂i+ρa◦θ̂i (X)≤t} is the empirical distribution function given observa-

tions ya.

7. Set the bootstrapped risk estimator to

ρ̂boot2 := ρa∗◦θ̂ (X). (6.3)

Remark 6.3. If one wants to take into consideration also the variance of estimator, then other risk
functions could be defined. For example, in Equation (6.1) we could considered a slightly modified
version of mean square error given by

Ψ̃n(ρ̂n) :=

∫
Θ

(
D2
θ(ρ̂n) + |ρθ(X + ρ̂n)|

)
π(dθ).

15



7 Empirical study

It is the aim of this section to analyse the performance of selected estimators on various sets of
real market data. In the first section, to emphasise the practical aspect of our study we follow
Basel II regulations [6] to design the appropriate back-test procedure (in fact the general outline
of the back-testing did not change in Basel II.5 [8] and proposed Basel III [7] frameworks). In the
second section, we show the performance of various bootstrap estimators for market data and for
simulated data.

Remark 7.1. Recently, there is an intensive debate in regulation and in science about the statistical
properties of risk measures, in particular expected shortfall and value-at-risk. The discussion started
with the discovery that expected shortfall is not elicitable in [21], compare [29]. A statistic ψ(Y )
is called elicitable, if

ψ = arg min
x
E[S(x, Y )],

i.e. it minimizes the expected value of a scoring function S, see the nice discussion in [2]. This
work also points out, that elicitability rather refers to model selection that to model testing. Here
we consider back-testing as a model testing tool and therefore move on safe grounds. As we stick
mainly to the standard Basel back-testing, several alternatives discussed in [2] are at hand if specific
characteristics of the risk measures should be tested.

All calculation were done using R 3.2.2. We have used libraries fImport and zoo for data han-
dling, PerformanceAnalytics for standard value-at-risk estimators, MASS for fitting functions,
evir for GPD, fGarch for t-student fit, xtable for tables and plyr for functions wrappers. The
optimal values of parameters in the bootstrap algorithms were calculated using standard function
optim. To speed up the calculations we have decided to estimate KDE density on 1000 element
grid and do linear approximation for other points (see help of density function for details). Gaussian
kernel was used. GPD fit was obtained using probability-weighted moments method (see function
gpd from evir library) and the plug-in GPD estimator was obtained using historical-simulation
method.

7.1 Backtesting according to Basel II-III

Consider the daily value-at-risk at level 99% (V@R0.99) applied to return rates. For a given portfolio,
say X, and given date, say t, we compute the daily risk denoted by [V@R0.99]t(X), using past daily
returns of the same portfolio. Note that in practice, to report the actual capital reserve, financial
institutions need to use 10-day value-at-risk at level 99%, but typically the daily risks are computed
and scaled using appropriate multiplication factors. Also, in practice, back-tests are performed
using 1-day risks and the scaling is done afterwards (e.g. to avoid impact of the significant changes
made to portfolio composition during 10 days, typically done by most major trading institutions).

Let us now describe the back-testing and its effect on the actual capital reserve (see [6, 5]
for more details). According to Basel II regulations (for internal market risk models), we need
to compute value-at-risk at level 99% on a daily basis. For a given day t and portfolio X (for
simplicity we assume that X is fixed throughout the whole period), we need to report the number
on exceedances (exceptions) in the last 250 trading days. In other words, assuming that rt−k(X)
is a return rate of X at trading day t− k, we need to count how many times the event

[V@R0.99]t−k(X) < −rt−k(X),
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has occurred, for k = 1, 2, . . . , 250. Please note that in fact we need to compute [V@R0.99]t−k(X)
for each trading day t− k separately using only data available up to time t− k − 1.

The number of exceptions in the last 250 days determine the accuracy of our risk model (at
time t). The possible outcomes are classified by the regulator into three zones, distinguished by
colours:

• The green zone corresponds to models which produce from 0 to 4 exceptions. Those models
are believed to be accurate and no penalty (for the actual capital reserve) is imposed.

• The yellow zone corresponds to models which produce from 5 to 9 exceptions. The su-
pervisor should encourage a financial institution to present additional information about its
model before taking action. Usually, moderate penalty is imposed on the capital reserve. (In
practice, so called scaling factor might be increased by 0.4 to 0.8, based on the actual number
of exceptions).

• The red zone corresponds to models which produce 10 or more exceptions. Those models
are believed to be not accurate and substantial penalty is enforced in almost all cases (scaling
factor is increased by 1). Moreover, financial institution is encouraged to improve its model
immediately.

In some cases the number of test trading days might be shortened and then the number of exceptions
in each zone is adjusted appropriately.

Assuming that the model is correct, the mean number of exceptions in the 250 day test period
should be equal to 0.01 · 250 = 2.5, so theoretically the correct model should be in the green zone.
We want to stress out the fact, that the back-test procedure is just an intermediate step, in a
process to determine the actual (10-days) capital reserve. Also, the practical implementations of
Basel committee regulations might differ across different countries.

For example, following Basel II regulations [6], the actual (market risk) capital reserve for static
portfolio X on day t, denoted by Rt(X) might be given by

Rt(X) = max

{
[V@R0.99]t(X),

k

60

59∑
k=0

[V@R0.99]t−k(X)

}
,

where [V@R0.99]t(X) is a 10-day value-at-risk at level 99% for portfolio X on day t (e.g. it might
be 1-day [V@R0.99]t(X) multiplied by

√
10) and k ∈ [3, 4] is a constant specified by the regulator

and based on the back-testing.
In Basel II.5 [8], Rt(X) in increased by the stressed equivalent of value-at-risk, i.e. V@R0.99

calculated under stressed scenarios (e.g. when the market was under significant stress, like in
2007-2008 crisis). The Basel III project [7] suggests to consider only stressed scenarios but the
value-at-risk at level 99% is replaced by a different risk measure: tail value-at-risk at level 97.5%.

We are now ready to compute [V@R0.99]t(X) for various time periods and portfolios X. We
check the performance of our estimators, counting the number of exceptions for the consecutive 250
trading days. Different data sets and lengths of learning period are considered. More precisely, we
consider:

1. NASDAQ100 in the period from 01.01.2005 to 01.01.2012. In this case, the situation is
similar to the situation in Section 1. We present here a detailed study, for various learning
periods and we consider all estimators given in (1.1)–(1.4), for comparison.
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2. WIG20, BUX, S&P500, DAX, FTSE250 and CAC40 market stock indices in the period
from 01.01.2005 to 01.01.2015. We present here the performance of the Gaussian unbiased
estimator, defined in Equation (1.1), for each index, and for various learning periods.

3. Fama & Fench 25 portfolios formed on Book-to-Market and Operating Profitability in the
period from 01.01.2005 to 01.01.2015. We present the performance of the Gaussian unbiased
estimator, for each portfolio, and for various learning periods.

While, according to Basel II.5 regulations, the learning period (sample period) should not be
shorter than one year (see [8, 718(Lxxvi) (d)]), our results show that using unbiased estimators
already provide satisfactory results for much shorter periods.

We want to emphasize that in this small empirical study we only consider the Gaussian unbiased
estimator defined in Equation (1.1). We have decided to do that for transparency and easier
comparison. The results presented in this section could be improved using estimation combined
with e.g. GARCH filtering, as is often done in practice [28, 10]. In this case, an increase in the
length of learning period might increase the accuracy of the estimators.

Moreover, recall that the unbiased approach for estimating risk can also be adapted to the case
of tail value-at-risk (as proposed in Example 4.7), such that a similar analysis within the Basel III
framework could be done.

NASDAQ100

We consider simple returns based on (adjusted) closing prices of the NASDAQ 100 index in the
period from 01.01.2005 to 01.01.2012.3 For any trading day t in this period, we use the past 100
(or 4,5,6,10,20,50, respectively) days to estimate the value-at-risk at level 99%. While we consider
these various lengths for learning period, the back-testing period is fixed and equal to 1. In other
words, we compute value-at-risk for each day t using values from 4 to 100 previous trading days
and check if the estimated value was sufficient on day t. Then, we split the sample data into (six)
non-overlapping subsets of consequent 250 trading days and for each subset we sum the number
of exceptions in it. This is done for all estimators given in (1.1)–(1.4). We also present the mean
number of exceptions in the whole sample. The results are presented in Table 2.

The performance of the Gaussian unbiased estimator is surprisingly good when small learning
periods are considered, i.e. for n ∈ {4, 5, 6}. In our opinion, the good performance of this estimator
for small values of n is a result of the fact that the shorter the period, the more uniform our sample
is, in the sense that the conditional volatility does not change much, making the sample almost
i.i.d. Unfortunately, for longer periods, the clustering effects start to take place (note this obstacle
could be overcome by applying e.g. GARCH filtering).

For example, we see that for n = 4 the mean number of exceptions is equal to 0.0105, which
is very close to 0.01, and the number of exceptions does not exceed 4. This puts us in the green
zone for all non-overlapping time periods. Please also note that the considered period include the
2007-2008 financial crisis, when many other models failed.

If the training period is large then the bias correction is very small, such that the Gaussian
unbiased estimator almost equals the classical Gaussian estimators, such that we do not show
results for this case.

3We have decided to consider this period, to show the performance of our estimator during the 2007-2008 financial
crisis.
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Number of exceptions in each non-overlapping subset of length 250

n ˆV@Remp
0.99

ˆV@Rmod
0.99

ˆV@Rnorm
0.99

ˆV@Ru
0.99

4 46 53 48 61 47 53 30 30 30 36 34 32 16 25 20 22 23 21 3 2 3 2 3 3
5 39 46 42 54 41 45 23 30 31 26 30 25 12 24 19 18 19 18 2 2 4 2 5 4
6 34 40 37 49 37 42 21 26 26 26 29 24 13 17 15 17 15 15 3 3 3 2 5 2

10 23 25 22 38 26 25 12 13 14 22 23 19 5 9 9 11 10 12 4 4 3 2 5 5
20 11 16 14 13 16 15 6 7 11 9 9 13 4 9 6 6 10 11 3 5 4 4 6 6
50 5 11 9 3 11 8 4 7 6 1 11 7 4 10 7 4 11 8 4 9 6 4 8 7

100 3 9 10 1 6 7 2 7 5 1 5 6 4 10 8 2 10 10 3 9 7 1 9 9

Total number of exceptions divided by total length

n ˆV@Remp
0.99

ˆV@Rmod
0.99

ˆV@Rnorm
0.99

ˆV@Ru
0.99

4 0.2025 0.1257 0.0813 0.0102
5 0.1719 0.1081 0.0706 0.0120
6 0.1532 0.0979 0.0587 0.0108

10 0.1022 0.0656 0.0365 0.0137
20 0.0545 0.0367 0.0304 0.0166
50 0.0304 0.0234 0.0269 0.0228

100 0.0223 0.0162 0.0271 0.0235

Table 2: We estimate the number and the total number of exceptions using NASDAQ100 data,
from 2005-01-01 to 2012-01-01; n= number of days for learning period and α = 0.99. The estimators
are the empirical percentile, the classical Gaussian estimator, the modified Cornish-Fisher estimator
and the proposed Gaussian unbiased estimator, see (1.1)–(1.4). The Basel rule will classify the
outcomes in the green zone if the number of exceptions is between 0 and 4. We highlight those
numbers in bold face. This is surprisingly often the case for the Gaussian unbiased estimator ˆV@Ru

α

with small learning periods.

From a practical viewpoint, a natural question is to determine the size of the mean of the risk
estimator, as this determines the (mean) actual size of our capital reserve. For n = 4, the mean
value of the Gaussian risk unbiased estimator is equal to 6.4%, which is relatively high for equity
portfolios. This mostly results from the two following facts. First, we have only used the basic
estimator without additional improvements. Second, the considered period includes the 2007-2008
financial crisis. With some easy technical improvements, this number can be reduced substantially.
For example, the initial mean value of the Gaussian risk unbiased estimator for n = 6 is equal to
4.7%. Putting additional upper constraint on risk estimator value equal to 8% increase the number
of exceptions in the whole sample only by 1, but reduces the mean value of the Gaussian risk
unbiased estimator to 4.2%. Moreover, the mean value for the pre-crisis period (first 500 trading
days) is equal to 3.2%, which sounds like a reasonable starting point. Additional improvements
could be made, for further reduction (e.g. applying GARCH filtering, using macroeconomic factors
to forecast volatility, expert opinion, etc.).

The above findings suggest that the class of unbiased estimators are a valuable tool for estima-

19



tion of risk in practice.

Index n Total number of
exeptions divided
by total length

Number of exeptions for
non-overlapping subsets
of length 250

WIG20 4 0.0081 3 2 1 1 3 2 3 1
6 0.0098 4 1 1 1 3 2 4 3

BUX 4 0.0098 1 2 4 2 3 6 2 0
6 0.0119 0 4 2 2 3 6 4 1

S&P500 4 0.0132 1 6 2 4 4 5 2 2
6 0.0149 4 5 2 2 7 2 4 5

DAX 4 0.0127 3 4 1 3 3 2 4 6
6 0.0128 5 5 1 3 2 4 2 4

FTSE250 4 0.0098 3 2 2 5 2 1 2 2
6 0.0094 6 2 0 2 1 2 3 4

CAC40 4 0.0093 1 3 1 3 2 1 4 3
6 0.0106 3 2 1 2 2 2 4 4

Table 3: We estimate the number and the total number of exceptions on various stock indices,
ranging from 01.01.2005 to 01.01.2015, n=number of days for learning period; the computations
are presented for the Gaussian unbiased estimator ˆV@Ru

α defined in (1.1). We concentrate on very
small learning periods. As above, the Basel rule will put the outcomes in the green zone when the
number of exceptions is between 0 and 4. The cases not in the green zone are marked in bold face.

Selected major stock market indices

We take returns based on (adjusted) closing prices for six major (country) stock indices in the period
from 01.01.2005 to 01.01.2015. Namely, we take WIG20 (Poland), BUX (Hungary), S&P500
(USA), DAX (Germany), FTSE250 (England) and CAC40 (France) stock indices. Then, we
perform calculations similar to those presented for the previous dataset, but only for the Gaussian
risk unbiased estimator given in (1.1) and learning period of 4 or 6 days. The results are presented
in Table 3. The simulations show that only in rare cases the Gaussian unbiased estimator leaves
the green zone.

At first sight it is quite surprising, that the estimator performs so well on this variety of indices
and given the fact, that returns typically do not exhibit a normal distribution. However, the
unbiased estimator corrects for large variances in small sample sizes via the t-distribution with
small degree of freedom, which itself has fat tails. Furthermore, the short learning periods group
days of similar character together which altogether explain the good performance.

Fama & French dataset

We take returns from Fama & French Data Library [14]. We take returns of 25 portfolios formed
on book-to-market and operating profitability in the period from 01.01.2005 to 01.01.2015. Then,
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we calculate the mean number of exceptions in the whole set, for various learning periods (4 to 6
days). For transparency, for learning period of length 4, we also present the sum of exceptions in
each of the 8 non-overlapping subsets, consisting of consequent 250 trading days. The results are
presented in Table 4.

Again, the outcome is surprising: for such small learning periods and such a variety of portfolios,
the unbiased estimator performs very well.

7.2 Analysis of bootstrapping algorithms

In this Section we do calculations similar to the ones done in the motivational example from
Section 1. For various financial portfolios, we consider returns based on (adjusted) closing prices.
For every portfolio, we take sample of size 1500 and split it into 30 separate subsets, each consisting
of consecutive 50 trading days. Then, for i = 1, 2, . . . , 29, we estimate the value of V@R0.95 using
the i-th subset and test it’s adequacy on (i+ 1)-th subset, counting the number of exceptions.

We take 25 Fama & French portfolios formed on book-to-market and operating profitability
(see previous example for details) and consider the period from 16.01.2009 to 01.01.2015 to obtain
exactly 1500 observations for each portfolio.

We present the results for value-at-risk estimators defined in (1.1)–(1.4), the student-t plug-in
estimator (3.3) and GPD plug-in estimator (3.5). We have also decided to present the results for
four different bootstrap estimators that base on algorithms introduced in Section 6:

1. The first estimator, ρ̂boot1, is a Franconi-Herzog value-at-risk bootstrap estimator defined in
(6.2). It is computed under the assumption, that the data came from the normal distribution.
We try to shift the risk level α ∈ (0, 1) to reduce the bias.

2. The second estimator, ρ̂boot2, is a local bias-minimizing bootstrap estimator given in (6.2).
It is computed under the assumption, that the data came from normal distribution. We take
normal plug-in estimator and perform a parameter shift procedure, to minimize the bias.

3. The third estimator, ρ̂boot3, is a non-parametric version of Franconi-Herzog value-at-risk
bootstrap estimator defined in (6.2). Instead of estimating θ̂ and θ̂i in steps 2. and 3. (see
Algorithm 6.1 for details), we estimate the whole distribution functions using kernel density
estimation (see Example 3.2) and then plug the appropriate quantile value to (6.2).

4. The fourth estimator, ρ̂boot4, is a local bias-minimizing bootstrap estimator given in (6.2). It
is computed under assumption that the data below a given threesshold u came from GPD
family (see Example 3.5).4

For all four estimators, the bootstrap strong sample size is set to B = 10.000. Note that
Estimators ρ̂boot1 and ρ̂boot2 are parametric estimators which base on the assumption that the data
is from a normal model. Their performance should be similar to Gaussian unbiased estimator and
we have decided to include them, to show how the bootstrap approach approximates Gaussian
unbiased estimator (note that no analytical formula for bias correction is needed to define the
bootstrap estimator). On the other hand, estimators ρ̂boot3 and ρ̂boot4 might be seen as a non-
parametric estimators (see Example 3.2 and Example 3.5 for details) that could be applied to
almost any (reasonable) data. The results are presented in Table 5.

4Given sample x = (x1, . . . , xn), the threeshold level is set to u = x(b0.3nc+1).
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To exclude possible dependences or bad model fit we additionally performed a simulation study:
in this regard, we simulated an i.i.d. sample of normally distributed random variables with mean
and variance fitted to each of the 25 portfolios. The sample size was set to 1500 for each set of
parameters. Then, we repeated the back-testing on this data. The results are presented in Table 6.

Similar study was conducted for t-distribution sample, i.e. we fitted parameters for each of 25
portfolios, performed simulation and repeated back-test procedure. See Table 7 for details.

To gain further insight about the performance of the Gaussian unbiased estimator, and to
approximate the standard error for Gaussian data, we have replicated 10000 times the results from
Tables 6 for Historical, plug-in Normal, Cornish-Fisher, GPD and Gaussian unbiased estimators.
For brevity, we only show results for the first portfolio - the results for other cases were almost
identical, at least when comparison between estimators was considered. For each estimator, say
ρ̂, we also include empirical mean and standard deviation of the ’higher in comparison’ statistics
given by

T1(ρ̂)(x) :=
ρ̂(x)− ˆV@Ru

α(x)

ˆV@Ru
α(x)

.

We also calculate the probability, that the value of unbiased estimator is closer to 0.05 than the
value of ρ̂. In other words we present the mean value of statistic

T2(ρ̂)(x) := 1{|ρ̂(x)−0.05|−| ˆV@Ru
α(x)−0.05|>0}.

The outcome is listed in Table 8. It clearly shows that the competing estimators underestimate
the risk systematically and exceed the targeted level on average up to 29% more times than the
unbiased estimator. Moreover, as could be seen from values of T2, the performance of the Gaussian
unbiased estimator is better in almost all cases.

8 Conclusion

In this article, we proposed to consider unbiased risk estimators for the estimation of risk in practise.
We could compute some estimators, for example for value-at-risk in the Gaussian case, in closed
form. For more general cases we introduce appropriate bootstrapping algorithms. The performance
of the Gaussian unbiased risk estimator on a variety of data sets is very surprising: in particular in
small learning periods, he almost ever ends up in the green zone according to Basel II regulation
(compare Tables 2 and 3, respectively).
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Portfolio Total number of exceptions divided
by total length

Number of exceptions for non-
overlapping subsets of length
250, for n = 4

n = 4 n = 5 n = 6

LoBM.LoOP 0.0127 0.0163 0.0139 3 4 4 2 1 3 4 2 6
BM1.OP2 0.0092 0.0123 0.0163 4 2 2 0 1 4 4 0 3
BM1.OP3 0.0119 0.0135 0.0127 1 5 3 3 5 5 1 1 3
BM1.OP4 0.0119 0.0155 0.0147 3 5 3 2 2 4 1 2 6
LoBM.HiOP 0.0107 0.0143 0.0151 3 4 1 2 4 5 2 1 3
BM2.OP1 0.0103 0.0107 0.0135 3 6 3 1 2 1 1 2 6
BM2.OP2 0.0099 0.0107 0.0115 4 6 2 1 1 5 0 3 3
BM2.OP3 0.0088 0.0119 0.0115 1 2 3 2 2 4 2 1 4
BM2.OP4 0.0092 0.0135 0.0147 2 3 1 1 3 2 4 4 1
BM2.OP5 0.0127 0.0163 0.0135 1 4 5 3 2 5 4 1 4
BM3.OP1 0.0092 0.0115 0.0119 5 3 1 2 1 4 1 1 3
BM3.OP2 0.0107 0.0104 0.0131 4 7 1 2 1 3 2 1 4
BM3.OP3 0.0127 0.0111 0.0115 3 5 3 3 5 3 3 2 3
BM3.OP4 0.0123 0.0131 0.0119 5 5 1 2 4 3 1 3 5
BM3.OP5 0.0103 0.0143 0.0115 3 2 5 0 3 5 3 2 2
BM4.OP1 0.0127 0.0115 0.0127 7 4 2 3 1 2 4 3 4
BM4.OP2 0.0135 0.0135 0.0135 3 7 3 5 1 3 5 1 3
BM4.OP3 0.0143 0.0139 0.0108 1 5 2 5 4 5 4 2 4
BM4.OP4 0.0103 0.0119 0.0135 2 6 1 3 1 2 5 2 4
BM4.OP5 0.0123 0.0127 0.0104 1 1 6 2 1 3 3 5 5
HiBM.LoOP 0.0092 0.0115 0.0092 2 3 1 3 3 4 0 2 3
BM5.OP2 0.0092 0.0119 0.0147 4 3 1 2 2 2 1 1 3
BM5.OP3 0.0092 0.0155 0.0143 1 5 2 2 2 2 1 5 2
BM5.OP4 0.0111 0.0100 0.0139 2 3 5 3 3 3 2 3 1
HiBM.HiOP 0.0088 0.0107 0.0115 3 6 0 0 1 4 1 1 3

Table 4: We take returns of 25 portfolios formed on book-to-market and operating profitability
in the period from 01.01.2005 to 01.01.2015 from the Fama & French dataset, see [14]. As in
Section 7.1, we calculate the mean number of exceptions in the whole set, for various learning
periods (4 to 6 days). The computations are presented for the Gaussian unbiased estimator ˆV@Ru

α

defined in (1.1). The results show surpsingly often that the estimator is in the green zone (0-4
exceptions) while using only a small level of historical data. The cases not in the green zone are
marked in bold face.
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Portfolio Estimator type

Hist Norm Mod GPD Stud Bia Boot1 Boot2 Boot3 Boot4

LoBM.LoOP 0.066 0.066 0.061 0.061 0.068 0.063 0.062 0.061 0.052 0.054
BM1.OP2 0.066 0.063 0.060 0.061 0.066 0.059 0.058 0.058 0.052 0.054
BM1.OP3 0.069 0.061 0.060 0.063 0.065 0.059 0.057 0.057 0.052 0.053
BM1.OP4 0.064 0.068 0.065 0.063 0.070 0.066 0.063 0.063 0.051 0.056
LoBM.HiOP 0.063 0.065 0.063 0.063 0.072 0.061 0.061 0.061 0.051 0.061
BM2.OP1 0.067 0.070 0.063 0.060 0.073 0.065 0.063 0.063 0.056 0.058
BM2.OP2 0.068 0.066 0.063 0.059 0.074 0.063 0.061 0.061 0.050 0.053
BM2.OP3 0.068 0.068 0.066 0.059 0.069 0.063 0.061 0.061 0.056 0.055
BM2.OP4 0.067 0.069 0.063 0.063 0.071 0.066 0.066 0.063 0.054 0.056
BM2.OP5 0.061 0.063 0.053 0.054 0.067 0.056 0.054 0.054 0.049 0.050
BM3.OP1 0.060 0.054 0.054 0.057 0.059 0.054 0.054 0.054 0.048 0.050
BM3.OP2 0.061 0.063 0.061 0.061 0.068 0.058 0.057 0.057 0.047 0.050
BM3.OP3 0.070 0.067 0.063 0.063 0.068 0.061 0.060 0.060 0.055 0.057
BM3.OP4 0.061 0.063 0.061 0.059 0.068 0.060 0.059 0.058 0.049 0.052
BM3.OP5 0.060 0.058 0.055 0.054 0.063 0.055 0.055 0.054 0.042 0.047
BM4.OP1 0.068 0.066 0.061 0.060 0.070 0.061 0.061 0.062 0.053 0.054
BM4.OP2 0.063 0.066 0.062 0.057 0.072 0.059 0.057 0.059 0.050 0.053
BM4.OP3 0.068 0.063 0.059 0.058 0.068 0.059 0.058 0.058 0.054 0.052
BM4.OP4 0.058 0.057 0.054 0.058 0.062 0.054 0.052 0.052 0.048 0.050
BM4.OP5 0.072 0.066 0.059 0.056 0.068 0.061 0.059 0.058 0.055 0.052
HiBM.LoOP 0.067 0.063 0.061 0.060 0.068 0.059 0.058 0.057 0.055 0.052
BM5.OP2 0.064 0.064 0.057 0.054 0.067 0.059 0.057 0.057 0.046 0.051
BM5.OP3 0.066 0.063 0.059 0.061 0.068 0.059 0.058 0.058 0.052 0.054
BM5.OP4 0.064 0.057 0.059 0.061 0.066 0.054 0.054 0.052 0.048 0.053
HiBM.HiOP 0.072 0.066 0.061 0.063 0.068 0.062 0.059 0.059 0.054 0.055

MEAN 0.065 0.064 0.060 0.060 0.068 0.060 0.059 0.058 0.051 0.053
DIST 0.015 0.014 0.010 0.010 0.018 0.010 0.009 0.008 0.003 0.004

Table 5: We take returns of 25 portfolios formed on book-to-market and operating profitability in
the period from 16.01.2009 to 01.01.2015 from the Fama & French dataset, see [14]. We perform the
standard back-test, splitting the sample into intervals of length 50. The table presents the average
rate of exception for Value-at-Risk at level 5%. MEAN denote the mean value of all numbers in a
given column, while DIST denotes average distance from 0.05. It can be seen that for the biased
estimators, the average rate is significantly higher than the expected rate of 0.05 while the unbiased
estimators perform very well.
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Portfolio Estimator type

Hist Norm Mod GPD Stud Bia Boot1 Boot2 Boot3 Boot4

LoBM.LoOP 0.068 0.058 0.061 0.060 0.058 0.054 0.051 0.051 0.051 0.051
BM1.OP2 0.069 0.057 0.064 0.056 0.057 0.046 0.043 0.042 0.048 0.048
BM1.OP3 0.069 0.070 0.063 0.059 0.071 0.064 0.059 0.059 0.049 0.052
BM1.OP4 0.058 0.048 0.050 0.052 0.048 0.045 0.044 0.043 0.043 0.046
LoBM.HiOP 0.059 0.057 0.054 0.049 0.058 0.052 0.051 0.051 0.045 0.043
BM2.OP1 0.065 0.057 0.060 0.061 0.059 0.054 0.054 0.052 0.048 0.050
BM2.OP2 0.065 0.048 0.054 0.057 0.048 0.043 0.041 0.042 0.047 0.050
BM2.OP3 0.072 0.059 0.062 0.062 0.063 0.057 0.057 0.057 0.051 0.057
BM2.OP4 0.060 0.056 0.057 0.058 0.057 0.049 0.048 0.050 0.046 0.049
BM2.OP5 0.067 0.059 0.057 0.057 0.059 0.054 0.051 0.052 0.049 0.055
BM3.OP1 0.064 0.059 0.057 0.057 0.064 0.054 0.054 0.053 0.049 0.054
BM3.OP2 0.070 0.055 0.054 0.057 0.056 0.051 0.051 0.051 0.052 0.051
BM3.OP3 0.063 0.061 0.061 0.060 0.063 0.057 0.054 0.055 0.052 0.054
BM3.OP4 0.074 0.051 0.053 0.061 0.052 0.047 0.045 0.042 0.050 0.050
BM3.OP5 0.063 0.054 0.057 0.053 0.054 0.045 0.042 0.040 0.048 0.046
BM4.OP1 0.070 0.055 0.054 0.059 0.055 0.052 0.052 0.052 0.050 0.052
BM4.OP2 0.071 0.063 0.065 0.070 0.063 0.060 0.057 0.058 0.056 0.057
BM4.OP3 0.062 0.058 0.057 0.059 0.059 0.052 0.050 0.050 0.051 0.054
BM4.OP4 0.070 0.061 0.061 0.061 0.061 0.059 0.058 0.059 0.052 0.055
BM4.OP5 0.068 0.050 0.053 0.056 0.051 0.045 0.043 0.044 0.044 0.048
HiBM.LoOP 0.062 0.059 0.057 0.055 0.059 0.053 0.052 0.052 0.047 0.048
BM5.OP2 0.077 0.063 0.062 0.058 0.065 0.054 0.052 0.050 0.052 0.050
BM5.OP3 0.068 0.057 0.059 0.061 0.059 0.051 0.048 0.048 0.056 0.052
BM5.OP4 0.075 0.054 0.062 0.065 0.054 0.050 0.050 0.049 0.053 0.055
HiBM.HiOP 0.068 0.054 0.050 0.051 0.056 0.048 0.046 0.047 0.048 0.045

MEAN 0.067 0.057 0.058 0.058 0.058 0.052 0.050 0.050 0.050 0.051
DIST 0.017 0.007 0.008 0.008 0.008 0.004 0.004 0.004 0.003 0.003

Table 6: We fit a normal distribution to each portfolio from the Fama & French dataset, see [14].
From this distributions we simulate samples of size n = 1500 and perform the standard back-test,
splitting the sample into intervals of length 50. The table presents the average rate of exception
for Value-at-Risk at level 5%. It can be seen that for the biased estimators, the average rate
is significantly higher than the expected rate of 0.05 while the unbiased estimators perform very
well. MEAN denote the mean value of all numbers in a given column, while DIST denotes average
distance from 0.05.
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Portfolio Estimator type

Hist Norm Mod GPD Stud Bia Boot1 Boot2 Boot3 Boot4

LoBM.LoOP 0.063 0.056 0.060 0.061 0.064 0.052 0.052 0.052 0.049 0.053
BM1.OP2 0.070 0.048 0.067 0.056 0.058 0.041 0.041 0.041 0.057 0.048
BM1.OP3 0.064 0.046 0.074 0.059 0.055 0.042 0.041 0.039 0.052 0.052
BM1.OP4 0.077 0.043 0.067 0.053 0.051 0.041 0.039 0.039 0.059 0.044
LoBM.HiOP 0.068 0.050 0.090 0.061 0.054 0.044 0.044 0.044 0.052 0.052
BM2.OP1 0.060 0.048 0.060 0.056 0.054 0.043 0.043 0.043 0.050 0.046
BM2.OP2 0.072 0.052 0.063 0.057 0.057 0.047 0.047 0.047 0.057 0.050
BM2.OP3 0.071 0.046 0.050 0.055 0.059 0.046 0.044 0.044 0.053 0.044
BM2.OP4 0.061 0.041 0.062 0.051 0.049 0.037 0.037 0.038 0.049 0.043
BM2.OP5 0.067 0.040 0.072 0.053 0.047 0.038 0.037 0.038 0.053 0.049
BM3.OP1 0.076 0.058 0.067 0.066 0.066 0.052 0.052 0.052 0.056 0.059
BM3.OP2 0.064 0.048 0.086 0.059 0.057 0.046 0.046 0.046 0.054 0.052
BM3.OP3 0.067 0.041 0.060 0.052 0.053 0.039 0.037 0.037 0.050 0.044
BM3.OP4 0.071 0.032 0.095 0.056 0.049 0.028 0.028 0.028 0.050 0.050
BM3.OP5 0.067 0.046 0.067 0.061 0.057 0.045 0.045 0.043 0.052 0.054
BM4.OP1 0.070 0.043 0.119 0.057 0.055 0.041 0.039 0.041 0.052 0.050
BM4.OP2 0.069 0.043 0.056 0.055 0.059 0.042 0.042 0.041 0.056 0.049
BM4.OP3 0.070 0.051 0.088 0.070 0.060 0.048 0.048 0.048 0.057 0.059
BM4.OP4 0.067 0.041 0.069 0.057 0.048 0.036 0.036 0.035 0.046 0.048
BM4.OP5 0.064 0.050 0.084 0.059 0.062 0.050 0.049 0.050 0.049 0.050
HiBM.LoOP 0.068 0.043 0.053 0.050 0.055 0.042 0.042 0.041 0.048 0.046
BM5.OP2 0.061 0.034 0.103 0.057 0.052 0.033 0.033 0.033 0.048 0.046
BM5.OP3 0.070 0.048 0.078 0.061 0.059 0.046 0.043 0.045 0.054 0.050
BM5.OP4 0.063 0.049 0.066 0.055 0.060 0.048 0.048 0.048 0.047 0.050
HiBM.HiOP 0.066 0.052 0.060 0.061 0.060 0.046 0.044 0.045 0.053 0.054

MEAN 0.067 0.046 0.073 0.058 0.056 0.043 0.042 0.042 0.052 0.050
DIST 0.017 0.006 0.023 0.008 0.006 0.007 0.008 0.008 0.003 0.003

Table 7: In contrast to Table 6 where a normal distribution was used, here we fit a Student-t-
distribution to the data. The table presents again the average rate of exception for Value-at-Risk at
level 5%. In this case the unbiased estimators (which assume normality) overestimate the risk, i.e.
are conservative. The proposed non-parametric bootstrap algorithms (Boot3 and Boot4) correct
for the different distribution and perform well even in this case. MEAN denote the mean value of
all numbers in a given column, while DIST denotes average distance from 0.05. It can be seen that
for the biased estimators, the average rate is significantly higher than the expected rate of 0.05
while the unbiased estimators perform very well.
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Estimator Exceeds T1 T2

mean sd mean sd mean

Percentile ˆV@Remp
α (x) 0.067 0.0048 29.4% 11.7% 99%

Modified C-F ˆV@Rmod
α (x) 0.057 0.0046 9.7% 3.8% 82%

Gaussian ˆV@Rnorm
α (x) 0.057 0.0044 11.1% 6.6% 82%

GPD ˆV@RGPD
α (x) 0.058 0.0044 12.5% 8.3% 83%

Gaussian unbiased ˆV@Ru
α(x) 0.052 0.0045 - - -

Table 8: We fit a normal distribution to the first portfolio from the Fama & French dataset,
i.e. LoBM.LoOP portfolio. See [14] for details. From this distributions we simulate 10000 times
strong sample of size n = 1500 and perform the standard back-test 10000 times. In other words,
we replicate 10000 times the result from the first row of Table 7. The table presents the average
rate of exception for Value-at-Risk at level 5%. It can be seen that for the biased estimators,
the average mean exception rate is significantly higher than the expected rate of 0.05 while the
Gaussian unbiased estimator perform very well. Statistic T1 shows that the exceedance rate for
Gaussian unbiased estimator is usually lower in comparison with other estimators, eliminating the
effect of risk underestimation. Moreover, statistic T2 shows that in almost all cases, the exception
rate for Gaussian unbiased estimator is closer to 0.05, than the exception rate of any other of the
considered estimators.
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