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Filter theory is a modern area of statistics and probability theory where the goal is
to estimate a signal which can only be observed under additional noise. In contrast to
classical statistics, the unobserved signal changes dynamically over time. This opens the
area for a wide range of applications, and the topics where filtering is applied turns out
to be extremly rich: global positiong system (GPS) receivers, advanced driver assistance
systems, online monitoring in the intensiv care of patients, model estimation in financial
applications, denoising of fotographs or language recordings, and mobile robotics, to
just name a few. In particular, for the application to mobile robotics the problem of
estimating the robot’s position given the available information has been termed

the most fundamental problem to providing a mobile robot with autonomous
capabilities”1

which highlights the difficulty of the area as well as the importance of fast and reliable
methodologies. A prime example is the kidnapped robot, one or more robots which are
carried to an location posing a big challenge on the robot’s localization systems.

This article gives a short overview of the historic developments in filtering theory and
illustrates the basic concepts of Kalman filtering and particle filtering to grasp some
intuition.

To this end, let us state shortly what a (linear) filtering problem is. The aim is to
estimate an unboserved and dynamical signal. The signal at time t is denoted by Xt

with t = 0, 1, 2, . . . . The observer only has access to a noisy observation: the observation
at time t is denoted by Yt. For example, let the signal Xt denote the location of a robot
at current time t. Given that the robot was at position Xt it would move to Xt+1 in
the next time step, depending on our steering. However, we do not have full information
about the position, so Xt might take different values (for example locations A, B and C
or a full interval [A,B]), each with different probabilities (respectively a density in the
interval case). The observation Yt could be a GPS signal ore other information which of

1See Cox (1991); cited from Fox et al. (2001) with provides a nice introduction to particle filter
applications in mobile robotics.
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consists of Xt plus noise. Our goal is to optimally use the observation in our estimation
procedure. We do so by updating our probabilities for the location which leads to an
improved estimate of the actual position.

Depending on the setup and the application in view, the dependence of X = (Xt)t≥0

and Y = (Yt)t≥0 can be modelled in various ways. The simplest type of dependence is
the following linear structure:

Yt = aXt + εt, t = 0, 1, 2, . . .

where a is a constant and εt denotes the noise. We will assume that the noise is indepen-
dent of X, has mean zero and unit variance. Then the constant a determines the degree
of information in the data: clearly, if a = 0, no information is included in the data.
On the other side, if a is very high, the data has extremly good quality and estimation
will be very easy. The more complicated, nonlinear variants of the filtering problem are
obtained by replacing aXt with a(Xt) where a is a nonlinear function.

It is not surprising, that such a fundamental system has been studied for a long time
by mathematicians. When Xt ≡ θ is simply a constant, one arives at the famous linear
regression problem in statistics, where Gauss already provided a solution via the least
squares approach, see Gauß (1809).

1 History of filtering

The dynamical filtering problem was firstly studied in the 40’s by the great architects
of probability theory, Andrey N. Kolmogorov and Norbert Wiener. While Kolmogorov
studied the problem stated as above in discrete time, Wiener considered already the
continuous-time analogue.

It took a while until further developements should appear. Surprisingly, the break-
through in the field was achieved by studying a important simplification: the linear case.
It was Rudolf E. Kálmán in 1960 who published a now famous article in an enginee-
ring journal studying the linear case with Gaussian noise, Kalman (1960), see Stepanov
(2011) for a historical account on the key discoveries in the development of the filter.
The main advantage of the simplification to the linear case is that the solution of the
filtering problem then can be calculated explicitely. This allowed the article to reach
a widespread audience. We will later discuss the conceptual outcomes of this approach
shortly. Richard S. Bucy obtained similar results independently, and jointly they solved
the linear filtering problem in continuous time which is now called the Kalman-Bucy fil-
ter. ”The most famous early use of the Kalman filter was in the Appollo mission which
took Neil Amstrong to the moon, and (most importantly) brought him back. Today,
Kalman filters are at work in every satellite navigation device, every smart phone, and
many computer games”2. Not very surprising, the most delicate aspect is the return
trajectory of the missile towards the earth, where the Apollo command module must
enter the atmosphere at a highly precise level. For a historical account on the use of the

2cited from Faragher (2012), which also gives a nice intuitive discussion of the Kalman filter.
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Kalman filter in the Apollo mission and the various tweaks and adjustements which have
been developed while implementing this approach, see Grewal and Andrews (2010).

Many other scientists contributed to the problem in those years, amongst them Fujisa-
ki, Kallianpur, Kushner, Liptser, Shiryaev, Striebel, Stratonovich, and Wonham. The re-
searchers started to tackle the general problem and ran into great difficiulties: except for
occasional special cases, the filtering problem immediately becomes infinite-dimensional.
Compare this to the Kalman-Bucy filter, which in the simplest case allowed to obtain a
two-dimensional solution! Not surprisingly, one has tried to stretch the linear problem
as far as possible by using locally linear approximations, which is lead to such variants
like the extended Kalman filter. An important step was the observation by Moshe Zakai3

in 1969, that studying the un-normalized densities leads to a linear stochastic partial
differential equation for the filtering problem, the so-called Zakai equation. See also the
example on particle filtering below, where a similar step increases performance of the
algorithm.

The area developed rapidly in the 1980’s and 1990’s. Many reasearchers tackled the
problem from various sides and a suitable level of generality was obtained. In the 1990s,
a lot of the research done focussed on numerical algorithms for solving the filtering pro-
blem. This is quite natural, recalling that typically no explicit solutions are available. A
nowadays very successful numerical method is the so-called particle filter. This approach
estimates the distribution of the unkown signal by discretization into finitely many par-
ticles and applying the strong law of large numbers. The approach origins from earlier
works on sequential Monte Carlo methods and first ideas can be traced back to early
works in the 50’s, in particular to the work of Alan Turing. The name ”particle filter”
was first used in Del Moral (1996) and we give some details in an example below.

From the late 90’s on, filtering also became increasingly important in the applicati-
ons in mathematical finance, where one often acknowledges incomplete information and
filtering is the ideal tool to treat this. Applications have been in portfolio optimization,
calibration of financial models, insider trading, hedging and many more. A prime exam-
ple is credit risk, where the firm value is a fundamental variable, which is of course not
known to market participants. However, there are various sources of information, like
quarterly reports, stock, bond and options prices and the goal is to estimate the credit
riskiness of the company from this information. Filtering has proved a suitable method
to achieve this very effectively, see for example Frey and Runggaldier (2011).

For a historical overview and a comprehensive work on filtering without jumps we
refer to Bain and Crisan (2009) and for a treatment from different viewpoints see the
compendium Crisan and Rozovskii (2011).

The Kalman filter. For building up intuition on the Kalman filter, we revisit the
example from the introducion with the following specialisation: assume that

Yt = aX + εt, t = 0, 1, 2, . . . (1)

3See Zakai (1969).
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with X being normally distributed with mean zero and, for simplicity, variance 1 and
ε1, ε2, . . . being standard normally distributed, and X and εi, i ≥ 1 are also independent.
The aim of filtering is to determine the minimal variance estimate for X given the obser-
vation until time t, which we denote by X̂t. It turns out that the conditional expectation
X̂t = E[X|Y1, . . . , Yt] is indeed this optimal estimator. Joint normality implies that X
can be written as

X = α1Y1 + · · ·+ αtYt + η

where η is again normally distributed with mean zero, but it is also independent from
Y1, . . . , Yt. Then, X̂t = α1Y1 + · · ·+ αtYt, as E[η|Y1, . . . , Yt] = 0 and the Kalman filter is
obtained once the coefficients αi are computed. The key tool for this is a careful study
of the covariances: consider for simplicity t = 2. On the one hand,

Cov(X, Y1) = Cov(X,X + ε1) = Var(X) = 1 = Cov(X, Y2).

On the other hand,

Cov(X, Y1) = Cov(α1Y1 + α2Y2 + η, Y1) = α1 Var(Y1) + α2 Var(X)

= α1(a
2 + 1) + α2

and, similarily, Cov(X, Y2) = α1 +α2(a
2 + 1). This gives two linear equations for α1 and

α2 and we obtain α1 = α2 = (2 + a2)−1. In a similar way we obtain

X̂t =
1

t+ a2

t∑
i=1

Yi.

The conditional variance now is easily computed and turns out to be independent of the
past, i.e. a constant. The Kalman filter inherits a similar structure: the covariance is a
deterministic function which can be computed explicitely, and, the filter has a recursive
structure: X̂t+1 can be computed from X̂t and the information update, Yt+1.

Surprisingly, this simple approach can be generalised in a tedious exercise one can
compute the Kalman filter. This perspective allows us to understand the following quote
from Kalman himself: ”(...) the discovery of the Kalman filter (January 1959) came
about through a single, gigantic, persistent mathematical exercise. (...) Just as Newton
was lucky having timed his birth so as to have Kepler’s laws ready and waiting for him,
I was lucky, too.”4

The interested reader, who wants to further expand this example to the Kalman and
the Kalman-Bucy filter, is referred to Frey and Schmidt (2011). This article gives also a
more general setup including jumps, applications in mathematical finance, and further
references.

Particle filtering Finally, we discuss shortly the particle filter, or sequential Monte
Carlo methods, which build an intuitive and flexible numerical scheme to treat nonlinear

4Cited from Stepanov (2011).
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filtering problems. Of course, there are numerous other numerical approaches and we
refer again to Bain and Crisan (2009) for literature and a thorough treatment.

The particle filter is well-suited for the non-linear case of our example. To get intuition,
assume for a moment that Xt = x and Yt = y have positive probability. Then, by Bayes’
rule, we have that

P (Xt = x|Yt = y) =
P (Yt = y|Xt = x)P (Xt = x)

P (Yt = y)
. (2)

Replacing t P with the conditional probability P (.|Yt−1, . . . , Y1) does not violate the
argument and we obtained a nice result on discrete filtering. It can be generalized to
the continuous case with the used of densities. However, this argument gives the insight
that by Bayes’ rule the filtering problem can be solved with the knowledge of P (Yt ∈
A|Xt = x) and P (Xt ∈ B|Yt−1, . . . , Y1) (the prediction) as well as the normalizing factor
P (Yt ∈ B|Yt−1, . . . , Y1). This means that the filter starts with a prediction on the future
state and in a second step incorporates the arriving information.

The particle filter mimicks this procedure. It approximates the conditional distribution
by a finite number of particles having different weights. In a simple variant it considers a
fixed number of particles which are initially distributed according to the initial distribu-
tion. In each iteration, there are two steps: first, the particles move randomly according
to the law of X to new positions. Seconds, the weights of the particles are adjusted
incorporating the new information with a variant of (2). Each particle gets offsprings
proportional to the weights. Different choices for the distributions of the offsprings lead
to different algorithms with different properties.

Summarizing, filtering can be applied in a large variety of situations and provides a
flexible instruments for various questions. New challenges from applications and upco-
ming questions stipulate the research and the development of improved algorithms and
methodologies.
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