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Abstract. We prove Itô’s formula for a general class of functions H : R+ ×
F → G of class C1,2, where F,G are separable Banach spaces, and jump
processes driven by a compensated Poisson random measure.

1. Introduction

We prove Itô’s formula for Banach space valued stochastic jump processes driven
by a compensated Poisson random measure. In this context, Itô’s formula was
originally given in [14]. However, there it was only proven for a smaller class of
integrands, as stochastic integration for Banach space valued integrands was still
not understood in the generality of the forthcoming papers [9], [10]. We remind
here also the work of E. Hausenblas [6], where Itô’s formula on Banach spaces was
proven assuming additional conditions on the integrands. In a previous work of
Graveraux and Pellaumail [5], where also additional conditions on the integrands
are required, the Itô formula was not given in terms of the compensator. However,
this is necessary in case the formula is used to find the generator of a Markov
process. In this article, we provide an improvement of the work of [14]. Even if
the methods are similar, the current article is presented in a clearer and direct
way, due to integrands having general integrability conditions. The mark space
(E, E), associated to the compensated Poisson random measure, is also allowed to
be more general than in [14], where E has been a separable Banach space. We refer
Remark 2.1 and Remark 3.2, where this generalization is discussed. Moreover, an
additional improvement is given, which is important for applications: The condition
H ∈ C1,2

b (R+ × F ;G), i.e. that the function H and its partial derivatives are
bounded, is not required any more. This means that Itô’s formula can be applied
to functionals such as ‖ · ‖2, as discussed in Example 3.9.

2. Preliminaries

Let (Ω,F , (Ft)t≥0,P) be a filtered probability space satisfying the usual condi-
tions, and let (F, ‖ · ‖) be a separable Banach space. Let (E, E) be a measurable
space which we assume to be a Blackwell space (see [1, 4]). Furthermore, let N be a
time-homogeneous Poisson random measure on R+×E, see [7, Def. II.1.20]. Then
its compensator is of the form ν(dt, dx) = dtβ(dx), where β is a σ-finite measure
on (E, E). We call q(dt, dx) = N(dt, dx) − ν(dt, dx) the associated compensated
Poisson random measure.

Remark 2.1. In previous works on this topic, see e.g. [13, 14, 9, 10], the mark
space (E, E) is a separable Banach space equipped with its Borel σ-field, and N is
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the Poisson random measure associated to an E-valued Lévy process with Lévy mea-
sure β. The upcoming results from this Section, which we take from [13, 14, 9, 10],
also hold true in our present, more general framework, and with analogous proofs
(see, e.g. [8, 2] for the case where F is a separable Hilbert space). Indeed, the
crucial point is whether the integral operator (3) can be extended to a continuous
linear operator, and this property does not rely on the structure of E (see also Re-
mark 2.4 below). The assumption that the measurable space (E, E) is a Blackwell
space is a standard assumption when dealing with random measures, see e.g. [7,
Chapter II.1]. It ensures the existence and uniqueness of the predictable compen-
sator, see [7, Thm. II.1.8]. We remark that every Polish space with its Borel σ-field
is a Blackwell space.

We fix an arbitrary T ∈ R+. Let us consider the set of progressively measurable
functions on the time interval [0, T ], i.e.

MT (E/F ) := {f : Ω× [0, T ]× E → F : f is B[0, T ]⊗ E ⊗ FT -measurable
and f(t, x) is Ft-measurable for all t ∈ [0, T ] and x ∈ E}.

Furthermore, we define

MT,2
ν (E/F ) :=

{
f ∈MT (E/F ) :

∫ T

0

∫
E

E[‖f(t, x)‖2]ν(dt, dx) <∞
}
,

where E[f ] denotes the expectation with respect to the probability measure P.

Definition 2.2. A function f ∈ MT (E/F ) belongs to the set ΣT (E/F ) of simple
functions, if there exist n,m ∈ N such that

f(t, x) =

n−1∑
k=1

m∑
l=1

1Ak,l
(x)1Fk,l

1(tk,tk+1](t)ak,l,

where β(Ak,l) < ∞, tk ∈ (0, T ], tk < tk+1, Fk,l ∈ Ftk , ak,l ∈ F , and for all
k ∈ 1 . . . , n− 1 we have Ak,l1 × Fk,l1 ∩Ak,l2 × Fk,l2 = ∅ if l1 6= l2.

The set ΣT (E/F ) of simple functions is dense in the Banach space MT,2
ν (E/F )

with norm

‖f‖2 :=

√∫ T

0

∫
E

E[‖f(t, u)‖2]ν(dt, dx).

The proof only uses the fact that the simple functions are defined on the sets of a
semiring which generates the σ-algebra B[0, T ]⊗E ⊗FT and that the compensator
is of the form ν(dt, dx) = dtβ(dx), see [13, Theorem 4.2] (where this is proven for
slightly more general compensated Poisson random measures having compensators
α(dt)β(dx) with α(dt) being absolutely continuous w.r.t Lebesgue measure). We
remark that in [15, Chapter 2.4], which deals the case of real-valued integrands, a
bigger set of simple functions is considered.

The Itô integral of simple functions is defined as usual pathwise in a very natural
way (see Chapter 3 in [13]): For f ∈ ΣT (E/F ), the “natural stochastic integral” of
f is given by∫ T

0

∫
E

f(t, x)q(dt, dx) :=

n−1∑
k=1

m∑
l=1

ak,l1Fk,l
q((tk, tk+1] ∩ (0, T ]×Ak,l).

Remark 2.3. Suppose the mark space (E, E) is a separable Banach space equipped
with its Borel σ-field. Then, for each f ∈ ΣT (E/F ) we have∫ T

0

∫
E

f(s, x)q(ds, dx) =
∑

0<s≤T

f(s,∆Xs)− E
[ ∑

0<s≤T

f(s,∆Xs)

]
,(1)
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where (Xt)t≥0 is the Lévy process associated to the compensated Poisson random
measure q(ds, dx), and ∆Xs denotes the jump of X at time s, i.e. ∆Xs = Xs −
limu↑sXu.

Let M2
T (F ) be the linear space of all F -valued square integrable martingales

M = (Mt)t∈[0,T ] with norm

‖M‖M2
T

=
(
E[‖MT ‖2]

)1/2
.

The Itô integral for functions f ∈MT,2
ν (E/F ) is well defined, if the linear operator

ΣT (E/F )→M2
T (F ), f 7→

(∫ t

0

∫
E

f(s, x)q(ds, dx)

)
t∈[0,T ]

(2)

can uniquely be extended to a continuous linear operator

MT,2
ν (E/F )→M2

T (F ), f 7→
(∫ t

0

∫
E

f(s, x)q(ds, dx)

)
t∈[0,T ]

.(3)

In particular, if this is the case, for all f ∈MT,2
ν (E/F ) there is a sequence (fn)n∈N ⊂

ΣT (E/F ) such that limn→∞ ‖f − fn‖2 = 0 and

lim
n→0

E

[∥∥∥∥∫ T

0

∫
E

(f(s, x)− fn(s, x))q(ds, dx)

∥∥∥∥2
]

= 0.

Remark 2.4. In [10] we have proven that the Itô Integral for simple functions in
(2) can uniquely be extended to a continuous linear operator (3) if and only if there
is a constant Kβ, depending on the Lévy measure β, such that

(4)
E

[∥∥∥∥∫ T

0

∫
E

f(s, x)q(ds, dx)

∥∥∥∥2
]

≤ KβE
[ ∫ T

0

∫
E

‖f(s, x)‖2β(dx)ds

]
for all f ∈ ΣT (E/F ).

If the Banach space F is of M-type 2, then such a constant exists and does not depend
on the Lévy measure β, see [9]. We also emphasize that – as indicated in Remark 2.1
– the proof of this result does not rely on the structure of E. Hence, the M-type 2
condition is a sufficient, but not necessary condition for the Itô integral with respect
to compensated Poisson random measures to be well defined. Typical examples of
M-type 2 Banach spaces are the Lebesgue spaces Lp(G,G, µ) with 2 ≤ p < ∞ and
(G,G, µ) being a measure space, see [11], [12]. On the other hand, if such a constant
exists and does not depend on the Lévy measure β, i.e. Kβ = K, then the Banach
space F has to be of type 2, see [10]. We also remark that in case F = H being a
Hilbert space, the linear operator (3) is even an isometry, see [13].

There are separable Banach spaces which are not of M-type 2, as the following
example shows:

Example 2.5. Let `1 be the space of all real-valued sequences (xj)j∈N ⊂ R which
are absolutely convergent, that is

‖x‖`1 :=

∞∑
j=1

|xj | <∞.

Then (`1, ‖ · ‖`1) is a separable Banach space which is not of M-type 2. Indeed, let
(ej)j∈N be the standard unit sequences in `1, which are given by

e1 = (1, 0, . . .), e2 = (0, 1, 0, . . .), . . .
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Let n ∈ N be arbitrary. We denote by (X
(n)
j )j=1,...,n independent random variables

having a normal distribution N(0, 1/n), and we define the `1-valued process M (n) =

(M
(n)
k )k=0,...,n as

M
(n)
0 := 0 and M

(n)
k :=

k∑
j=1

X
(n)
j ej , k = 1, . . . , n.

Then M (n) is a martingale with respect to the filtration (F (n)
k )k=0,...,n given by

F (n)
0 = {∅,Ω} and F (n)

k = σ(X
(n)
1 , . . . , X

(n)
k ), k = 1, . . . , n.

Moreover, we have
n∑
k=1

E
[
‖M (n)

k −M (n)
k−1‖

2
`1

]
=

n∑
k=1

E[‖X(n)
k ek‖2`1 ] =

n∑
k=1

E
[
|X(n)

k |
2
]

= 1

as well as

E
[
‖M (n)

n ‖2`1
]

= E

[∥∥∥∥ n∑
j=1

X
(n)
j ej

∥∥∥∥2

`1

]
= E

[( n∑
j=1

|X(n)
j |
)2
]

=

n∑
i=1

n∑
j=1

E
[
|X(n)

i X
(n)
j |
]

=

n∑
j=1

E
[
|X(n)

j |
2
]

+
∑
i 6=j

E
[
|X(n)

i |
]
E
[
|X(n)

j |
]

= 1 +
∑
i6=j

2

πn
= 1 +

2n(n− 1)

πn
= 1 +

2(n− 1)

π
→∞ for n→∞,

showing that `1 is not of M-type 2.

Remark 2.6. The space `1 has also been utilized in [17] in order to provide coun-
terexamples for stochastic integration in Banach spaces with respect to a Wiener
process. In [16], the stochastic integral with respect to a Wiener process has been
defined on so-called UMD Banach spaces. This approach is based on a two-sided
decoupling inequality for UMD spaces due to [3].

Together with Example 2.5, the next result shows that `1 is a separable Banach
space, which is not of M-type 2, but where inequality (4) is satisfied for certain
Poisson random measures.

Proposition 2.7. We suppose that β(E) < ∞. Then inequality (4) is satisfied
with Kβ = 4 + 6Tβ(E).

Proof. Let f ∈ ΣT (E/F ) be arbitrary. Then we have

E

[∥∥∥∥∫ T

0

∫
E

f(s, x)q(ds, dx)

∥∥∥∥2
]

≤ 2E

[(∫ T

0

∫
E

‖f(s, x)‖N(ds, dx)

)2
]

+ 2E

[(∫ T

0

∫
E

‖f(s, x)‖β(dx)ds

)2
]

≤ 2E

[(∫ T

0

∫
E

‖f(s, x)‖q(ds, dx) +

∫ T

0

∫
E

‖f(s, x)‖β(dx)ds

)2
]

+ 2E

[(∫ T

0

∫
E

‖f(s, x)‖β(dx)ds

)2
]
.
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Thus, by the Itô isometry for real-valued integrands and the Cauchy-Schwarz in-
equality we obtain

E

[∥∥∥∥∫ T

0

∫
E

f(s, x)q(ds, dx)

∥∥∥∥2
]

≤ 4E

[(∫ T

0

∫
E

‖f(s, x)‖q(ds, dx)

)2
]

+ 6E

[(∫ T

0

∫
E

‖f(s, x)‖β(dx)ds

)2
]

≤ 4E
[ ∫ T

0

∫
E

‖f(s, x)‖2β(dx)ds

]
+ 6Tβ(E)E

[ ∫ T

0

∫
E

‖f(s, x)‖2β(dx)ds

]
.

Consequently, inequality (4) is satisfied with Kβ = 4 + 6Tβ(E). �

If the continuous linear operator (3) is well defined, then the definition of the
Itô integral can be extended to all f ∈ K2

T,β(E/F ), where K2
T,β(E/F ) denotes the

linear space of all progressively measurable f ∈MT (E/F ) such that

P
(∫ T

0

∫
E

‖f(s, x)‖2β(dx)ds <∞
)

= 1.

For all f ∈ K2
T,β(F ) we define the sequence of stopping times

τn := inf
{
t ∈ [0, T ] :

∫ t

0

∫
E

‖f(s, x)‖2β(dx)ds ≥ n
}
, n ∈ N.

Note that f1[0,τn] ∈MT,2
ν (E/F ) for all n ∈ N. Hence, we can define the Itô integral∫ t

0

∫
E

f(s, x)q(ds, dx) := lim
n→∞

∫ t

0

∫
E

f(s, x)1[0,τn]q(ds, dx), t ∈ [0, T ]

which is a local martingale.
In the sequel we will use Theorem 7.7 with Remark 7.8 from [13]. We recall the

result here:

Theorem 2.8. Let f ∈ K2
T,β(E/F ) be arbitrary and let (fn)n∈N be a sequence such

that fn ∈ K2
T,β(E/F ) for all n ∈ N. Suppose that fn converges ν ⊗ P–almost surely

to f on Ω× [0, T ]× E, when n→∞, and P–almost surely

lim
n→∞

∫ T

0

∫
E

‖fn − f‖2dν = 0.

Assume there is g ∈ K2
T,β(E/F ) such that∫ T

0

∫
E

‖fn‖2dν ≤
∫ T

0

∫
E

‖g‖2dν.

Then, we have∫ t

0

∫
E

f(s, x)q(ds, dx) = lim
n→∞

∫ t

0

∫
E

fn(s, x)q(ds, dx),

where the limit is in probability.

3. Itô’s formula for Banach space valued functions

Let F be a separable Banach space and the integral operator (3) be a continuous
linear operator for each T ∈ R+. By Remark 2.4 this is equivalent to state that
there is a constant Kβ such that (4) holds. As pointed out in Remark 2.4, this is
in particular satisfied when the Banach space F is of M-type 2.
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Remark 3.1. According to [7, Prop. II.1.14], there exist a sequence (τk)k∈N of
finite stopping times with [[τk]]∩ [[τl]] = ∅ for k 6= l and an E-valued optional process
ξ such that for every optional process f : Ω× R+ × E → H with

P
(∫ t

0

∫
E

‖f(s, x)‖N(ds, dx) <∞
)

= 1 for all t ≥ 0

we have the identity∫ t

0

∫
E

f(s, x)N(ds, dx) =
∑
k∈N

f(τk, ξτk)1{τk≤t}, t ≥ 0.(5)

Remark 3.2. Suppose the mark space (E, E) is a separable Banach space equipped
with its Borel σ-field. From Remark 2.3 it follows that the stopping times τk in
Remark 3.1 can be chosen to be the jump times of the corresponding Lévy process
(Xt)t≥0, with the random variables ξτk being the jumps of the process at time τk,
that is ξ = ∆X. An analogous statement for E = Rd and an adapted càdlàg process
X can be found in [7, Prop.II.1.16]. The corresponding result, where E is a separable
Banach space, is given by Theorem 5.1 in [13]. The result [7, Prop. II.1.14] used
in Remark 3.1 allows us to use a more general mark space (E, E) than in [13], i.e.
a Blackwell space.

From now on, let G be another separable Banach space such that integral op-
erator (3) with F = G is a continuous linear operator for each T ∈ R+. Again by
Remark 2.4, this ensures that all upcoming stochastic integrals are well defined,
and that, for some constant Kβ > 0, for each T ∈ R+ we have the estimates

E

[∥∥∥∥∫ T

0

∫
E

f(s, x)q(ds, dx)

∥∥∥∥2
]
≤ KβE

[ ∫ T

0

∫
E

‖f(s, x)‖2dsβ(dx)

]
for all f ∈ MT,2

ν (E/F ) and all f ∈ MT,2
ν (E/G). We start with a version of Itô’s

formula, where the mark space is finite. Based on this result, we shall prove Theo-
rem 3.6 later on.

Proposition 3.3. We suppose that:
• H ∈ C1,2(R+ × F ;G) is a function.
• C ∈ E is a set with β(C) <∞.
• f : Ω× R+ × E → F is a progressively measurable process.
• g : Ω×R+ ×E → F is a progressively measurable process such that for all
t ∈ R+ we have P–almost surely∫ t

0

∫
C

‖g(s, x)‖ν(ds, dx) <∞.(6)

• Y is an Itô process of the form

Yt = Y0 +

∫ t

0

∫
C

f(s, x)N(ds, dx) +

∫ t

0

∫
C

g(s, x)ν(ds, dx), t ≥ 0.

Then, the following statements are true:
(1) For all t ∈ R+ we have P–almost surely∫ t

0

‖∂sH(s, Ys)‖ds <∞,(7) ∫ t

0

∫
C

‖H(s, Ys− + f(s, x))−H(s, Ys−)‖N(ds, dx) <∞,(8) ∫ t

0

∫
C

‖∂yH(s, Ys)g(s, x)‖ν(ds, dx) <∞.(9)
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(2) We have P–almost surely

H(t, Yt) = H(0, Y0) +

∫ t

0

∂sH(s, Ys)ds

+

∫ t

0

∫
C

(
H(s, Ys− + f(s, x))−H(s, Ys−)

)
N(ds, dx)

+

∫ t

0

∫
C

∂yH(s, Ys)g(s, x)ν(ds, dx), t ≥ 0.

Proof. Estimates (7), (9) hold true by (6) and the continuity of the partial deriva-
tives ∂sH, ∂yH, and (8) is valid, because β(C) <∞. We define the Itô processes

Y Nt := Y0 +

∫ t

0

∫
C

f(s, x)N(ds, dx), t ≥ 0

Zνt :=

∫ t

0

∫
C

g(s, x)ν(ds, dx), t ≥ 0.

Let h ∈ C1,2,2(R+×F×F ;G) be the function h(t, y, z) := H(t, y+z). Furthermore,
let (Πn)n∈N be a sequence of decompositions of R+ with |Πn| → 0. Let t ∈ R+ be
arbitrary. Then, we have

H(t, Yt)−H(0, Y0) = h(t, Y Nt , Zνt )− h(0, Y N0 , Zν0 )

= lim
n→∞

∑
ti∈Πn

(
h(ti+1 ∧ t, Y Nti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti)
)

= lim
n→∞

∑
ti∈Πn

(
h(ti+1 ∧ t, Y Nti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)

)
+ lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti+1∧t)

)
+ lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti , Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti)
)
.

By Taylor’s theorem, the first term equals

lim
n→∞

∑
ti∈Πn

(
h(ti+1 ∧ t, Y Nti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)

)
= lim
n→∞

∑
ti∈Πn

∫ 1

0

∂sh(ti + θ((ti+1 ∧ t)− ti), Y Nti+1∧t, Z
ν
ti+1∧t)((ti+1 ∧ t)− ti)dθ

= lim
n→∞

∫ t

0

( ∑
ti∈Πn

∫ 1

0

∂sh(ti + θ((ti+1 ∧ t)− ti), Y Nti+1∧t, Z
ν
ti+1∧t)dθ

1(ti,ti+1∧t](s)

)
ds.

Using Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∑
ti∈Πn

(
h(ti+1 ∧ t, Y Nti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)

)
=

∫ t

0

∂sh(s, Y Ns , Zνs )ds =

∫ t

0

∂sH(s, Ys)ds.

By Remark 3.1 we have

Y Nt = Y0 +
∑
k∈N

f(τk, ξτk)1{τk≤t}, t ≥ 0.
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Therefore, we obtain

lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti+1∧t)

)
= lim
n→∞

∑
ti∈Πn

∑
k∈N

(
h(ti, Y

N
τk
, Zνti+1∧t)− h(ti, Y

N
τk−, Z

ν
ti+1∧t)

)
1(ti,ti+1∧t](τk)

= lim
n→∞

∑
ti∈Πn

∑
k∈N

(
h(ti, Y

N
τk− + f(τk, ξτk), Zνti+1∧t)− h(ti, Y

N
τk−, Z

ν
ti+1∧t)

)
1(ti,ti+1∧t](τk)

= lim
n→∞

∑
ti∈Πn

∫ ti+1∧t

ti

∫
C

(
h(ti, Y

N
s− + f(s, x), Zνti+1∧t)− h(ti, Y

N
s−, Z

ν
ti+1∧t)

)
N(ds, dx).

Consequently, by Lebesgue’s dominated convergence theorem, the second term
equals

lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti+1∧t, Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti+1∧t)

)
= lim
n→∞

∫ t

0

∫
C

( ∑
ti∈Πn

(
h(ti, Y

N
s− + f(s, x), Zνti+1∧t)− h(ti, Y

N
s−, Z

ν
ti+1∧t)

)
1(ti,ti+1∧t](s)

)
N(ds, dx)

=

∫ t

0

∫
C

(
h(s, Y Ns− + f(s, x), Zνs )− h(s, Y Ns−, Z

ν
s )
)
N(ds, dx)

=

∫ t

0

∫
C

(
H(s, Ys− + f(s, x))−H(s, Ys−)

)
N(ds, dx).

By Taylor’s theorem, for the third term we obtain

lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti , Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti)
)

= lim
n→∞

∑
ti∈Πn

∫ 1

0

∂zh(ti, Y
N
ti , Z

ν
ti + θ(Zνti+1∧t − Z

ν
ti))(Z

ν
ti+1∧t − Z

ν
ti)dθ

= lim
n→∞

∑
ti∈Πn

∫ 1

0

∂zh(ti, Y
N
ti , Z

ν
ti + θ(Zνti+1∧t − Z

ν
ti))

∫ ti+1∧t

ti

∫
C

g(s, x)ν(ds, dx)dθ

= lim
n→∞

∑
ti∈Πn

∫ ti+1∧t

ti

∫
C

∫ 1

0

∂zh(ti, Y
N
ti , Z

ν
ti + θ(Zνti+1∧t − Z

ν
ti))g(s, x)dθν(ds, dx).

Therefore, by Lebesgue’s dominated convergence theorem we get

lim
n→∞

∑
ti∈Πn

(
h(ti, Y

N
ti , Z

ν
ti+1∧t)− h(ti, Y

N
ti , Z

ν
ti)
)

= lim
n→∞

∫ t

0

∫
C

∫ 1

0

( ∑
ti∈Πn

∂zh(ti, Y
N
ti , Z

ν
ti + θ(Zνti+1∧t − Z

ν
ti))g(s, x)dθ

1(ti,ti+1∧t](s)

)
ν(ds, dx)

=

∫ t

0

∫
C

∂zh(s, Y Ns , Zνs )g(s, x)ν(ds, dx) =

∫ t

0

∫
C

∂yH(s, Ys)g(s, x)ν(ds, dx).

This completes the proof. �
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Remark 3.4. In the proof of Proposition 3.3 we used the representation (5),
whereas in [14] we have used the natural representation (1) of simple functions.
Due to Remark 3.2, these methods are more or less equivalent, but the proof here
is shorter and allows a more general mark space (E, E).

Definition 3.5. We call a continuous, non-decreasing function h : R+ → R+

quasi-sublinear if there is a constant C > 0 such that

h(x+ y) ≤ C
(
h(x) + h(y)

)
, x, y ∈ R+,

h(xy) ≤ Ch(x)h(y), x, y ∈ R+.

Theorem 3.6. We suppose that:
• H ∈ C1,2(R+ × F ;G) is a function such that

‖∂yH(s, y)‖ ≤ h1(‖y‖), (s, y) ∈ R+ × F(10)
‖∂yyH(s, y)‖ ≤ h2(‖y‖), (s, y) ∈ R+ × F(11)

for quasi-sublinear functions h1, h2 : R+ → R+.
• B ∈ E is a set with β(Bc) <∞.
• f : Ω×R+ ×E → F is a progressively measurable process such that for all
t ∈ R+ we have P–almost surely

(12)

∫ t

0

∫
B

‖f(s, x)‖2ν(ds, dx) +

∫ t

0

∫
B

h1(‖f(s, x)‖)2‖f(s, x)‖2ν(ds, dx)

+

∫ t

0

∫
B

h2(‖f(s, x)‖)‖f(s, x)‖2ν(ds, dx) <∞.

• g : Ω× R+ × E → F is a progressively measurable process.
• Y is an Itô process of the form

Yt = Y0 +

∫ t

0

∫
B

f(s, x)q(ds, dx) +

∫ t

0

∫
Bc

g(s, x)N(ds, dx), t ≥ 0.

Then, the following statements are true:
(1) For all t ∈ R+ we have P–almost surely∫ t

0

‖∂sH(s, Ys)‖ds <∞,(13) ∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)‖2ν(ds, dx) <∞,(14) ∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)− ∂yH(s, Ys)f(s, x)‖ν(ds, dx) <∞,(15) ∫ t

0

∫
Bc

‖H(s, Ys− + g(s, x))−H(s, Ys−)‖N(ds, dx) <∞.(16)

(2) We have P–almost surely

(17)

H(t, Yt) = H(0, Y0) +

∫ t

0

∂sH(s, Ys)ds

+

∫ t

0

∫
B

(
H(s, Ys− + f(s, x))−H(s, Ys−)

)
q(ds, dx)

+

∫ t

0

∫
B

(
H(s, Ys + f(s, x))−H(s, Ys)− ∂yH(s, Ys)f(s, x)

)
ν(ds, dx)

+

∫ t

0

∫
Bc

(
H(s, Ys− + g(s, x))−H(s, Ys−)

)
N(ds, dx), t ≥ 0.
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Proof. Estimate (13) holds true by the continuity of the partial derivative ∂sH,
and (16) is valid, because β(Bc) < ∞. By Taylor’s theorem, the Cauchy Schwarz
inequality and (10), we obtain P–almost surely∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)‖2ν(ds, dx)

=

∫ t

0

∫
B

∥∥∥∥∫ 1

0

∂yH(s, Ys + θf(s, x))f(s, x)dθ

∥∥∥∥2

ν(ds, dx)

≤
∫ t

0

∫
B

∫ 1

0

‖∂yH(s, Ys + θf(s, x))‖2‖f(s, x)‖2dθν(ds, dx)

≤
∫ t

0

∫
B

∫ 1

0

h1(‖Ys + θf(s, x))‖)2‖f(s, x)‖2dθν(ds, dx)

Since h1 is quasi-sublinear, for some constant C > 0 we get P–almost surely∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)‖2ν(ds, dx)

≤ C2

∫ t

0

∫
B

∫ 1

0

(
h1(‖Ys‖) + Ch1(θ)h1(‖f(s, x)‖)

)2‖f(s, x)‖2dθν(ds, dx)

≤ 2C2

∫ t

0

∫
B

h1(‖Ys‖)2‖f(s, x)‖2ν(ds, dx)

+ 2C4h1(1)

∫ t

0

∫
B

h1(‖f(s, x)‖)2‖f(s, x)‖2ν(ds, dx) <∞,

showing (14). By Taylor’s theorem and (11), we obtain P–almost surely∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)− ∂yH(s, Ys)f(s, x)‖ν(ds, dx)

=

∫ t

0

∫
B

∥∥∥∥∫ 1

0

∂yyH(s, Ys + θf(s, x))(f(s, x), f(s, x))dθ

∥∥∥∥ν(ds, dx)

≤
∫ t

0

∫
B

∫ 1

0

‖∂yyH(s, Ys + θf(s, x))‖ ‖f(s, x)‖2dθν(ds, dx)

≤
∫ t

0

∫
B

∫ 1

0

h2(‖Ys + θf(s, x)‖)‖f(s, x)‖2dθν(ds, dx)

Since h2 is quasi-sublinear, for some constant C > 0 we get P–almost surely∫ t

0

∫
B

‖H(s, Ys + f(s, x))−H(s, Ys)− ∂yH(s, Ys)f(s, x)‖ν(ds, dx)

≤ C
∫ t

0

∫
B

∫ 1

0

(
h2(‖Ys‖) + Ch2(θ)h2(‖f(s, x)‖)

)
‖f(s, x)‖2dθν(ds, dx)

≤ C
∫ t

0

∫
B

h2(‖Ys‖)‖f(s, x)‖2ν(ds, dx)

+ C2h2(1)

∫ t

0

∫
B

h2(‖f(s, x)‖)‖f(s, x)‖2ν(ds, dx) <∞,

providing (15). Since the measure β is σ-finite, there exists a sequence (Cn)n∈N ⊂ E
such that Cn ↑ E and β(Cn) <∞ for all n ∈ N. For each n ∈ N let Y n be the Itô
process

Y nt := Y0 +

∫ t

0

∫
B∩Cn

f(s, x)q(ds, dx) +

∫ t

0

∫
Bc∩Cn

g(s, x)N(ds, dx), t ≥ 0.
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Then, we can express Y n as

Y nt = Y0 +

∫ t

0

∫
Cn

(
f(s, x)1B(x) + g(s, x)1Bc(x)

)
N(ds, dx)

−
∫ t

0

∫
B∩Cn

f(s, x)ν(ds, dx), t ≥ 0.

Note that, by the Cauchy-Schwarz inequality and (12), for each t ∈ R+ we have∫ t

0

∫
B∩Cn

‖f(s, x)‖ν(ds, dx)

≤
(
tβ(B ∩ Cn)

)1/2(∫ t

0

∫
B∩Cn

‖f(s, x)‖2ν(ds, dx)

)1/2

<∞,

showing that condition (6) with g = −f1B and C = Cn is satisfied. Using Propo-
sition 3.3, we obtain P–almost surely

H(Y nt ) = H(Y0) +

∫ t

0

∂sH(s, Y ns )ds

+

∫ t

0

∫
Cn

(
H(s, Y ns− + f(s, x)1B(x) + g(s, x)1Bc(x))−H(s, Y ns−)

)
N(ds, dx)

−
∫ t

0

∫
B∩Cn

∂yH(s, Y ns )f(s, x)ν(ds, dx), t ≥ 0.

We can rewrite this formula as

H(Y nt ) = H(Y0) +

∫ t

0

∂sH(s, Y ns )ds

+

∫ t

0

∫
B∩Cn

(
H(s, Y ns− + f(s, x))−H(s, Y ns−)

)
N(ds, dx)

+

∫ t

0

∫
Bc∩Cn

(
H(s, Y ns− + g(s, x))−H(s, Y ns−)

)
N(ds, dx)

−
∫ t

0

∫
B∩Cn

∂yH(s, Y ns )f(s, x)ν(ds, dx), t ≥ 0,

an therefore, we obtain

H(Y nt ) = H(Y0) +

∫ t

0

∂sH(s, Y ns )ds

+

∫ t

0

∫
B∩Cn

(
H(s, Y ns− + f(s, x))−H(s, Y ns−)

)
q(ds, dx)

+

∫ t

0

∫
B∩Cn

(
H(s, Y ns + f(s, x))−H(s, Y ns )− ∂yH(s, Y ns )f(s, x)

)
ν(ds, dx)

+

∫ t

0

∫
Bc∩Cn

(
H(s, Y ns− + g(s, x))−H(s, Y ns−)

)
N(ds, dx), t ≥ 0

Letting n→∞, by virtue of Theorem 2.8 we arrive at (17). �

Example 3.7. Suppose that H ∈ C1,2
b (R+ × F ;G) and∫ t

0

∫
B

‖f(s, x)‖2ν(ds, dx) <∞ for all t ∈ R+.

Then Theorem 3.6 applies and yields the Itô formula (17), cf. [14].
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Example 3.8. If H ∈ L(F,G) is a continuous linear operator and∫ t

0

∫
B

‖f(s, x)‖2ν(ds, dx) <∞ for all t ∈ R+,

then Theorem 3.6 applies and yields that P–almost surely

H(Yt) = H(Y0) +

∫ t

0

∫
B

H(f(s, x))q(ds, dx)

+

∫ t

0

∫
Bc

H(g(s, x))N(ds, dx), t ≥ 0.

Example 3.9. Suppose that F is a separable Hilbert space. Then H(x) = ‖x‖2 is
of class C2(F ;R) with

Hx(x)v = 2〈x, v〉 and Hxx(x)(v, w) = 2〈v, w〉.
Therefore, we have

‖Hx(x)‖ ≤ 2‖x‖ and ‖Hxx(x)‖ ≤ 2.

Consequently, if∫ t

0

∫
B

‖f(s, x)‖2ν(ds, dx) +

∫ t

0

∫
B

‖f(s, x)‖4ν(ds, dx) <∞ for all t ∈ R+,

then Theorem 3.6 applies and yields that P–almost surely

‖Yt‖2 = ‖Y0‖2 +

∫ t

0

∫
B

(
‖Ys− + f(s, x)‖2 − ‖Ys−‖2

)
q(ds, dx)

+

∫ t

0

∫
B

(
‖Ys + f(s, x)‖2 − ‖Ys‖2 − 2〈Ys, f(s, x)〉

)
ν(ds, dx)

+

∫ t

0

∫
Bc

(
‖Ys− + g(s, x)‖2 − ‖Ys−‖2

)
N(ds, dx), t ≥ 0.
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