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Abstract. In the spirit of [3], we investigate term structure models driven by
Wiener processes and Poisson measures with forward curve dependent volatil-

ities. This includes a full existence and uniqueness proof for the corresponding

Heath-Jarrow-Morton type term structure equation. Furthermore, we charac-
terize positivity preserving models by means of the characteristic coefficients,

which was open for jump-diffusions. A key role in our investigation is played

by the method of the moving frame, which allows to transform term structure
equations to time-dependent SDEs.

Key Words: term structure models driven by Wiener processes and Pois-
son measures, Heath-Jarrow-Morton-Musiela equation, positivity preserving

models.

91B28, 60H15

1. Introduction

Interest rate theory is dealing with zero-coupon bonds, which are subject to a
stochastic evolution due to daily trading of related products like coupon bearing
bonds, swaps, caps, floors, swaptions, etc. Zero-coupon bonds, which are financial
assets paying the holder one unit of cash at maturity time T , are conceptually
important products, since one can easily write all other products as derivatives on
them. We always assume default-free bonds, i.e. there are no counterparty risks
in the considered markets. The Heath-Jarrow-Morton methodology takes the bond
market as a whole as today’s aggregation of information on interest rates and one
tries to model future flows of information by a stochastic evolution equation on the
set of possible scenarios of bond prices. For the set of possible scenarios of bond
prices the forward rate proved to be a flexible and useful parametrization, since
it maps possible states of the bond market to open subsets of (Hilbert) spaces of
forward rate curves. Under some regularity assumptions the price of a zero coupon
bond at t ≤ T can be written as

P (t, T ) = exp

(
−
∫ T

t

f(t, u)du

)
,

where f(t, T ) is the forward rate for date T . We usually assume the forward rate
to be continuous in maturity time T . The classical continuous framework for the
evolution of the forward rates goes back to Heath, Jarrow and Morton (HJM) [23].
They assume that, for every date T , the forward rates f(t, T ) follow an Itô process
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of the form

df(t, T ) = α(t, T )dt+

d∑
j=1

σj(t, T )dW j
t , t ∈ [0, T ](1.1)

where W = (W 1, . . . ,W d) is a standard Brownian motion in Rd.
There are several reasons for generalizing the HJM framework (1.1) by introduc-

ing jumps. Namely, this allows us to model the impact of unexpected news about
the economy, such as interventions by central banks, credit events, or (natural)
disasters. Indeed, there is strong statistical evidence in the finance literature that
empirical features of the data cannot be captured by continuous models. We also
mention that for the particular case of deterministic integrands α and σ in (1.1),
as it is for the Vasiček model, the log returns for discounted zero coupon bonds
are normally distributed, which, however, is not true for empirically observed log
returns, see the discussion in [37, Chap. 5].

Björk et al. [3, 4], Eberlein et al. [10, 11, 12, 13, 14, 15] and others ([38, 26, 24])
thus proposed to replace the classical Brownian motion W in (1.1) by a more
general driving noise, also taking into account the occurrence of jumps. Carmona
and Tehranchi [6] proposed models based on infinite dimensional Wiener processes,
see also [16]. In the spirit of Björk et al. [3] and Carmona and Tehranchi [6], we
focus on term structure models of the type

df(t, T ) = α(t, T )dt+ σ(t, T )dWt +

∫
E

γ(t, x, T )(µ(dt, dx)− F (dx)dt),(1.2)

where W denotes a (possibly infinite dimensional) Wiener process and, in addition,
µ is a homogeneous Poisson random measure on R+ × E with compensator dt ⊗
F (dx), where E denotes the mark space.

For what follows, it will be convenient to switch to the alternative parametriza-
tion

rt(ξ) := f(t, t+ ξ), ξ ≥ 0

which is due to Musiela [32]. Then, we may regard (rt)t≥0 as one stochastic process
with values in H, that is

r : Ω× R+ → H,

where H denotes a Hilbert space of forward curves h : R+ → R to be specified later.
Recall that we always assume that forward rate curves are continuous. Denoting by
(St)t≥0 the shift semigroup on H, that is Sth = h(t+ ·), equation (1.2) becomes in
integrated form

(1.3)

rt(ξ) = Sth0(ξ) +

∫ t

0

St−sα(s, s+ ξ)ds+

∫ t

0

St−sσ(s, s+ ξ)dWs

+

∫ t

0

∫
E

St−sγ(s, x, s+ ξ)(µ(ds, dx)− F (dx)ds), t ≥ 0

where h0 ∈ H denotes the initial forward curve and St−s operates on the functions
ξ 7→ α(s, s+ ξ), ξ 7→ σ(s, s+ ξ) and ξ 7→ γ(s, x, s+ ξ).

From a financial modeling point of view, one would rather consider drift and
volatilities to be functions of the prevailing forward curve, that is

α : H → H,

σj : H → H, for all j

γ : H × E → H.
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For example, the volatilities could be of the form σj(h) = φj(`1(h), . . . , `p(h)) for
some p ∈ N with φj : Rp → H and `i : H → R. We may think of `i(h) =
1
ξi

∫ ξi
0
h(η)dη (benchmark yields) or `i(h) = h(ξi) (benchmark forward rates).

The implied bond market

P (t, T ) = exp

(
−
∫ T−t

0

rt(ξ)dξ

)
(1.4)

is free of arbitrage if we can find an equivalent (local) martingale measure Q ∼ P
such that the discounted bond prices

exp

(
−
∫ t

0

rs(0)ds

)
P (t, T ), t ∈ [0, T ](1.5)

are local Q-martingales for all maturities T . In the sequel, we will directly specify
the HJM equation under a martingale measure. More precisely, we will assume that
the drift α = αHJM : H → H is given by

αHJM(h) :=
∑
j

σj(h)Σj(h)−
∫
E

γ(h, x)
(
eΓ(h,x) − 1

)
F (dx)(1.6)

for all h ∈ H, where we have set

Σj(h)(ξ) :=

∫ ξ

0

σj(h)(η)dη, for all j(1.7)

Γ(h, x)(ξ) := −
∫ ξ

0

γ(h, x)(η)dη.(1.8)

According to [3] (if the Brownian motion is infinite dimensional, see also [16]),
condition (1.6) guarantees that the discounted zero coupon bond prices (1.5) are
local martingales for all maturities T , whence the bond market (1.4) is free of
arbitrage. In the classical situation, where the model is driven by a finite dimensional
standard Brownian motion, (1.6) is the well-known HJM drift condition derived in
[23].

Our requirements lead to the forward rates (rt)t≥0 in (1.3) being a solution of
the stochastic equation

(1.9)

rt = Sth0 +

∫ t

0

St−sαHJM(rs)ds+

∫ t

0

St−sσ(rs)dWs

+

∫ t

0

∫
E

St−sγ(rs−, x)(µ(ds, dx)− F (dx)ds), t ≥ 0

and it arises the question whether this equation possesses a solution. To our knowl-
edge, there has not yet been an explicit proof for the existence of a solution to
the Poisson measure driven equation (1.9). We thus provide such a proof in our
paper, see Theorem 3.4. For term structure models driven by a Brownian motion,
the existence proof has been provided in [16] and for the Lévy case in [19]. We also
refer to the related papers [36] and [28].

In the spirit of [8] and [35], an H-valued stochastic process (rt)t≥0 satisfying
(1.9) is a so-called mild solution for the (semi-linear) stochastic partial differential
equation

{
drt = ( ddξ rt + αHJM(rt))dt+ σ(rt)dWt +

∫
E
γ(rt−, x)(µ(dt, dx)− F (dx)dt)

r0 = h0,

(1.10)

where d
dξ becomes the infinitesimal generator of the strongly continuous semigroup

of shifts (St)t≥0.
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As in [20], we understand stochastic partial differential equations as time-dependent
transformations of time-dependent stochastic differential equations with infinite di-
mensional state space. More precisely, on an enlarged space H of forward curves
h : R → R, which are indexed by the whole real line, equipped with the strongly
continuous group (Ut)t∈R of shifts, we solve the stochastic differential equation

dft = U−t`αHJM(πUtft)dt+ U−t`σ(πUtft)dWt

+
∫
E
U−t`γ(πUtft−, x)(µ(dt, dx)− F (dx)dt)

f0 = `h0,

(1.11)

where ` : H → H is an isometric embedding and π : H → H is the orthogonal
projection on H, and afterwards, we transform the solution process (ft)t≥0 by
rt := πUtft in order to obtain a mild solution for (1.10). Notice that (1.11) just
corresponds to the original HJM dynamics in (1.2), where, of course, the forward
rate ft(T ) has no economic interpretation for T < t. Thus, we will henceforth refer
to (1.11) as the HJM (Heath-Jarrow-Morton) equation.

We emphasize that knowledge about the HJM equation (1.11) is not necessary
in order to deduce existence and uniqueness for the forward curve evolution (1.10).
The only thing we require in order to apply the existence result from [20] is that we
can embed the space H of forward curves into a larger Hilbert space H, on which
the shift semigroup extends to a group. The point of the “method of the moving
frame” from [20] is to transform an SPDE into a time-dependent SDE on H, but
we do not need the particular structure of this extension.

Our existence result of this paper generalizes that for pure diffusion models
from [16] and for term structure models driven by Lévy processes from [19] (we
also mention the papers [36] and [28] concerning Lévy term structure models), see
Corollary 3.6. As described above, in order to establish the proof we apply a result
from [20], which contains existence and uniqueness results for general SPDEs on
Hilbert spaces. Other references for SPDEs on Hilbert spaces are [1] and [29]. Since
the HJM drift term αHJM is of the particular form (1.6), we have to work out
sufficient conditions which permit an application of this existence result.

In practice, we are interested in term structure models producing positive for-
ward curves, since negative forward rates are very rarely observed. After estab-
lishing the existence issue, we shall therefore focus on positivity preserving term
structure models, and give a characterization of such models. The HJM equation
(1.11) on the enlarged function space will be the key for analyzing positivity of
forward curves. Indeed, the “method of the moving frame”, see [20], allows us to
use standard stochastic analysis (see [25]) for our investigations. It will turn out
that the conditions

σj(h)(ξ) = 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ and all j

h+ γ(h, x) ∈ P, for all h ∈ P and F -almost all x ∈ E
γ(h, x)(ξ) = 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ and F -almost all x ∈ E

where P denotes the convex cone of all nonnegative forward curves, and ∂Pξ is the
“edge” consisting of all nonnegative forward curves h with h(ξ) = 0, are necessary
and sufficient for the positivity preserving property, see Theorem 4.24. For this pur-
pose, we provide a general positivity preserving result, see Theorem 4.20, which is
of independent interest and can also be applied on other function spaces. Positivity
results for the diffusion case have been worked out in [27] and [30]. In particular,
we would like to mention the important and beautiful work [34], where, through an
application of a general support theorem, positivity is proved. We shall also apply
this general argument for our reasonings.
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The remainder of this text is organized as follows. In Section 2 we introduce
the space Hβ of forward curves. Using this space, we prove in Section 3, under ap-
propriate regularity assumptions, the existence of a unique solution for the HJMM
equation (1.10). The positivity issue of term structure models is treated in Section
4. There, we show first the necessary conditions with a general semimartingale ar-
gument. The sufficient conditions are proved to hold true by switching on the jumps
“slowly”. This allows for a reduction to results from [34]. For the sake of lucidity,
we postpone the proofs of some auxiliary results to Appendix A.

2. The space of forward curves

In this section, we introduce the space of forward curves, on which we will solve
the HJMM equation (1.10) in Section 3.

We fix an arbitrary constant β > 0. Let Hβ be the space of all absolutely
continuous functions h : R+ → R such that

‖h‖β :=

(
|h(0)|2 +

∫
R+

|h′(ξ)|2eβξdξ
)1/2

<∞.

Let (St)t≥0 be the shift semigroup on Hβ defined by Sth := h(t+ ·) for t ∈ R+.
Since forward curves should flatten for large time to maturity ξ, the choice of

Hβ is reasonable from an economic point of view.
Moreover, let Hβ be the space of all absolutely continuous functions h : R→ R

such that

‖h‖β :=

(
|h(0)|2 +

∫
R
|h′(ξ)|2eβ|ξ|dξ

)1/2

<∞.

Let (Ut)t∈R be the shift group on Hβ defined by Uth := h(t+ ·) for t ∈ R.
The linear operator ` : Hβ → Hβ defined by

`(h)(ξ) :=

{
h(0), ξ < 0

h(ξ), ξ ≥ 0,
h ∈ Hβ

is an isometric embedding with adjoint operator π := `∗ : Hβ → Hβ given by
π(h) = h|R+

, h ∈ Hβ .

2.1. Theorem. Let β > 0 be arbitrary.

(1) The space (Hβ , ‖ · ‖β) is a separable Hilbert space.
(2) For each ξ ∈ R+, the point evaluation h 7→ h(ξ) : Hβ → R is a continuous

linear functional.
(3) (St)t≥0 is a C0-semigroup on Hβ with infinitesimal generator d

dξ : D( ddξ ) ⊂
Hβ → Hβ, d

dξh = h′, and domain

D( ddξ ) = {h ∈ Hβ |h′ ∈ Hβ}.

(4) Each h ∈ Hβ is continuous, bounded and the limit h(∞) := limξ→∞ h(ξ)
exists.

(5) H0
β := {h ∈ Hβ |h(∞) = 0} is a closed subspace of Hβ.

(6) There are universal constants C1, C2, C3, C4 > 0, only depending on β, such
that for all h ∈ Hβ we have the estimates

‖h′‖L1(R+) ≤ C1‖h‖β ,(2.1)

‖h‖L∞(R+) ≤ C2‖h‖β ,(2.2)

‖h− h(∞)‖L1(R+) ≤ C3‖h‖β ,(2.3)

‖(h− h(∞))4eβ•‖L1(R+) ≤ C4‖h‖4β .(2.4)
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(7) For each β′ > β, we have Hβ′ ⊂ Hβ, the relation

‖h‖β ≤ ‖h‖β′ , h ∈ Hβ′(2.5)

and there is a universal constant C5 > 0, only depending on β and β′, such
that for all h ∈ Hβ′ we have the estimate

‖(h− h(∞))2eβ•‖L1(R+) ≤ C5‖h‖2β′ .(2.6)

(8) The space (Hβ , ‖ · ‖β) is a separable Hilbert space, (Ut)t∈R is a C0-group
on Hβ and, for each ξ ∈ R, the point evaluation h 7→ h(ξ), Hβ → R is a
continuous linear functional.

(9) The diagram

Hβ
Ut−−−−→ Hβx` yπ

Hβ
St−−−−→ Hβ

commutes for every t ∈ R+, that is

πUt` = St for all t ∈ R+.(2.7)

Proof. See Appendix A. �

3. Existence of term structure models driven by Wiener processes
and Poisson measures

In this section, we establish existence and uniqueness of the HJMM equation
(1.10) with diffusive and jump components on the Hilbert spaces introduced in the
last section.

Let 0 < β < β′ be arbitrary real numbers. We denote by Hβ and Hβ′ the Hilbert
spaces of the previous section, equipped with the strongly continuous semigroup
(St)t≥0 of shifts, which has the infinitesimal generator d

dξ .

In the sequel, (Ω,F, (Ft)t≥0,P) denotes a filtered probability space satisfying the
usual conditions.

Let U be another separable Hilbert space and let Q ∈ L(U) be a compact, self-
adjoint, strictly positive linear operator. Then there exist an orthonormal basis {ej}
of U and a bounded sequence λj of strictly positive real numbers such that

Qu =
∑
j

λj〈u, ej〉ej , u ∈ U

namely, the λj are the eigenvalues of Q, and each ej is an eigenvector corresponding
to λj , see, e.g., [41, Thm. VI.3.2].

The space U0 := Q1/2(U), equipped with the inner product

〈u, v〉U0
:= 〈Q−1/2u,Q−1/2v〉U ,

is another separable Hilbert space and {
√
λjej} is an orthonormal basis.

Let W be a Q-Wiener process [8, p. 86,87]. We assume that tr(Q) =
∑
j λj <∞.

Otherwise, which is the case if W is a cylindrical Wiener process, there always exists
a separable Hilbert space U1 ⊃ U on which W has a realization as a finite trace
class Wiener process, see [8, Chap. 4.3].

We denote by L0
2(Hβ) := L2(U0, Hβ) the space of Hilbert-Schmidt operators

from U0 into Hβ , which, endowed with the Hilbert-Schmidt norm

‖Φ‖L0
2(Hβ) :=

√∑
j

λj‖Φej‖2, Φ ∈ L0
2(Hβ)

itself is a separable Hilbert space.
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According to [8, Prop. 4.1], the sequence of stochastic processes {βj} defined as
βj := 1√

λj
〈W, ej〉 is a sequence of real-valued independent (Ft)-Brownian motions

and we have the expansion

W =
∑
j

√
λjβ

jej ,(3.1)

where the series is convergent in the space M2(U) of U -valued square-integrable
martingales. Let Φ : Ω×R+ → L0

2(Hβ) be an integrable process, i.e. Φ is predictable
and satisfies

P
(∫ T

0

‖Φt‖2L0
2(Hβ)dt <∞

)
= 1 for all T ∈ R+.

Setting Φj :=
√
λjΦej for each j, we have∫ t

0

ΦsdWs =
∑
j

∫ t

0

Φjsdβ
j
s , t ∈ R+(3.2)

where the convergence is uniform on compact time intervals in probability, see [8,
Thm. 4.3].

Let (E,E) be a measurable space which we assume to be a Blackwell space (see
[9, 22]). We remark that every Polish space with its Borel σ-field is a Blackwell
space.

Furthermore, let µ be a homogeneous Poisson random measure on R+ × E, see
[25, Def. II.1.20]. Then its compensator is of the form dt ⊗ F (dx), where F is a
σ-finite measure on (E,E).

Let measurable vector fields σ : Hβ → L0
2(H0

β) and γ : Hβ × E → H0
β′ be

given, where the subspace H0
β was defined in Theorem 2.1. For each j we define

σj : Hβ → H0
β as σj(h) :=

√
λjσ(h)ej . We shall now focus on the HJMM equation

(1.10).

3.1. Assumption. We assume there exists a measurable function Φ : E → R+

satisfying

|Γ(h, x)(ξ)| ≤ Φ(x), h ∈ Hβ , x ∈ E and ξ ∈ R+(3.3)

a constant L > 0 such that

‖σ(h1)− σ(h2)‖L0
2(Hβ) ≤ L‖h1 − h2‖β(3.4) (∫

E

eΦ(x)‖γ(h1, x)− γ(h2, x)‖2β′F (dx)

)1/2

≤ L‖h1 − h2‖β(3.5)

for all h1, h2 ∈ Hβ, and a constant M > 0 such that

‖σ(h)‖L0
2(Hβ) ≤M(3.6) ∫

E

eΦ(x)(‖γ(h, x)‖2β′ ∨ ‖γ(h, x)‖4β′)F (dx) ≤M(3.7)

for all h ∈ Hβ. Furthermore, we assume that for each h ∈ Hβ the map

α2(h) := −
∫
E

γ(h, x)
(
eΓ(h,x) − 1

)
F (dx)(3.8)

is absolutely continuous with weak derivative

(3.9)
d

dξ
α2(h) =

∫
E

γ(h, x)2eΓ(h,x)F (dx)−
∫
E

d

dξ
γ(h, x)

(
eΓ(h,x) − 1

)
F (dx).

3.2. Remark. The proof of Proposition 3.3 below gives rise to the following remarks
concerning conditions (3.8), (3.9) from Assumption 3.1.
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• For each h ∈ Hβ the map α2(h) is well-defined (that is, for every ξ ∈ R+

the integral in (3.8) exists) and continuous (but not necessarily absolutely
continuous) with α2(h)(0) = 0 and limξ→∞ α2(h)(ξ) = 0.

• If α2(h) is absolutely continuous for some h ∈ Hβ, then we have α2(h) ∈
H0
β.

• For Lévy driven term structure models we can verify conditions (3.8) and
(3.9) directly, see Corollary 3.6 below.

• Let h ∈ Hβ be such that γ(h, x) ∈ C1(R+) for all x ∈ E. Suppose for each
ξ ∈ R+ there exist δ = δ(h, ξ) > 0 and C = C(h, ξ) > 0 such that∣∣∣∣ ddη γ(h, x)(η)

∣∣∣∣ ≤ C‖γ(h, x)‖β′ for all x ∈ E and η ∈ (ξ − δ, ξ + δ) ∩ R+.

Then, we even have α2(h) ∈ C1(R+) with derivative (3.9).

3.3. Proposition. Suppose Assumption 3.1 is fulfilled. Then we have αHJM(Hβ) ⊂
H0
β and there is a constant K > 0 such that

‖αHJM(h1)− αHJM(h2)‖β ≤ K‖h1 − h2‖β(3.10)

for all h1, h2 ∈ Hβ.

Proof. Note that αHJM = α1 + α2, where

α1(h) :=
∑
j

σj(h)Σj(h), h ∈ Hβ

and α2 is given by (3.8). By [16, Cor. 5.1.2] we have σj(h)Σj(h) ∈ H0
β , h ∈ Hβ for

all j. For an arbitrary h ∈ Hβ we obtain, by using [16, Cor. 5.1.2] again,∑
j

‖σj(h)Σj(h)‖β ≤
√

3(C2
3 + 2C4)

∑
j

‖σj(h)‖2β =
√

3(C2
3 + 2C4)‖σ(h)‖2L0

2(Hβ),

and hence, we deduce α1(Hβ) ⊂ H0
β .

Let h ∈ Hβ be arbitrary. For all x ∈ E and ξ ∈ R+ we have by (2.2) and (2.5)

|γ(h, x)(ξ)| ≤ C2‖γ(h, x)‖β ≤ C2‖γ(h, x)‖β′ ,(3.11)

and for all x ∈ E and ξ ∈ R+ we have by (3.3), (2.3) and (2.5)

|eΓ(h,x)(ξ) − 1| ≤ eΦ(x)|Γ(h, x)(ξ)| ≤ eΦ(x)‖γ(h, x)‖L1(R+) ≤ C3e
Φ(x)‖γ(h, x)‖β′ .

(3.12)

Estimates (3.11), (3.12) and (3.7) show that limξ→∞ α2(h)(ξ) = 0. From (3.3),
(3.11), (3.7) and (2.6) it follows that∫

R+

(∫
E

γ(h, x)(ξ)2eΓ(h,x)(ξ)F (dx)

)2

eβξdξ

≤ C2
2M

∫
R+

(∫
E

γ(h, x)(ξ)2eΓ(h,x)(ξ)F (dx)

)
eβξdξ

≤ C2
2M

∫
E

eΦ(x)

∫
R+

γ(h, x)(ξ)2eβξdξF (dx)

≤ C2
2MC5

∫
E

eΦ(x)‖γ(h, x)‖2β′F (dx) ≤ C2
2M

2C5.
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We obtain by (3.12), Hölder’s inequality, (3.7) and (2.5)

∫
R+

(∫
E

d

dξ
γ(h, x)(ξ)

(
eΓ(h,x)(ξ) − 1

)
F (dx)

)2

eβξdξ

≤ C2
3

∫
R+

(∫
E

∣∣∣∣ ddξ γ(h, x)(ξ)

∣∣∣∣e 1
2 Φ(x)e

1
2 Φ(x)‖γ(h, x)‖β′F (dx)

)2

eβξdξ

≤ C2
3M

∫
E

eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h, x)(ξ)

∣∣∣∣2eβξdξF (dx)

≤ C2
3M

∫
E

eΦ(x)‖γ(h, x)‖2β′F (dx) ≤ C2
3M

2.

In view of (3.9), we conclude that α2(Hβ) ⊂ H0
β , and hence αHJM(Hβ) ⊂ H0

β .

Let h1, h2 ∈ Hβ be arbitrary. By [16, Cor. 5.1.2], Hölder’s inequality, (3.4) and
(3.6) we have

‖α1(h1)− α1(h2)‖β

≤
√

3(C2
3 + 2C4)

∑
j

(‖σj(h1)‖β + ‖σj(h2)‖β)‖σj(h1)− σj(h2)‖β

≤
√

3(C2
3 + 2C4)

√∑
j

(‖σj(h1)‖β + ‖σj(h2)‖β)2

√∑
j

‖σj(h1)− σj(h2)‖2β

≤
√

6(C2
3 + 2C4)(‖σ(h1)‖L0

2(Hβ) + ‖σ(h2)‖L0
2(Hβ))‖σ(h1)− σ(h2)‖L0

2(Hβ)

≤ 2ML
√

6(C2
3 + 2C4)‖h1 − h2‖β .

Furthermore, by (3.9),

‖α2(h1)− α2(h2)‖2β ≤ 4(I1 + I2 + I3 + I4),

where we have put

I1 :=

∫
R+

(∫
E

γ(h1, x)(ξ)2
(
eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)

)
F (dx)

)2

eβξdξ,

I2 :=

∫
R+

(∫
E

eΓ(h2,x)(ξ)(γ(h1, x)(ξ)2 − γ(h2, x)(ξ)2)F (dx)

)2

eβξdξ,

I3 :=

∫
R+

(∫
E

d

dξ
γ(h1, x)(ξ)

(
eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)

)
F (dx)

)2

eβξdξ,

I4 :=

∫
R+

(∫
E

(
eΓ(h2,x)(ξ) − 1

)( d

dξ
γ(h1, x)(ξ)− d

dξ
γ(h2, x)(ξ)

)
F (dx)

)2

eβξdξ.

We get for all x ∈ E and ξ ∈ R+ by (3.3), (2.3) and (2.5)

(3.13)
|eΓ(h1,x)(ξ) − eΓ(h2,x)(ξ)| ≤ eΦ(x)|Γ(h1, x)(ξ)− Γ(h2, x)(ξ)|

≤ eΦ(x)‖γ(h1, x)− γ(h2, x)‖L1(R+) ≤ C3e
Φ(x)‖γ(h1, x)− γ(h2, x)‖β′ .
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Relations (3.13), Hölder’s inequality, (3.5), (2.4), (2.5) and (3.7) give us

I1 ≤ C2
3

∫
R+

(∫
E

γ(h1, x)(ξ)2e
1
2 Φ(x)e

1
2 Φ(x)‖γ(h1, x)− γ(h2, x)‖β′F (dx)

)2

eβξdξ

≤ C2
3L

2‖h1 − h2‖2β
∫
E

eΦ(x)

∫
R+

γ(h1, x)(ξ)4eβξdξF (dx)

≤ C2
3L

2C4‖h1 − h2‖2β
∫
E

eΦ(x)‖γ(h1, x)‖4β′F (dx) ≤ C2
3L

2C4M‖h1 − h2‖2β .

For every ξ ∈ R+ we obtain by (3.11) and (3.7)
(3.14)∫

E

eΦ(x)(γ(h1, x)(ξ) + γ(h2, x)(ξ))2F (dx)

≤ 2

∫
E

eΦ(x)(γ(h1, x)(ξ)2 + γ(h2, x)(ξ)2)F (dx)

≤ 2C2
2

(∫
E

eΦ(x)‖γ(h1, x)‖2β′F (dx) +

∫
E

eΦ(x)‖γ(h2, x)‖2β′F (dx)

)
≤ 4C2

2M.

Using (3.3), Hölder’s inequality, (3.14), (2.6) and (3.5) we get

I2 ≤
∫
R+

(∫
E

(γ(h1, x)(ξ) + γ(h2, x)(ξ))e
1
2 Φ(x)

× e 1
2 Φ(x)(γ(h1, x)(ξ)− γ(h2, x)(ξ))F (dx)

)2

eβξdξ

≤ 4C2
2M

∫
E

eΦ(x)

∫
R+

(γ(h1, x)(ξ)− γ(h2, x)(ξ))2eβξdξF (dx)

≤ 4C2
2MC5

∫
E

eΦ(x)‖γ(h1, x)(ξ)− γ(h2, x)(ξ)‖2β′F (dx)

≤ 4C2
2MC5L

2‖h1 − h2‖2β .

Using (3.13), Hölder’s inequality, (3.5), (2.5) and (3.7) gives us

I3 ≤ C2
3

∫
R+

(∫
E

∣∣∣∣ ddξ γ(h1, x)(ξ)

∣∣∣∣e 1
2 Φ(x)e

1
2 Φ(x)‖γ(h1, x)− γ(h2, x)‖β′F (dx)

)2

× eβξdξ

≤ C2
3L

2‖h1 − h2‖2β
∫
E

eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h1, x)(ξ)

∣∣∣∣2eβξdξF (dx)

≤ C2
3L

2‖h1 − h2‖2β
∫
E

eΦ(x)‖γ(h1, x)‖2β′F (dx) ≤ C2
3L

2M‖h1 − h2‖2β .

We obtain by (3.12), Hölder’s inequality, (3.7), (2.5) and (3.5)

I4 ≤ C2
3

∫
R+

(∫
E

‖γ(h2, x)‖β′e
1
2 Φ(x)e

1
2 Φ(x)

∣∣∣∣ ddξ γ(h1, x)(ξ)− d

dξ
γ(h2, x)(ξ)

∣∣∣∣F (dx)

)2

× eβξdξ

≤ C2
3M

∫
E

eΦ(x)

∫
R+

∣∣∣∣ ddξ γ(h1, x)(ξ)− d

dξ
γ(h2, x)(ξ)

∣∣∣∣2eβξdξF (dx)

≤ C2
3M

∫
E

eΦ(x)‖γ(h1, x)− γ(h2, x)‖2β′F (dx) ≤ C2
3ML2‖h1 − h2‖2β .

Summing up, we deduce that there is a constant K > 0 such that (3.10) is satisfied
for all h1, h2 ∈ Hβ . �
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3.4. Theorem. Suppose Assumption 3.1 is fulfilled. Then, for each initial curve
h0 ∈ L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-square continuous
Hβ-valued solution (ft)t≥0 for the HJM equation (1.11) with f0 = `h0 satisfying

E
[

sup
t∈[0,T ]

‖ft‖2β
]
<∞ for all T ∈ R+,(3.15)

and there exists a unique adapted, càdlàg, mean-square continuous mild and weak
Hβ-valued solution (rt)t≥0 for the HJMM equation (1.10) with r0 = h0 satisfying

E
[

sup
t∈[0,T ]

‖rt‖2β
]
<∞ for all T ∈ R+,(3.16)

which is given by rt := πUtft, t ≥ 0. Moreover, the implied bond market (1.4) is
free of arbitrage.

Proof. By virtue of Theorem 2.1, Proposition 3.3 and (3.4), (3.5), (3.7), (2.5), all
assumptions from [20, Cor. 10.9] are fulfilled, which therefore applies and establishes
the claimed existence and uniqueness result.

For all h ∈ Hβ , x ∈ E and ξ ∈ R+ we have by (3.3), (2.3) and (2.5)

(3.17)
|eΓ(h,x)(ξ) − 1− Γ(h, x)(ξ)| ≤ 1

2
eΦ(x)Γ(h, x)(ξ)2

≤ 1

2
eΦ(x)‖γ(h, x)‖2L1(R+) ≤

C2
3

2
eΦ(x)‖γ(h, x)‖2β′ .

Integrating (1.6) we obtain, by using [16, Lemma 4.3.2] and (3.17), (3.7)∫ •
0

αHJM(h)(η)dη =
1

2

∑
j

Σj(h)2 +

∫
E

(
eΓ(h,x) − 1− Γ(h, x)

)
F (dx)

for all h ∈ Hβ . Combining [3, Prop. 5.3] and [16, Lemma 4.3.3] (the latter result
is only required if W is infinite dimensional), the probability measure P is a local
martingale measure, and hence the bond market (1.4) is free of arbitrage. �

The case of Lévy-driven HJMM models is now a special case. We assume that
the mark space is E = Re for some positive integer e ∈ N, equipped with its Borel
σ-algebra E = B(Re). The measure F is given by

F (B) :=

e∑
k=1

∫
R
1B(xek)Fk(dx), B ∈ B(Re)(3.18)

where F1, . . . , Fe are Lévy measures on (R,B(R)) satisfying

Fk({0}) = 0, k = 1, . . . , e(3.19) ∫
R

(|x|2 ∧ 1)Fk(dx) <∞, k = 1, . . . , e(3.20)

and where the (ek)k=1,...,e denote the unit vectors in Re. Note that Definition (3.18)
implies ∫

Re
g(x)F (dx) =

e∑
k=1

∫
R
g(xek)Fk(dx)(3.21)

for any nonnegative measurable function g : Re → R. In particular, the support of
F is contained in

⋃e
k=1 span{ek}, the union of the coordinate axes in Re. For each

k = 1, . . . , e let δk : Hβ → H0
β′ be a vector field. We define γ : Hβ × Re → H0

β′ as

γ(h, x) :=

e∑
k=1

δk(h)xk.(3.22)
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Then, equation (1.10) corresponds to the situation where the term structure model
is driven by several real-valued, independent Lévy processes with Lévy measures
Fk. For all h ∈ Hβ and ξ ∈ R+ we set

∆k(h)(ξ) := −
∫ ξ

0

δk(h)(η)dη, k = 1, . . . , e.

3.5. Assumption. We assume there exist constants N, ε > 0 such that for all
k = 1, . . . , e we have∫

{|x|>1}
ezxFk(dx) <∞, z ∈ [−(1 + ε)N, (1 + ε)N ](3.23)

|∆k(h)(ξ)| ≤ N, h ∈ Hβ , ξ ∈ R+(3.24)

a constant L > 0 such that (3.4) and

‖δk(h1)− δk(h2)‖β′ ≤ L‖h1 − h2‖β , k = 1, . . . , e(3.25)

are satisfied for all h1, h2 ∈ Hβ, and a constant M > 0 such that (3.6) and

‖δk(h)‖β′ ≤M, k = 1, . . . , e(3.26)

are satisfied for all h ∈ Hβ.

Now, we obtain the statement of [19, Thm. 4.6] as a corollary.

3.6. Corollary. Suppose Assumption 3.5 is fulfilled. Then, for each initial curve
h0 ∈ L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-square continuous
Hβ-valued solution (ft)t≥0 for the HJM equation (1.11) with f0 = `h0 satisfying
(3.15), and there exists a unique adapted, càdlàg, mean-square continuous mild
and weak Hβ-valued solution (rt)t≥0 for the HJMM equation (1.10) with r0 = h0

satisfying (3.16), which is given by rt := πUtft, t ≥ 0. Moreover, the implied bond
market (1.4) is free of arbitrage.

Proof. Using (3.24), the measurable function Φ : Re → R+ defined as

Φ(x) := N

e∑
k=1

|xk|, x ∈ Re

satisfies (3.3). For each k = 1, . . . , e and every m ∈ N with m ≥ 2 we have∫
R
|x|me|zx|Fk(dx) <∞, z ∈ (−(1 + ε)N, (1 + ε)N).(3.27)

Indeed, let z ∈ (−(1 + ε)N, (1 + ε)N) be arbitrary. There exists η ∈ (0, ε) such that
|z| ≤ (1 + η)N . By (3.20), (3.23) and the basic inequality xm ≤ m!ex for x ≥ 0 we
obtain∫

R
|x|me|zx|Fk(dx) ≤

∫
R
|x|me(1+η)N |x|Fk(dx)

≤ 2

∫
{|x|≤ ln 2

(1+η)N
}
|x|mFk(dx) +

m!

((ε− η)N)m

∫
{|x|> ln 2

(1+η)N
}
e(1+ε)N |x|Fk(dx) <∞,

proving (3.27). Taking into account (3.21), (3.27), relations (3.25), (3.26) imply
(3.5), (3.7). Furthermore, (3.27), the elementary inequalities

|ex − 1− x| ≤ 1

2
x2e|x|, x ∈ R

|ex − 1| ≤ |x|e|x|, x ∈ R
and Lebesgue’s theorem show that the cumulant generating functions

Ψk(z) =

∫
R

(ezx − 1− zx)Fk(dx), k = 1, . . . , e
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belong to class C∞ on the open interval (−(1 + ε)N, (1 + ε)N) with derivatives

Ψ′k(z) =

∫
R
x(ezx − 1)Fk(dx),

Ψ
(m)
k (z) =

∫
R
xmezxFk(dx), m ≥ 2.

Therefore, and because of (3.21), we can, for an arbitrary h ∈ Hβ , write α2(h),
which is defined in (3.8), as

α2(h) = −
e∑

k=1

δk(h)Ψ′k

(
−
∫ •

0

δk(η)dη

)
.

Hence, α2(h) is absolutely continuous with weak derivative (3.9). Consequently,
Assumption 3.1 is fulfilled and Theorem 3.4 applies. �

Note that the boundedness assumptions (3.6), (3.7) of Theorem 3.4 resp. (3.6),
(3.26) of Corollary 3.6 cannot be weakened substantially. For example, for arbitrage
free term structure models driven by a single Brownian motion, it was shown in
[31, Sec. 4.7] that for the simple case of proportional volatility, that is σ(h) = σ0h
for some constant σ0 > 0, solutions necessarily explode. We mention, however, that
[36, Sec. 6] contains some existence results for Lévy term structure models with
linear volatility.

4. Positivity preserving term structure models driven by Wiener
processes and Poisson measures

In applications, we are often interested in term structure models producing posi-
tive forward curves. In this section, we characterize HJMM forward curve evolutions
of the type (1.10), which preserve positivity, by means of the characteristics of the
SPDE. In the case of short rate models this can be characterized by the positivity
of the short rate, a one-dimensional Markov process. In case of an infinite-factor
evolution, as described by a generic HJMM equation (see for instance [2]), this
problem is much more delicate. Indeed, one has to find conditions such that a
Markov process defined by the HJMM equation (on a Hilbert space of forward rate
curves) stays in a “small” set of curves, namely the convex cone of positive curves
bounded by a non-smooth set. Our strategy to solve this problem is the following:
First we show by general semimartingale methods necessary conditions for posi-
tivity. These necessary conditions are basically described by the facts that the Itô
drift is inward pointing and that the volatilities are parallel at the boundary of
the set of non-negative functions. Taking those conditions we can also prove that
the Stratonovich drift is inward pointing, since parallel volatilities produce parallel
Stratonovich corrections (a fact which is not true for general closed convex sets, but
holds true for the set of non-negative functions P ). Then we reduce the sufficiency
proof to two steps: First we essentially apply results from [34] in order to solve the
pure diffusion case and then we “slowly” switch on the jumps to see the general
result.

Let Hβ be the space of forward curves introduced in Section 2 for some fixed
β > 0. We introduce the half spaces

H+
ξ := {h ∈ Hβ |h(ξ) ≥ 0}, ξ ∈ R+

and define the closed, convex cone

P :=
⋂
ξ∈R+

H+
ξ
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consisting of all nonnegative forward curves from Hβ . In what follows, we shall use
that, by the continuity of the functions from Hβ , we can write P as

P =
⋂

ξ∈(0,∞)

H+
ξ .

Furthermore, we define the edges

∂Pξ := {h ∈ P |h(ξ) = 0}, ξ ∈ (0,∞).

First, we consider the positivity problem for general forward curve evolutions, where
the HJM drift condition (1.6) is not necessarily satisfied, and afterwards we apply
our results to the arbitrage free situation.

We emphasize that, in the sequel, we assume the existence of solutions. Sufficient
conditions for existence and uniqueness are provided in [20] (we also mention the
related articles [1] and [29]) for general stochastic partial differential equations and
in the previous Section 3 for the HJMM term structure equation (1.10).

As in the previous section, we work on the space Hβ of forward curves from
Section 2 for some β > 0. At first glance, it looks reasonable to treat the positivity
problem by working with weak solutions on Hβ . However, this is unfeasible, because
the point evaluations at ξ ∈ (0,∞), i.e., a linear functional ζ ∈ Hβ such that

h(ξ) = 〈ζ, h〉 for all h ∈ Hβ , do never belong to the domain D(( ddξ )∗) of the adjoint

operator. Indeed, a well-known mollifying technique shows that for each ξ ∈ (0,∞)
the linear functional h 7→ h′(ξ) : D( ddξ )→ R is unbounded.

Therefore treating the positivity problem with weak solutions does not bring an
immediate advantage, hence we shall work with mild solutions on Hβ .

Let measurable vector fields α : Hβ → Hβ , σ : Hβ → L0
2(Hβ) and γ : Hβ ×E →

Hβ be given. Currently, we do not assume that the drift term α is given by the HJM

drift condition (1.6). For each j we define σj : Hβ → Hβ as σj(h) :=
√
λjσ(h)ej .

We assume that for each h0 ∈ P the HJM equation
dft = U−t`α(πUtft)dt+ U−t`σ(πUtft)dWt

+
∫
E
U−t`γ(πUtft−, x)(µ(dt, dx)− F (dx)dt)

f0 = `h0,

(4.1)

has at least one Hβ-valued solution (ft)t≥0. Then, because of (2.7), the transfor-
mation rt := πUtft, t ≥ 0 is a mild Hβ-valued solution of the HJMM equation

{
drt = ( ddξ rt + α(rt))dt+ σ(rt)dWt +

∫
E
γ(rt−, x)(µ(dt, dx)− F (dx)dt)

r0 = h0.

(4.2)

4.1. Definition. The HJMM equation (4.2) is said to be positivity preserving if
for all h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 there exists a solution (ft)t≥0 of
(4.1) with f0 = `h0 such that P(

⋂
t∈R+
{rt ∈ P}) = 1, where rt := πUtft, t ≥ 0.

4.2. Remark. Note that the seemingly weaker condition P(rt ∈ P ) = 1 for all
t ∈ R+ is equivalent to the condition of the previous definition due to the càdlàg
property of the trajectories.

4.3. Definition. The HJMM equation (4.2) is said to be locally positivity preserv-
ing if for all h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 there exists a solution
(ft)t≥0 of (4.1) with f0 = `h0 and a strictly positive stopping time τ such that
P(
⋂
t∈R+
{rt∧τ ∈ P}) = 1, where rt := πUtft, t ≥ 0.

4.4. Lemma. Let h0 ∈ P be arbitrary and let (ft)t≥0 be a solution for (4.1) with
f0 = `h0. Set rt := πUtft, t ≥ 0. The following two statements are equivalent:
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(1) We have P(
⋂
t∈R+
{rt ∈ P}) = 1.

(2) We have P(
⋂
t∈[0,T ]{ft(T ) ≥ 0}) = 1 for all T ∈ (0,∞).

Proof. The claim follows, because the processes (rt)t≥0 and (ft(T ))t∈[0,T ] for an
arbitrary T ∈ (0,∞) are càdlàg, and because the functions from Hβ are continuous.

�

4.5. Assumption. We assume that the vector fields α : Hβ → Hβ and σ : Hβ →
L0

2(Hβ) are continuous and that h 7→
∫
B
γ(h, x)F (dx) is continuous on Hβ for all

B ∈ E with F (B) <∞.

4.6. Remark. Notice that, by Hölder’s inequality, Assumption 4.5 is implied by
Assumptions 4.10, 4.11 below, and therefore in particular by Assumption 3.1.

4.7. Proposition. Suppose Assumption 4.5 is fulfilled. If equation (4.2) is positivity
preserving, then we have∫

E

γ(h, x)(ξ)F (dx) <∞, for all ξ ∈ (0,∞), h ∈ ∂Pξ(4.3)

α(h)(ξ)−
∫
E

γ(h, x)(ξ)F (dx) ≥ 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ(4.4)

σj(h)(ξ) = 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ and all j(4.5)

h+ γ(h, x) ∈ P, for all h ∈ P and F -almost all x ∈ E.(4.6)

4.8. Remark. Observe that condition (4.6) implies

γ(h, x)(ξ) ≥ 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ and F -almost all x ∈ E.(4.7)

Therefore, condition (4.3) is equivalent to∫
E

|γ(h, x)(ξ)|F (dx) <∞, for all ξ ∈ (0,∞), h ∈ ∂Pξ.

Consequently, conditions (4.3) and (4.4) can be unified to∫
E

|γ(h, x)(ξ)|F (dx) ≤ α(h)(ξ)

for all ξ ∈ (0,∞) and h ∈ ∂Pξ.

Proof. Let h0 ∈ P be arbitrary and let (ft)t≥0 be a solution for (4.1) with f0 = `h0

such that P(
⋂
t∈R+
{rt ∈ P}) = 1, where rt := πUtft, t ≥ 0. By Lemma 4.4, for

each T ∈ (0,∞) and every stopping time τ ≤ T we have

P(fτ (T ) ≥ 0) = 1.(4.8)

Let φ ∈ U ′0 be a linear functional such that φj := φej 6= 0 for only finitely many j,
and let ψ : E → R be a measurable function of the form ψ = c1B with c > −1 and
B ∈ E satisfying F (B) <∞. Let Z be the Doléans-Dade Exponential

Zt = E

(∑
j

φjβj +

∫ •
0

∫
E

ψ(x)(µ(ds, dx)− F (dx)ds)

)
t

, t ≥ 0.

By [25, Thm. I.4.61] the process Z is a solution of

Zt = 1 +
∑
j

φj
∫ t

0

Zsdβ
j
s +

∫ t

0

∫
E

Zs−ψ(x)(µ(ds, dx)− F (dx)ds), t ≥ 0

and, since ψ > −1, the process Z is a strictly positive local martingale. There
exists a strictly positive stopping time τ1 such that Zτ1 is a martingale. Due to the
method of the moving frame, see [20], we can use standard stochastic analysis, to
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proceed further. For an arbitrary T ∈ (0,∞), integration by parts yields (see [25,
Thm. I.4.52])

(4.9)

ft(T )Zt =

∫ t

0

fs−(T )dZs +

∫ t

0

Zs−dfs(T ) + 〈f(T )c, Zc〉t

+
∑
s≤t

∆fs(T )∆Zs, t ≥ 0.

Taking into account the dynamics

(4.10)

ft(T ) = `h0(T ) +

∫ t

0

U−s`α(πUsfs)(T )ds+
∑
j

∫ t

0

U−s`σ
j(πUsfs)(T )dβjs

+

∫ t

0

∫
E

U−s`γ(πUsfs−, x)(T )(µ(ds, dx)− F (dx)ds), t ≥ 0

we have

〈f(T )c, Zc〉t =
∑
j

φj
∫ t

0

ZsU−s`σ
j(πUsfs)(T )ds, t ≥ 0(4.11)

∑
s≤t

∆fs(T )∆Zs =

∫ t

0

∫
E

Zs−ψ(x)U−s`γ(πUsfs−, x)(T )µ(ds, dx), t ≥ 0.(4.12)

Incorporating (4.10), (4.11) and (4.12) into (4.9), we obtain

(4.13)

ft(T )Zt = Mt +

∫ t

0

Zs−

(
U−s`α(πUsfs−)(T ) +

∑
j

φjU−s`σ
j(πUsfs−)(T )

+

∫
E

ψ(x)U−s`γ(πUsfs−, x)(T )F (dx)

)
ds, t ≥ 0

where M is a local martingale with M0 = 0. There exists a strictly positive stopping
time τ2 such that Mτ2 is a martingale.

By Assumption 4.5 there exist a strictly positive stopping time τ3 and a constant
α̃ > 0 such that

|U−(t∧τ3)`α(πUt∧τ3f(t∧τ3)−)(T )| ≤ α̃, t ≥ 0.

Let B := {x ∈ E : h0 + γ(h0, x) /∈ P}. In order to prove (4.6), it suffices, since F
is σ-finite, to show that F (B ∩ C) = 0 for all C ∈ E with F (C) < ∞. Suppose,
on the contrary, there exists C ∈ E with F (C) < ∞ such that F (B ∩ C) > 0.
By the continuity of the functions from Hβ , there exists T ∈ (0,∞) such that
F (BT ∩ C) > 0, where BT := {x ∈ E : h0(T ) + γ(h0, x)(T ) < 0}. We obtain∫

BT∩C
γ(h0, x)(T )F (dx) ≤

∫
BT∩C

(h0(T ) + γ(h0, x)(T ))F (dx) < 0.

By Assumption 4.5 and the left-continuity of the process f.−, there exist η > 0 and
a strictly positive stopping time τ4 ≤ T such that∫

BT∩C
U−(t∧τ4)`γ(πU(t∧τ4)f(t∧τ4)−, x)(T )F (dx) ≤ −η, t ≥ 0.

Let φ := 0, ψ := α̃+1
η 1BT∩C and τ :=

∧4
i=1 τi. Taking expectation in (4.13) we

obtain E[fτ (T )Zτ ] < 0, implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This
yields (4.6).

From now on, we assume that h0 ∈ ∂PT for an arbitrary T ∈ (0,∞).
Suppose that σj(h0)(T ) 6= 0 for some j. By the continuity of σ (see Assumption

4.5) there exist η > 0 and a strictly positive stopping time τ4 ≤ T such that

|U−(t∧τ4)`σ
j(πUt∧τ4f(t∧τ4)−)(T )| ≥ η, t ≥ 0.
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Let φ ∈ U ′0 be the linear functional with φj = −sign(σj(h0)(T )) α̃+1
η and φk = 0

for k 6= j. Furthermore, let ψ := 0 and τ :=
∧4
i=1 τi. Taking expectation in (4.13)

yields E[fτ (T )Zτ ] < 0, implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This
proves (4.5).

Now suppose
∫
E
γ(h0, x)(T )F (dx) = ∞. Using Assumption 4.5, relation (4.7)

and the σ-finiteness of F , there exist B ∈ E with F (B) <∞ and a strictly positive
stopping time τ4 ≤ T such that

−1

2

∫
B

U−(t∧τ4)`γ(πUt∧τ4f(t∧τ4)−, x)(T )F (dx) ≤ −(α̃+ 1), t ≥ 0.

Let φ := 0, ψ := − 1
21B and τ :=

∧4
i=1 τi. Taking expectation in (4.13) we obtain

E[fτ (T )Zτ ] < 0, implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This yields
(4.3).

Since F is σ-finite, there exists a sequence (Bn)n∈N ⊂ E with Bn ↑ E and
F (Bn) <∞, n ∈ N. Next, we show for all n ∈ N the relation

α(h0)(T ) +

∫
E

ψn(x)γ(h0, x)(T )F (dx) ≥ 0,(4.14)

where ψn := −(1 − 1
n )1Bn . Suppose, on the contrary, that (4.14) is not satisfied

for some n ∈ N. Using Assumption 4.5, there exist η > 0 and a strictly positive
stopping time τ4 ≤ T such that

U−(t∧τ4)`α(πUtf(t∧τ4)−)(T )

+

∫
E

ψn(x)U−(t∧τ4)`γ(πUt∧τ4f(t∧τ4)−, x)(T )F (dx) ≤ −η, t ≥ 0.

Let φ := 0 and τ :=
∧4
i=1 τi. Taking expectation in (4.13) we obtain E[fτ (T )Zτ ] < 0,

implying P(fτ (T ) < 0) > 0, which contradicts (4.8). This yields (4.14). By (4.14),
(4.3) and Lebesgue’s theorem, we conclude (4.4). �

4.9. Remark. The Cox-Ingersoll-Ross (CIR) model [7] is celebrated for its feature
to produce nonnegative interest rates. At this point, it is worth pointing out that
the Hull-White extension of the CIR model (HWCIR) is not positivity preserving.
Indeed, in Musiela parametrization its term structure dynamics are given by{

drt = ( ddξ rt + αHJM(rt))dt+ σ(rt)dWt

r0 = h0,

where W is a one-dimensional Wiener process and the vector fields αHJM, σ : Hβ →
H0
β are defined as

αHJM(h) := ρ2|h(0)|λΛ, h ∈ Hβ

σ(h) := ρ
√
|h(0)|λ, h ∈ Hβ

where ρ > 0 is a constant, h 7→ h(0) : Hβ → R denotes the evaluation of the
short rate, and where λ ∈ H0

β is a function with λ(x) > 0 for all x ≥ 0 such that

Λ =
∫ •

0
λ(η)dη satisfies a certain Riccati equation, see [21, Sec. 6.2] for more details.

Note that Assumption 4.5 is satisfied, because the vector fields αHJM, σ : Hβ → H0
β

are continuous, but condition (4.5) from Proposition 4.7 does not hold, because σ
only depends on the current state of the short rate. Hence, the HWCIR model cannot
be positivity preserving.
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Indeed, we can also verify this directly as follows. According to [21, Sec. 6.2], for
any initial curve h0 ∈ Hβ the short rate Rt = rt(0), t ≥ 0 has the dynamics{

dRt = (b(t)− c|Rt|)dt+ ρ
√
|Rt|dWt

R0 = h0(0)
(4.15)

for some constant c ∈ R and a time-dependent function b = b(h0) : R+ → R. Due
to [40], for each starting point h0(0) ∈ R the stochastic differential equation (4.15)
has a unique strong solution, and, according to [17], this solution is nonnegative if
and only if h0(0) ≥ 0 and b(t) ≥ 0 for all t ∈ R+. By [18, Prop. 5.2], the forward
rates are given by

f(t, T ) =

∫ T

t

b(s)λ(T − s)ds+ λ(T − t)Rt,

which implies for the initial forward curve

h0(T ) =

∫ T

0

b(s)λ(T − s)ds+ λ(T )h0(0), T ≥ 0.

Having in mind that λ(t) > 0 for all t ≥ 0, we see that for certain nonnegative
initial curves h0 ∈ P the function b can also reach negative values, which yields
negative short rates. For example, take an initial curve h0 ∈ P with h0(0) > 0 and
h0(T ) = 0 for some T > 0.

We shall now present sufficient conditions for positivity preserving term structure
models. In the sequel, we will require the following linear growth and Lipschitz
conditions.

4.10. Assumption. We assume
∫
E
‖γ(0, x)‖2βF (dx) <∞ and that there is a con-

stant K > 0 such that(∫
E

‖γ(h1, x)− γ(h2, x)‖2βF (dx)

)1/2

≤ K‖h1 − h2‖β

for all h1, h2 ∈ Hβ.

4.11. Assumption. We assume there is a constant L > 0 such that

‖α(h1)− α(h2)‖β ≤ L‖h1 − h2‖β ,
‖σ(h1)− σ(h2)‖L0

2(Hβ) ≤ L‖h1 − h2‖β
for all h1, h2 ∈ Hβ.

This ensures existence and uniqueness of solutions by [20, Cor. 10.9].

4.12. Lemma. Suppose Assumptions 4.10, 4.11 are fulfilled, and for each h0 ∈ P
we have P(

⋂
t∈R+
{rt ∈ P}) = 1, where (rt)t≥0 denotes the mild solution for (4.2)

with r0 = h0. Then, the HJMM equation (4.2) is positivity preserving.

Proof. Let h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 be arbitrary. There exists a
sequence (hn)n∈N ⊂ L2(Ω,F0,P;Hβ) such that hn → h0 in L2(Ω,F0,P;Hβ) and
for each n ∈ N we have P(hn ∈ P ) = 1 and hn has only a finite number of values.
By assumption we have P(

⋂
t∈R+
{rnt ∈ P}) = 1 for all n ∈ N. Applying [20, Prop.

9.1] yields

E
[

sup
t∈[0,T ]

‖rt − rnt ‖2β
]
→ 0 for all T ∈ R+,

showing that P(
⋂
t∈R+
{rt ∈ P}) = 1. �

For the following Lemma 4.14 we prepare an auxiliary result, which is proven in
Appendix A.
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4.13. Lemma. Let τ be a bounded stopping time. We define the new filtration
(F̃t)t≥0 by F̃t := Fτ+t, the new U -valued process W̃ by W̃t := Wτ+t −Wτ and the
new random measure µ̃ on R+ × E by µ̃(ω;B) := µ(ω;Bτ(ω)), B ∈ B(R+) ⊗ E,
where

Bτ := {(t+ τ, x) ∈ R+ × E : (t, x) ∈ B}.

Then W̃ is a Q-Wiener process with respect to (F̃t)t≥0 and µ̃ is a homogeneous

Poisson random measure on R+×E with respect to (F̃t)t≥0 having the compensator
dt⊗ F (dx). Moreover, we have the expansion

W̃ =
∑
j

√
λj β̃

jej ,(4.16)

where β̃j defined as β̃jt := βjτ+t − βjτ is a sequence of real-valued independent (F̃t)-
Brownian motions. Furthermore, if (rt)t≥0 is a weak solution for (4.2), then the

(F̃t)-adapted process (r̃t)t≥0 defined by r̃t := rτ+t is a weak solution for

{
dr̃t = ( ddξ r̃t + α(r̃t))dt+ σ(r̃t)dW̃t +

∫
E
γ(r̃t−, x)(µ̃(dt, dx)− F (dx)dt)

r̃0 = rτ .

(4.17)

Proof. See Appendix A. �

4.14. Lemma. Suppose Assumptions 4.10, 4.11 are fulfilled. If equation (4.2) is
locally positivity preserving and we have (4.6), then equation (4.2) is positivity
preserving.

Proof. Let h0 ∈ L2(Ω,F0,P;Hβ) with P(h0 ∈ P ) = 1 be arbitrary. Moreover, let
(rt)t≥0 be the mild solution for (4.2) with r0 = h0. We define the stopping time

τ0 := inf{t ≥ 0 : rt /∈ P}.(4.18)

By the closedness of P and (4.6) we have rτ0 ∈ P almost surely on {τ0 <∞}. We
claim that P(τ0 =∞) = 1. Assume, on the contrary, that

P(τ0 < N) > 0(4.19)

for some N ∈ N. Let τ be the bounded stopping time τ := τ0 ∧ N . We define the
new filtration (F̃t)t≥0, the new Q-Wiener process W̃ and the new Poisson random

measure µ̃ as in Lemma 4.13. Note that rτ ∈ L2(Ω, F̃0,P;Hβ), because, by (3.16),
we have

E[‖rτ‖2β ] ≤ E
[

sup
t∈[0,N ]

‖rt‖2β
]
<∞.

By Lemma 4.13, the (F̃t)-adapted process r̃t := rτ+t is the unique mild solution
for (4.17). Since equation (4.2) is locally positivity preserving and P(rτ ∈ P ) = 1,
there exists a strictly positive stopping time τ1 such that P(

⋂
t∈R+

r̃t∧τ1 ∈ P ) = 1.

Since {τ0 < N} ⊂ {τ0 = τ}, we obtain

rτ0+t ∈ P almost surely on [0, τ1] ∩ {τ0 < N},

which is a contradiction because of (4.19) and the Definition (4.18) of τ0. Conse-
quently, we have P(τ0 =∞) = 1, whence equation (4.2) is positivity preserving. �

4.15. Assumption. We assume σ ∈ C2(Hβ ;L0
2(Hβ)), and that the vector field

h 7→
∑
j

Dσj(h)σj(h)(4.20)

is globally Lipschitz on Hβ.
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4.16. Remark. Note that Assumption 4.15 is satisfied if σ ∈ C2
b (Hβ ;L0

2(Hβ)) and
the series (4.20) converges for every h ∈ Hβ.

4.17. Lemma. Suppose Assumption 4.15 and relation (4.5) are fulfilled. Then we
have (∑

j

Dσj(h)σj(h)
)
(ξ) = 0, for all ξ ∈ (0,∞), h ∈ ∂Pξ.

Proof. Let ξ ∈ (0,∞) be arbitrary. It suffices to show
(
Dσj(h)σj(h)

)
(ξ) = 0 for

all h ∈ ∂Pξ and all j. Therefore let j be fixed and denote σ = σj . By assumption
for all h ≥ 0 with h(ξ) = 0 we have that σ(h)(ξ) = 0. In other words the volatility
vector field σ is parallel to the boundary at boundary elements of P . We denote
the local flow of the Lipschitz vector field σ by Fl being defined on a small time
interval ] − ε, ε[ around time 0 and a small neighborhood of each element h ∈ P .
We state first that the flow Fl leaves the set P invariant, i.e., Flt(h) ≥ 0 if h ≥ 0,
by convexity and closedness of the cone of positive functions due to [39]. Indeed,
P is a closed and convex cone, whose supporting hyperplanes l (a linear functional
l is called supporting hyperplane of P at h if l(P ) ≥ 0 and l(h) = 0) are given by
appropriate positive measures µ on R+ via

l(h) =

∫
R+

h(ξ)µ(dξ),

whence condition (4) from [39] is fulfilled due to (4.5). Next we show that even
more holds: the solution Flt(h) evaluated at ξ vanishes if h(ξ) = 0, which we show
directly. Indeed, let us additionally fix h ∈ ∂Pξ, i.e., h ≥ 0 and h(ξ) = 0. Looking
now at the Picard-Lindelöf approximation scheme

c(n+1)(t) = h+

∫ t

0

σ(c(n)(s))ds

with c(n)(0) = h and c(0)(s) = h for s, t ∈] − ε, ε[ and n ≥ 0, we see by induction
that under our assumptions

c(n)(t)(ξ) = 0

for all n ≥ 0 and t ∈]− ε, ε[ for the given fixed element h. Consequently – as n→∞
– we obtain that Flt(h)(ξ) = 0, which is the limit of c(n)(t). Therefore

(Dσ(h)σ(h))(ξ) =
d

ds
|s=0σ(Fls(h))(ξ) = 0,

since Flt(h) ≥ 0 by invariance and Flt(h)(ξ) = 0 by the previous consideration lead
to σ(Flt(h))(ξ) = 0 for t ∈]− ε, ε[. Notice that we did not need the global Lipschitz
property of the Stratonovich correction for the proof of this lemma. �

Before we show sufficiency for the HJMM equation (4.2) with jumps, we consider
the pure diffusion case. Notice that, due to Lemma 4.17, the condition (4.4) is in
fact equivalent to the very same condition formulated with the Stratonovich drift
σ0, defined in (4.21) below, instead of α, since the Stratonovich correction vanishes
at the boundary of P .

In order to treat the pure diffusion case, we apply [34], which, by using the
support theorem provided in [33], offers a general characterization of stochastic
invariance of closed sets for SPDEs.

Other results for positivity preserving SPDEs, where, in contrast to our frame-
work, the state space is an L2-space, can be found in [27] and [30]. The results from
[30] have been used in [36] in order to derive some positivity results for Lévy term
structure models on L2-spaces.
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4.18. Proposition. Suppose Assumptions 4.11, 4.15 are fulfilled and γ ≡ 0. If
conditions (4.4), (4.5) are satisfied, then equation (4.2) is positivity preserving.

Proof. In view of Lemma 4.12, it suffices to show that for all h0 ∈ P we have
P(
⋂
t∈R+
{rt ∈ P}) = 1, where (rt)t≥0 denotes the mild solution for (4.2) with

r0 = h0. Moreover, we may assume that the vector fields α, σ and

h 7→ σ0(h) := α(h)− 1

2

∑
j

Dσj(h)σj(h)(4.21)

are bounded in order to apply Nakayama’s beautiful support theorem from [34].
Indeed, for n ∈ N we choose a bump function ψn ∈ C∞(Hβ ; [0, 1]) such that ψn ≡ 1

on Bn(0) and supp(ψn) ⊂ Bn+1(0) and define the vector fields

αn(h) := ψn(h)α(h), h ∈ Hβ

σn(h) := ψn(h)σ(h), h ∈ Hβ .

These vector fields and

h 7→ σ0
n(h) := αn(h)− 1

2

∑
j

Dσjn(h)σjn(h)

are bounded by the Lipschitz continuity of α, σ and σ0, and Assumptions 4.11, 4.15
as well as conditions (4.4), (4.5) are again satisfied.

Now, we show that the semigroup Nagumo’s condition (3) from [33, Prop. 1.1]
is fulfilled due to conditions (4.4) and (4.5). Introducing the distance dP (h) from
P as minimal distance of h ∈ Hβ from P , we can formulate Nagumo’s condition as

lim inf
t↓0

1

t
dP (Sth+ tσ0(h) + tσ(h)u) = 0(4.22)

for all u ∈ U0 and h ∈ P . Fix now h ∈ P and u ∈ U0 and introduce the abbreviation
σ̃ = σ0 + σ(·)u, then we obviously have

‖Sth+ tσ0(h) + tσ(h)u− St Flσ̃t (h)‖β = t

∥∥∥∥σ̃(h)− St
Flσ̃t (h)− h

t

∥∥∥∥
β

, t > 0

which means that

lim
t↓0

1

t
‖Sth+ tσ0(h) + tσ(h)u− St Flσ̃t (h)‖β = 0.

Hence, Nagumo’s condition (4.22) can equivalently be formulated as

lim inf
t↓0

1

t
dP (St Flσt (h)) = 0,(4.23)

for the particular choice of u ∈ U0 and h ∈ P , since the shortest distance projector
onto P is a Lipschitz continuous map. Due to conditions (4.4), (4.5) and Lemma

4.17, the semiflow Flσ̃ leaves P invariant by [39], the semigroup (St)t≥0 certainly,

too, and therefore we have dP (St Flσ̃t (h)) = 0, t ≥ 0 whence Nagumo’s condition
(4.23) is more than satisfied. �

Finally, the next result states the sufficient conditions under which we can con-
clude that equation (4.2) is positivity preserving.

4.19. Proposition. Suppose Assumptions 4.10, 4.11, 4.15 and conditions (4.3)–
(4.6) are fulfilled. Then, equation (4.2) is positivity preserving.

Proof. Since the measure F is σ-finite, there exists a sequence (Bn)n∈N ⊂ E with
Bn ↑ E and F (Bn) < ∞ for all n ∈ N. Let h0 ∈ L2(Ω,F0,P;Hβ) be arbitrary.
Relations (4.4), (4.7), (4.5), Proposition 4.18 and (4.6) together with the closedness
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of P yield that, for each n ∈ N, the mild solution (rnt )t≥0 of the stochastic partial
differential equation

drnt = ( ddξ r
n
t + α(rnt )−

∫
Bn

γ(rnt , x)F (dx))dt+ σ(rnt )dWt

+
∫
Bn

γ(rnt−, x)µ(dt, dx)

rn0 = h0

(4.24)

satisfies P(
⋂
t∈R+

rnt∧τ ∈ P ) = 1, where τ denotes the strictly positive stopping time

τ := inf{t ≥ 0 : µ([0, t]×Bn) = 1}.

By virtue of Lemma 4.14, for each n ∈ N equation (4.24) is positivity preserving.
According to [20, Prop. 9.1] we have

E
[

sup
t∈[0,T ]

‖rt − rnt ‖2β
]
→ 0 for all T ∈ R+,

proving that equation (4.2) is positivity preserving. �

4.20. Theorem. Suppose Assumptions 4.10, 4.11, 4.15 are fulfilled. Then, for each
initial curve h0 ∈ L2(Ω,F0,P;Hβ) there exists a unique adapted, càdlàg, mean-
square continuous Hβ-valued solution (ft)t≥0 for the HJM equation (4.1) with
f0 = `h0 satisfying (3.15), and there exists a unique adapted, càdlàg, mean-square
continuous mild and weak Hβ-valued solution (rt)t≥0 for the HJMM equation (4.2)
with r0 = h0 satisfying (3.16), which is given by rt := πUtft, t ≥ 0. Moreover,
equation (4.2) is positivity preserving if and only if we have (4.3)–(4.6).

Proof. The statement follows from [20, Cor. 10.9], Proposition 4.7 (see also Remark
4.6) and Proposition 4.19. �

4.21. Remark. Note that Theorem 4.20 is also valid on other state spaces. The
only requirements are that the Hilbert space H consists of real-valued, continuous
functions, on which the point evaluations are continuous linear functionals, and
that the shift semigroup extends to a strongly continuous group on a larger Hilbert
space H.

4.22. Remark. For the particular situation where equation (4.2) has no jumps,
Theorem 4.20 corresponds to the statement of [30, Thm. 3], where positivity on
weighted L2-spaces is investigated. Since point evaluations are discontinuous func-
tionals on L2-spaces, the conditions in [30] are formulated by taking other appro-
priate linear functionals.

We shall now consider the arbitrage free situation. Let α = αHJM : Hβ → Hβ in
(4.2) be defined according to the HJM drift condition (1.6).

4.23. Proposition. Conditions (4.3)–(4.6) are satisfied if and only if we have (4.5),
(4.6) and

γ(h, x)(ξ) = 0, ξ ∈ (0,∞), h ∈ ∂Pξ and F -almost all x ∈ E.(4.25)

Proof. Provided (4.5), (4.6) are fulfilled, conditions (4.3), (4.4) are satisfied if and
only if we have (4.3) and

−
∫
E

γ(h, x)(ξ)eΓ(h,x)(ξ)F (dx) ≥ 0, ξ ∈ (0,∞), h ∈ ∂Pξ(4.26)

because the drift α is given by (1.6). By (4.7), relations (4.3), (4.26) are fulfilled if
and only if we have (4.25). �

Now let, as in Section 3, measurable vector fields σ : Hβ → L0
2(H0

β) and γ :

Hβ × E → H0
β′ be given, where β′ > β is a real number.
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4.24. Theorem. Suppose Assumptions 3.1, 4.15 are fulfilled. Then, the statement
of Theorem 3.4 is valid, and, in addition, the HJMM equation (1.10) is positivity
preserving if and only if we have (4.5), (4.6), (4.25).

Proof. The statement follows from Theorem 3.4, Theorem 4.20 and Proposition
4.23. �

Finally, let us consider the Lévy case, treated at the end of Section 3. In this
framework, the following statement is valid.

4.25. Proposition. Conditions (4.5), (4.6) and (4.25) are satisfied if and only if
we have (4.5) and

h+ δk(h)x ∈ P, h ∈ P, k = 1, . . . , e and Fk-almost all x ∈ R(4.27)

δk(h)(ξ) = 0, ξ ∈ (0,∞), h ∈ ∂Pξ and all k = 1, . . . , e with Fk(R) > 0.(4.28)

Proof. The claim follows from the Definition (3.18) of F and the Definition (3.22)
of γ. �

4.26. Corollary. Suppose Assumption 3.5, 4.15 are fulfilled. Then, the statement
of Corollary 3.6 is valid, and, in addition, the HJMM equation (1.10) is positivity
preserving if and only if we have (4.5), (4.27), (4.28).

Proof. The assertion follows from Theorem 4.24 and Proposition 4.25. �

Our above results on arbitrage free, positivity preserving term structure models
apply in particular for local state dependent volatilities. The following two results
are obvious.

4.27. Proposition. Suppose for each j there exists σ̃j : R+ × R → R, and there
are γ̃ : R+ × R× E → R and φ : R+ → (0,∞) such that

σj(h)(ξ) = φ(‖h‖β)σ̃j(ξ, h(ξ)), (h, ξ) ∈ Hβ × R+, for all j

γ(h, x)(ξ) = φ(‖h‖β)γ̃(ξ, h(ξ), x), (h, x, ξ) ∈ Hβ × E × R+.

Then, conditions (4.5), (4.6), (4.25) are fulfilled if and only if

σ̃j(ξ, 0) = 0, ξ ∈ (0,∞), for all j(4.29)

y + zγ̃(ξ, y, x) ≥ 0, ξ ∈ (0,∞), y ∈ R+, z ∈ φ(R+)(4.30)

and F -almost all x ∈ E
γ̃(ξ, 0, x) = 0, ξ ∈ (0,∞) and F -almost all x ∈ E.(4.31)

Lévy term structure models with local state dependent volatilities have been
studied in [36] and [28]. In the framework of Proposition 4.25 we obtain the following
result.

4.28. Proposition. Suppose for each j there is σ̃j : R+×R→ R, for all k = 1, . . . , e

there is δ̃k : R+ × R→ R and there exists φ : R+ → (0,∞) such that

σj(h)(ξ) = φ(‖h‖β)σ̃j(ξ, h(ξ)), (h, ξ) ∈ Hβ × R+, for all j

δk(h)(ξ) = φ(‖h‖β)δ̃k(ξ, h(ξ)), (h, ξ) ∈ Hβ × R+, k = 1, . . . , e.

Then, conditions (4.5), (4.27), (4.28) are fulfilled if and only if we have (4.29) and

y + zxδ̃k(ξ, y) ≥ 0, ξ ∈ (0,∞), y ∈ R+, z ∈ φ(R+), k = 1, . . . , e(4.32)

and Fk-almost all x ∈ R

δ̃k(ξ, 0) = 0, ξ ∈ (0,∞) and all k = 1, . . . , e with Fk(R) > 0.(4.33)
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Section 5 in [36] contains some positivity results for Lévy driven term structure
models on weighted L2-spaces. Using Proposition 4.28, we can derive the analogous
statements of [36, Thm. 4] on our Hβ-spaces.

4.29. Remark. For local state dependent volatilities we can establish sufficient con-
ditions on the mappings σ̃j, γ̃, φ resp. σ̃j, δ̃k, φ such that Assumptions 3.1, 4.15
resp. Assumptions 3.5, 4.15 are fulfilled, which allows us to combine Theorem 4.24
and Proposition 4.27 resp. Corollary 4.26 and Proposition 4.28. We obtain such
sufficient conditions by modifying the conditions from [16, Prop. 5.4.1] in an appro-
priate manner.

Appendix A. Attached proofs

In this appendix we gather the proofs of results which we have postponed for
the sake of lucidity.

Proof. (of Theorem 2.1) Note that Hβ is the space Hw from [16, Sec. 5.1] with
weight function w(ξ) = eβξ, ξ ∈ R+. Hence, the first six statements follow from [16,
Thm. 5.1.1, Cor. 5.1.1].

For each β′ > β, the observation∫
R+

|h′(ξ)|2eβξdξ ≤
∫
R+

|h′(ξ)|2eβ
′ξdξ, h ∈ Hβ′

showsHβ′ ⊂ Hβ and (2.5). For an arbitrary h ∈ Hβ′ we have, by Hölder’s inequality,∫
R+

|h(ξ)− h(∞)|2eβξdξ =

∫
R+

(∫ ∞
ξ

h′(η)e
1
2β

′ηe−
1
2β

′ηdη

)2

eβξdξ

≤
∫
R+

(∫
R+

|h′(η)|2eβ
′ηdη

)(∫ ∞
ξ

e−β
′ηdη

)
eβξdξ ≤ 1

β′(β′ − β)
‖h‖2β′ .

Choosing C5 := 1
β′(β′−β) proves (2.6).

It is clear that ‖ · ‖β is a norm on Hβ . First, we prove that there is a constant
K1 > 0 such that

‖h′‖L1(R) ≤ K1‖h‖β , h ∈ Hβ .(A.1)

Setting K1 :=
√

2
β , this is established by Hölder’s inequality

(A.2)∫
R
|h′(ξ)|dξ =

∫
R
|h′(ξ)|e 1

2β|ξ|e−
1
2β|ξ|dξ

≤
(∫

R
|h′(ξ)|2eβ|ξ|dξ

)1/2(∫
R
e−β|ξ|dξ

)1/2

=

√
2

β

(∫
R
|h′(ξ)|2eβ|ξ|dξ

)1/2

.

As a consequence of (A.1), for each h ∈ Hβ the limits h(∞) := limξ→∞ h(ξ) and
h(−∞) := limξ→−∞ h(ξ) exist. This allows us to the define the new norm

|h|β :=

(
|h(−∞)|2 +

∫
R
|h′(ξ)|2eβ|ξ|dξ

)1/2

, h ∈ Hβ .

From (A.2) we also deduce that

‖h′‖L1(R) ≤ K1|h|β , h ∈ Hβ .(A.3)

Setting K2 := 1 +K1, from (A.1) and (A.3) is follows that

‖h‖L∞(R) ≤ K2‖h‖β ,(A.4)

‖h‖L∞(R) ≤ K2|h|β(A.5)
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for all h ∈ Hβ . Estimate (A.4) shows that, for each ξ ∈ R, the point evaluation
h 7→ h(ξ), Hβ → R is a continuous linear functional.

Using (A.4) and (A.5) we conclude that

1

(1 +K2
2 )

1
2

‖h‖β ≤ |h|β ≤ (1 +K2
2 )

1
2 ‖h‖β , h ∈ Hβ

which shows that ‖ · ‖β and | · |β are equivalent norms on Hβ .
Consider the separable Hilbert space R×L2(R) equipped with the norm (| · |2 +

‖ · ‖2L2(R))
1
2 . Then the linear operator T : (Hβ , | · |β)→ R× L2(R) given by

Th := (h(−∞), h′e
1
2β|·|), h ∈ Hβ

is an isometric isomorphism with inverse

(T−1(u, g))(x) = u+

∫ x

−∞
g(η)e−

1
2β|η|dη, (u, g) ∈ R× L2(R).

Since ‖ · ‖β and | · |β are equivalent, (Hβ , ‖ · ‖β) is a separable Hilbert space.
Next, we claim that

D0 := {g ∈ Hβ | g′ ∈ Hβ}

is dense in Hβ . Indeed, C∞c (R) is dense in L2(R), see [5, Cor. IV.23]. Fix h ∈ Hβ

and let (gn)n∈N ⊂ C∞c (R) be an approximating sequence of h′e
1
2β|·| in L2(R). Then

we have hn := T−1(h(−∞), gn) ∈ D0 for all n ∈ N and hn → h in Hβ .
For each t ∈ R and h ∈ Hβ , the function Uth is again absolutely continuous. We

claim that there exists a constant K3 > 0 such that

‖Uth‖2β ≤ (K3 + eβ|t|)‖h‖2β , (t, h) ∈ R×Hβ .(A.6)

Indeed, using (A.4) we obtain

‖Uth‖2β = |h(t)|2 +

∫ ∞
0

|h′(ξ + t)|2eβξdξ +

∫ 0

−∞
|h′(ξ + t)|2e−βξdξ

= |h(t)|2 + e−βt
∫ ∞
t

|h′(ξ)|2eβξdξ + eβt
∫ t

−∞
|h′(ξ)|2e−βξdξ

≤ (K2
2 + 1 + eβ|t|)‖h‖2β , h ∈ Hβ .

Setting K3 := 1+K2
2 , this establishes (A.6). Hence, we have Uth ∈ Hβ for all t ∈ R

and h ∈ Hβ and Ut ∈ L(Hβ), t ∈ R.
It remains to show strong continuity of the group (Ut)t∈R. Using the observation

h(ξ + t)− h(ξ) = t

∫ 1

0

h′(ξ + st)ds, (ξ, t, h) ∈ R× R×Hβ

and (A.6), we obtain for each g ∈ D0 the convergence

‖Utg − g‖2β = |g(t)− g(0)|2 +

∫
R
|g′(ξ + t)− g′(ξ)|2eβ|ξ|dξ

≤ |g(t)− g(0)|2 + t2
∫ 1

0

∫
R
|g′′(ξ + st)|2eβ|ξ|dξds

≤ |g(t)− g(0)|2 + t2
∫ 1

0

‖Ustg′‖2βds

≤ |g(t)− g(0)|2 + t2‖g′‖2β
∫ 1

0

(K3 + eβs|t|)ds

= |g(t)− g(0)|2 +

(
K3t

2 +
|t|
β

(eβ|t| − 1)

)
‖g′‖2β → 0 as t→ 0.
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Hence, (Ut)t∈R is strongly continuous on D0. But for any h ∈ Hβ and ε > 0 there
exists g ∈ D0 with ‖h− g‖β < ε

4
√
K3+eβ

. Combining this with (A.6) yields

‖Uth− h‖β ≤ ‖Ut(h− g)‖β + ‖Utg − g‖β + ‖g − h‖β

<
√
K3 + eβ|t|

ε

4
√
K3 + eβ

+ ‖Utg − g‖β +
ε

4
√
K3 + eβ

< ε

for t ∈ R small enough. We conclude that (Ut)t∈R is a C0-group on Hβ .
Finally, relation (2.7) follows from the definitions of ` and π. �

Proof. (of Lemma 4.13) Note that W̃ is a continuous (F̃t)-adapted process with

W̃0 = 0, and µ̃ is an integer-valued random measure on R+ × E.
We fix an arbitrary u ∈ U . The process

Mt :=
exp(i〈u,Wt〉)

E[exp(i〈u,Wt〉)]
, t ≥ 0

is a complex-valued martingale, because for all s, t ∈ R+ with s < t the random
variable Wt −Ws and the σ-algebra Fs are independent. The martingale (Mt)t≥0

admits the representation

Mt = exp

(
i〈u,Wt〉+

t

2
〈Qu, u〉

)
, t ≥ 0.

According to the Optional Stopping Theorem, the process (Mt+τ )t≥0 is a nowhere

vanishing complex (F̃t)-martingale. Thus, for s, t ∈ R+ with s < t we obtain

E
[
Mt+τ

Ms+τ
| F̃s
]

= 1.

For each C ∈ F̃s we get

E[1C exp(i〈u, W̃t − W̃s〉)] = P(C) exp

(
− t− s

2
〈Qu, u〉

)
.

Hence, the random variable W̃t−W̃s and the σ-algebra F̃s are independent, and W̃t−
W̃s has a Gaussian distribution with covariance operator (t− s)Q. The expansion
(4.16) follows from (3.1).

Now we fix v ∈ R and B ∈ E with F (B) <∞. The process

Nt :=
exp(ivµ([0, t]×B))

E[exp(ivµ([0, t]×B))]
, t ≥ 0

is a complex-valued martingale, because for all s, t ∈ R+ with s < t the random
variable µ((s, t] × B) and the σ-algebra Fs are independent. By [25, Thm. II.4.8]
the martingale (Nt)t≥0 admits the representation

Nt = exp
(
ivµ([0, t]×B)− (eiv − 1)F (B)t

)
, t ≥ 0.

According to the Optional Stopping Theorem, the process (Nt+τ )t≥0 is a nowhere

vanishing complex (F̃t)-martingale. Thus, for s, t ∈ R+ with s < t we obtain

E
[
Nt+τ
Ns+τ

| F̃s
]

= 1.

For each C ∈ F̃s we get

E[1C exp(ivµ̃((s, t]×B))] = P(C) exp
(

(eiv − 1)F (B)(t− s)
)
.

Hence, the random variable µ̃((s, t]×B) and the σ-algebra F̃s are independent, and
µ̃((s, t]×B) has a Poisson distribution with mean (t− s)F (B).
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Next, we claim that ∫ τ+t

τ

ΦsdWs =

∫ t

0

Φτ+sdW̃s(A.7)

for every predictable process Φ : Ω× R+ → L0
2(Hβ) satisfying

P
(∫ t

0

‖Φs‖2L0
2(Hβ)ds <∞

)
= 1

for all t ∈ R+, and∫ τ+t

τ

Ψ(s, x)(µ(ds, dx)− F (dx)ds) =

∫ t

0

Ψ(τ + s, x)(µ̃(ds, dx)− F (dx)ds)(A.8)

for every predictable process Ψ : Ω× R+ × E → Hβ satisfying

P
(∫ t

0

∫
E

‖Ψ(s, x)‖2βF (dx)ds <∞
)

= 1

for all t ∈ R+. If Φ, Ψ are elementary and τ a simple stopping time, then (A.7),
(A.8) hold by inspection. The general case follows by localization.

If (rt)t≥0 is a weak solution to (4.2), for every ζ ∈ D(( ddξ )∗) relations (A.7), (A.8)

yield

〈ζ, rτ+t〉 = 〈ζ, rτ 〉+

∫ τ+t

τ

(〈( d

dξ

)∗
ζ, rs

〉
+ 〈ζ, α(rs)〉

)
ds+

∫ τ+t

τ

〈ζ, σ(rs)〉dWs

+

∫ τ+t

τ

∫
E

〈ζ, γ(rs−, x)〉(µ(ds, dx)− F (dx)ds)

= 〈ζ, rτ 〉+

∫ t

0

(〈( d

dξ

)∗
ζ, rτ+s

〉
+ 〈ζ, α(rτ+s)〉

)
ds+

∫ t

0

〈ζ, σ(rτ+s)〉dW̃s

+

∫ t

0

∫
E

〈ζ, γ(r(τ+s)−, x)〉(µ̃(ds, dx)− F (dx)ds).

Hence, (r̃t)t≥0 is a weak solution for (4.17). �
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[17] Filipović, D. (2005): Time-inhomogeneous affine processes. Stochastic Processes and Their

Applications 115(4) 639–659.
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