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Abstract

Let f(t, T ) be a term structure model of Heath-Jarrow-Morton type

df(t, T ) = α(t, T )dt+ σ(t, T )dXt,

driven by a multidimensional semimartingaleX. Our objective is to study the existence
of finite dimensional realizations for equations of this kind. Choosing the class of
Grigelionis processes (including in particular Lévy processes) as driving processes, we
approach this problem from two different directions.

Extending the ideas from differential geometry in Björk and Svensson (2001), we
show that the criterion for the existence of finite dimensional realizations, proven in
the aforementioned paper, still serves as a necessary condition in our setup. This result
is applied to concrete volatility structures.

In the context of benchmark realizations, which are a natural generalization of short
rate realizations, we derive integro-differential equations, suitable for the analysis of
the realization problem. Generalizing Jeffrey (1995), we also prove a result stating that
forward rate models, which generically possess a benchmark realization, must have a
singular Hessian matrix.

Both approaches reveal that, with regard to the results known for driving Wiener
processes, new phenomena emerge, as soon as the driving process X has jumps. In
particular, the occurrence of jumps severely limits the range of models that admit fi-
nite dimensional realizations. For this reason we prove, for the often considered case of
deterministic direction volatility structures, the existence of finite dimensional systems
converging to the forward rate model.

Keywords:
HJM term structure models driven by semimartingales, Levy processes, finite
dimensional realizations, Lie algebras





Zusammenfassung

Es sei ein Heath-Jarrow-Morton Zinsstrukturmodell

df(t, T ) = α(t, T )dt+ σ(t, T )dXt

gegeben, angetrieben von einem mehrdimensionalen Semimartingal X. Das Ziel die-
ser Arbeit besteht darin, die Existenz endlich dimensionaler Realisierungen für solche
Modelle zu untersuchen, wobei wir als treibende Prozesse die Klasse der Grigelionis
Prozesse wählen, die insbesondere Lévy Prozesse enthält. Zur Bearbeitung der Frage-
stellung werden zwei veschiedene Ansätze verfolgt.

Wir dehnen die Ideen aus der Differenzialgeometrie von Björk und Svensson (2001)
auf die vorliegende Situation aus und zeigen, dass das in der zitierten Arbeit bewiesene
Kriterium für die Existenz endlich dimensionaler Realisierungen in unserem Fall als
notwendiges Kriterium dienlich ist. Dieses Resultat wird auf konkrete Volatilitätss-
trukturen angewandt.

Im Kontext von sogenannten Benchmark Realisierungen, die eine natürliche Verall-
gemeinerung von Short Rate Realisierungen darstellen, leiten wir Integro-Differenzial-
gleichungen her, die für die Untersuchung der Existenz endlich dimensionaler Rea-
lisierungen hilfreich sind. Als Verallgemeinerung eines Resultats von Jeffrey (1995)
beweisen wir außerdem, dass Zinsstrukturmodelle, die eine generische Benchmark Rea-
lisierung besitzen, notwendigerweise eine singuläre Hessesche Matrix haben.

Beide Ansätze zeigen, dass neue Phänomene auftreten, sobald der treibende Prozess
X Sprünge macht. Es gibt dann auf einmal nur noch sehr wenige Zinsstrukturmodelle,
die endlich dimensionale Realisierungen zulassen, was ein beträchtlicher Unterschied
zu solchen Modellen ist, die von einer Brownschen Bewegung angetrieben werden. Aus
diesem Grund zeigen wir, dass für die in der Literatur oft behandelten Modelle mit
deterministischer Richtungsvolatilität eine Folge von endlich dimensionalen Systemen
existiert, die gegen das Zinsmodell konvergieren.

Schlagwörter:
von Semimartingalen angetriebene HJM Zinsstrukturmodelle, Levy Prozesse, endlich
dimensionale Realisierungen, Lie Algebren
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Chapter 1

Introduction

A zero coupon bond with maturity date T , also called a T -bond, is a contract which
guarantees the holder one dollar (or one unit of another currency) to be paid at the
date T . Denoting by p(t, T ) the price at time t of a bond with maturity date T ,
Figure 1.0.1 shows one sample path of the price process p(•, 10) of a zero coupon bond
maturing in 10 years.

The problem of finding finite dimensional realizations

The bond price processes p(•, T ), T ∈ R+ form a continuum of stochastic processes.
Our objective of the present text is to investigate when and how a given, a priori
infinite dimensional zero coupon bond model, admits a finite dimensional realization.
More precisely, we wish to find a finite dimensional stochastic process Z satisfying a
stochastic differential equation{

dZt = µ(t, Zt)dt+ γ(t, Zt−)dXt

Z0 = z0

, (1.0.1)

and a mapping P such that the bond prices p(t, T ) can be represented as p(t, T ) =
P (t, T, Zt). Then, the continuum of bond price processes can be realized by means of
a finite dimensional state process Z. Under appropriate conditions on the coefficients
µ, γ and the driving process X in the stochastic differential equation (1.0.1), the state
process is a Markov process. This is of relevance for numerical methods.

As in Heath, Jarrow, and Morton [36] we assume that the forward rates of the
term structure models, for which we treat the realization problem, are specified as{

df(t, T ) = α(t, T )dt+ σ(t, T )dXt,

f(0, T ) = f ∗(0, T )
. (1.0.2)

The bond prices are then given by

p(t, T ) = exp

(
−
∫ T

t

f(t, s)ds

)
.

1
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Figure 1.0.1: Price process p(•, 10) of a 10-year zero coupon bond.

In Heath, Jarrow, and Morton [36] the driving process X appearing in the forward rate
equation (1.0.2) is a Brownian motion. As Figure 1.0.1 indicates, we are interested in
models which take into account the appearance of jumps. Interest rate models driven
by jump processes are strongly supported by empirical facts, see Raible [56, Chap. 5],
where it is argued that empirically observed log returns of zero coupon bonds are not
normally distributed, a fact, which has long before been known for the distributions of
stock returns. Raible [56] therefore recommends to replace the Browninan motion by
a more general Lévy process. However, despite these empirical evidences, only a few
authors deal with term structure models driven by processes which allow jumps, see
Section 2.2 for references, and among these authors, only a few study the existence of
finite dimensional realizations.

There is a substantial literature studying the existence of finite dimensional realiza-
tions when the term structure model is driven by Wiener processes. This is done, for
various special cases, in Ritchken and Sankarasubramanian [58], Cheyette [21], Bhar
and Chiarella [6], Inui and Kijima [41], Björk and Gombani [11] and Chiarella and
Kwon [22]. The typical assumption is that the volatility structures are functions of
the short rate. A model, where the volatility is allowed to depend on a finite number
of benchmark forward rates, is considered in Chiarella and Kwon [22]. The case of
deterministic volatility structures was completely solved in Björk and Gombani [11].

Short rate realizations, that is realizations where the only state variable of the
realization is the short rate, are considered in Carverhill [20] (for deterministic volatil-
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ities), and in Jeffrey [44], which is the deepest study of short rate realizations driven
by Brownian motions. Mari [52] provides an analytical treatment of HJM interest rate
models satisfying Jeffrey’s constraint.

Using ideas from differential geometry, Björk and Svensson [13] have performed
a systematical treatment of the realization problem, and have provided a criterion,
which is necessary and sufficient for the existence of finite dimensional realizations.
All above mentioned papers on that topic are indeed special cases of this framework,
and their results have been rediscovered and extended in Björk and Svensson [13].
They also use their results in order to give an alternative proof of Jeffrey [44]. The
paper Björk and Landén [12] provides a general method for the construction of finite
dimensional realizations, and illustrates the method by constructing realizations for a
number of concrete examples.

One technical problem, arising in Björk and Svensson [13], is that one chooses in
this framework to a Banach space for the forward rate curves, which is very small. In
Filipović and Teichmann [33], the theory was extended to a larger space. The extended
theory was applied in Filipović and Teichmann [32] and Filipović and Teichmann [34].

In Björk, Landén, and Svensson [16] the theory developed in Björk and Svensson
[13] was extended to stochastic volatility models.

We exhibit that all the just mentioned literature only deals with term structure
models driven by Wiener processes. Björk [8] provides a survey about this topic.
However, there are only a few references that deal with realizations for term structure
models, in which jumps may occur.

In Eberlein and Raible [29], short rate realizations for models with deterministic
volatility are studied, where the driving process is allowed to be a Lévy process with
a restrictive property. The results of this paper were extended in Küchler and Nau-
mann [46] to the most general class of Lévy processes being possible in the considered
framework, and in Gapeev and Küchler [35] to term structure models driven by jump-
diffusions. The latter article also deals with non-deterministic volatility structures.

Björk and Gombani [11] have solved the realization problem for term structure
models with deterministic volatility, driven by finitely many Wiener processes and a
marked point process.

Duffie and Kan [25] study affine realizations for interest rate models which are based
on Brownian motions, but also suggest, in the jump-diffusion case, to consider partial
differential equations arising from the infinitesimal generator of the jump-diffusion.
Such an idea was carried out in Hyll [40], who has studied short rate realizations for
term structure models driven by finitely many Wiener processes and finitely many
counting processes, where the volatilities are allowed to depend on the current state
of the short rate.

An approach, where techniques of geometric measure theory are applied, is turned
out in Lütkebohmert [48]. In this paper, the term structure model is driven by a
multidimensional Wiener process and a compensated marked point process.

In this text, we shall go two ways in order to approach the realization problem.
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First, we study the Lie algebraic methodology, developed in Björk and Svensson [13]
for driving Wiener processes, and extend it to our setup with driving processes allowing
jumps. The second approach is to go into the framework of benchmark realizations,
which are a generalization of short rate realizations, and to derive integro-differential
equations which help to investigate the existence of finite dimensional realizations.
Indeed, to a certain extent, this approach is inspired by the mentioned idea from
Duffie and Kan [25]. We point out that, during the whole text, we focus on the
existence of global realizations. Other authors, like Björk and Svensson [13], analyze
the existence of local realizations, that is realizations which are valid up to a positive
stopping time.

Structuring of the text

In Chapter 2 we specify the term structure models, for which we investigate the ex-
istence of finite dimensional realizations. To meet this issue, we declare the range of
driving processes to be considered, namely so-called Grigelionis processes, in Section
2.1. We list their relevant properties, and explain, why they form, a priori, a class
of semimartingales that is as large as possible and serves our purposes. We should,
however, remark that when dealing with finite dimensional realizations, we usually
have to confine ourselves to subclasses of Grigelionis processes, but Lévy processes,
or more general, the non-homogeneous Lévy processes in the terminology of Eberlein,
Jacod, and Raible [30], will always be contained.

Term structure models driven by Grigelionis processes are formally introduced in
Section 2.2. Some facts about these models, needed later, are provided, namely the
HJM drift condition (Proposition 2.2.11), which arises from the assumption that the
market is free of arbitrage in the sense that P is a martingale measure, and the Musiela
parametrization (Proposition 2.2.12) of forward rates.

In Chapter 3 we start with the treatment of the realization problem by pursuing
the Lie algebraic approach from Björk and Svensson [13]. As a matter of fact, this
framework, which uses ideas from differential geometry, is only designed for models
driven by Wiener processes. The appearance of jumps causes new geometric aspects.
In Section 3.1 we give a summary of the geometry for models driven by Wiener pro-
cesses (see Björk [8] for a survey), and extend these geometric ideas for our setup.
After this informal digression, which serves the main purpose of making the following
theory better understandable from an intuitive point of view, we prove two fundamen-
tal results, Theorem 3.1.17 and Theorem 3.1.21, which provide formulas for the drift
and the volatilities of term structure models admitting realizations. The latter result
is a version of the first for Fisk-Stratonovich dynamics. The formulas are applied later
in Chapter 3 as well as in Chapter 4.

Things become concrete in Section 3.2, where we derive a necessary criterion for the
existence of finite dimensional realizations of Banach space valued equations, which
may also be driven by jump processes (Theorem 3.2.4). This result can be regarded
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as one implication of the equivalence in the main result in Björk and Svensson [13] for
the case of jump processes. We argue that the converse of this equivalence is not true
for driving processes that have jumps.

Term structure models can be embedded in the framework of Banach space valued
equations, which is done in Section 3.3. This yields a necessary criterion for the exis-
tence of finite dimensional realizations for term structure models driven by processes
that may have jumps.

We apply the criterion for two types of volatility structures, namely deterministic
volatility (see Section 3.4) and deterministic direction volatility (studied in Section
3.5).

For deterministic volatility we obtain that a certain differential equation, which
is already known in the literature for term structure models with driving Wiener
processes, must be satisfied. This a priori necessary condition for the existence of a
finite dimensional realization is also sufficient with a driving process admitting jumps,
which we show by providing a concrete realization (Proposition 3.4.6).

Deterministic direction volatility structures turn out to be more delicate. Lie alge-
braic computations support that one can, in general, only hope for realizations in an
approximative sense, that is, one finds finite dimensional systems of increasing dimen-
sions, converging to the term structure model in an appropriate sense. Such a result
is given in Theorem 3.5.18.

Our second approach to the existence of finite dimensional realization is the con-
tents of Chapter 4. There, we work within the framework of benchmark realizations,
which are a natural generalization of short rate realizations. This means, we consider
finite dimensional realizations where the state process consists of a set of benchmark
forward rates. Although this condition seems quite restricting at first glance, a finite
dimensional realization with an arbitrary state process can usually be transformed to
a benchmark realization. This is shown, besides other preliminaries, in Section 4.1. It
is therefore no strong restriction to deal with benchmark realizations.

The advantage of this approach is that we obtain deterministic equations, in par-
ticular suitable integro-differential equations, depending on the variables t, T , which
represent time, and on a vector r ∈ Rd, representing the state process. Integro-
differential equations are derived in Section 4.2.

Section 4.3 is devoted to the study of deterministic volatility structures. Not sur-
prisingly, we rediscover results of Section 3.4, but we also obtain connections to works
which deal with criteria for the short rate to be qualified as a Markov process, like
Eberlein and Raible [29], Küchler and Naumann [46], and others. New aspects are also
obtained for short rate realizations, if the derivative of the driving process is allowed to
depend on the current state of the short rate. We show in Theorem 4.3.6 that in this
case the compensator of the jump measure must necessarily have an affine structure.

In Section 4.4 we consider deterministic direction volatility structures. Theorem
4.4.1 states, roughly speaking, that benchmark realizations for such term structure
models cannot exist, as soon as the driving process has jumps. This result has conse-
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quences for short rate realizations. Namely, in Theorem 4.4.4 we prove that for short
rate realizations with an, a priori, arbitrary volatility structure and a driving process
having jumps, the volatility must be deterministic and factorizes.

Jeffrey [44] has shown, for term structure models driven by a single Brownian mo-
tion, that every generic short rate realization is affine. In Section 4.5 we generalize
this result as follows. As in the whole chapter, we consider benchmark realizations
rather than short rate realizations, and the driving process is multidimensional and
allowed to make jumps. Our result (Theorem 4.5.3) states that forward rate mod-
els, which generically possess a benchmark realization, must have a singular Hessian
matrix, which means they have to be affine in the one-dimensional case.

There are some results in this text, whose proofs are established by using standard
techniques or making somewhat tedious computations. In fact, a few among these
results are already known in the literature in a slightly different context. Therefore,
we have attached an appendix containing the proofs, which are omitted for this reason.



Chapter 2

The term structure models

In order to prepare the grounds for the subsequent analysis of the ex-
istence of finite dimensional realizations, this chapter presents the term
structure models, for which we will study the problem. In the Heath, Jar-
row, and Morton [36] setting, one assumes that the forward rates are given
by

df(t, T ) = α(t, T )dt+
n∑

i=1

σi(t, T )dWi(t),

where W1, . . . ,Wn are independent Brownian motions.
As we have exhibited in the introduction, we are interested in the analy-

sis of models that take into account the occurrence of jumps. Some models
of this kind have already been investigated in the literature. In this text,
we replace the Wiener process in the forward rate equation by a so-called
Grigelionis process. We summarize the relevant properties of these pro-
cesses in the first section. As we will explain below, Grigelionis processes
provide a class of semimartingales, as large as possible (in particular, Lévy
processes are included), which is appropriate for our purposes.

In the second section, we formally introduce term structure models
driven by Grigelionis processes, and gather some of their properties, like
the HJM drift condition, that arises from the absence of arbitrage, and
the Musiela parametrization of forward rates. The relations to other in-
terest rate models in the literature, which allow the presence of jumps, are
discussed as well.

2.1 Grigelionis processes

Our terminology is chosen as in Jacod and Shiryaev [42], which is, besides Protter
[55], our main reference for facts concerning stochastic analysis. Throughout this text,

7
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(Ω,F, (Ft)t∈R+ ,P) denotes a stochastic basis (filtered probability space) in the sense
of Jacod and Shiryaev [42, Def. I.1.2], i.e. the filtration (Ft)t∈R+ is right-continuous
but not necessarily complete. Concerning the filtration, we moreover assume that
F0 = {∅,Ω} is the trivial σ-algebra, which guarantees that all F0-measurable random
variables are P-almost surely constant.

By X we usually denote n-dimensional special semimartingales Jacod and Shiryaev
[42, Def. I.4.22] for some n ∈ N, i.e. each component of X can uniquely be decom-
posed into a local martingale and a predictable process of finite variation on compact
intervals. Moreover, equations, inequalities etc. are usually only meant up to indis-
tinguishability.

Most of the upcoming facts concerning Grigelionis processes are taken from Kallsen
[45, Sec. 2.3].

2.1.1 Definition. Let X be a special semimartingale. We call (B,C, ν)I the integral
characteristics of X, where

1. B ∈ Vn is the predictable part of finite variation in the canonical decomposition
of X;

2. C ∈ Vn×n is the continuous process defined by Cij := 〈Xc
i , X

c
j 〉 for any i, j ∈

{1, . . . , n};

3. ν is the compensator of the random measure of jumps µX of X.

2.1.2 Lemma. Let X be a special semimartingale with integral characteristics given by
(B,C, ν)I . Then, there exists a predictable, real-valued process A ∈ A+

loc, a predictable
Rn-valued process (βt)t∈R+, a predictable Rn×n-valued process (ct)t∈R+ whose values are
symmetric, non-negative definite matrices and a transition kernel K from (Ω×R+,P)
into (Rn,B(Rn)) satisfying for each t ∈ R+

Kt({0}) = 0,∫
Rn

(|x|2 ∧ 1)Kt(dx) <∞,

such that for any t ∈ R+ it holds

Bt =

∫ t

0

βsdAs,

Ct =

∫ t

0

csdAs,

ν([0, t]×G) =

∫ t

0

Ks(G)dAs for any G ∈ B(Rn).

Proof. See Jacod and Shiryaev [42, Prop. 2.9].
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2.1.3 Remark. We usually drop the argument ω in the notation of transition kernels
from (Ω× R+,P) into (Rn,B(Rn)), as is done for stochastic processes.

2.1.4 Definition. We call a special semimartingale X Grigelionis process or locally
infinitely divisible process if A in Lemma 2.1.2 can be chosen such that its paths A(ω) :
R+ → R are absolutely continuous in time.

The following result shows that a special semimartingale is a Grigelionis process if
and only if its integral characteristics are absolutely continuous.

2.1.5 Lemma. Let X be a special semimartingale with integral characteristics given
by (B,C, ν)I . Then, there is equivalence between

1. X is a Grigelionis process.

2. There exists a predictable Rn-valued process (βt)t∈R+, a predictable Rn×n-valued
process (ct)t∈R+ whose values are symmetric, non-negative definite matrices and
a transition kernel K from (Ω × R+,P) into (Rn,B(Rn)) satisfying for each
t ∈ R+

Kt({0}) = 0,∫
Rn

(|x|2 ∧ 1)Kt(dx) <∞,

such that for any t ∈ R+ it holds

Bt =

∫ t

0

βsds,

Ct =

∫ t

0

csds,

ν([0, t]×G) =

∫ t

0

Ks(G)ds for any G ∈ B(Rn).

Proof. See Kallsen [45, Lemma 2.12].

2.1.6 Definition. Let X be a Grigelionis process. We call any triplet (β, c,K)D with
β, c,K as in Lemma 2.1.5 differential characteristics or a derivative of X.

The derivative (β, c,K)D of a Grigelionis process is uniquely determined up to a
(P⊗ Leb)-null set N ∈ P Kallsen [45, Lemma 2.14].

If the derivative (β, c,K)D of a Grigelionis process X is deterministic, then X is a
so-called PIIAC, or non-homogeneous Lévy process, see Eberlein, Jacod, and Raible
[30], Eberlein and Kluge [27] and Eberlein and Kluge [28].

Grigelionis processes with constant derivatives are Lévy processes, which are of
particular interest. Our standard reference in this text concerning Lévy processes is
Sato [59]. Other textbooks are Bertoin [5] and Applebaum [1].
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So far, we have presented Grigelionis processes and their relevant properties for
this text. At this point, we shall motivate this choice of processes.

In order to establish subsequent results (cf. Proposition 2.2.4, Theorem 3.1.17 and
others), the only essential (a priori) property of the driving process, that is required, is
that it has absolutely continuous characteristics. Roughly speaking, one needs, in the
proof of the mentioned results, that equations can be rewritten such that disturbing
terms may be added to the drift term.

Since the absolute continuity of the characteristics is the only essential property,
needed in the sequel, Grigelionis processes offer, regarded from this point of view, the
biggest possible class of processes.

Nevertheless, we should note that, for our purposes, we will have to impose ex-
tra conditions on the processes. In order to establish the HJM drift condition for
term structure models (Proposition 2.2.11), we need that the Grigelionis process has
finite exponential moments (see Assumptions 2.2.6), and for the treatment of finite di-
mensional realizations, we will introduce non-degenerate and linearly non-degenerate
Grigelionis processes (Definition 3.1.16). However, Lévy processes will always be in-
cluded as particular cases.

2.2 Term structure models driven by Grigelionis

processes

After introducing Grigelionis processes, we go on to specify the term structure models.
For general background on interest rate theory, we refer to Björk [9], Björk [7] or
Musiela and Rutkowski [54].

Assume that the forward rates f : Ω×∆2 → R, where ∆2 := {(t, T ) ∈ R+ × R+ :
t ≤ T}, are given by the equation

f(t, T ) = f ∗(0, T ) +

∫ t

0

α(s, T )ds+
n∑

i=1

∫ t

0

σi(s, T )dX i
s, 0 ≤ t ≤ T (2.2.1)

where f ∗(0, •) ∈ C1(R+) is the initial forward rate curve, andX denotes a n-dimensional
Grigelionis process with derivative (β, c,K)D for some n ∈ N. By

∫ t

0
YsdXs for a lo-

cally bounded, predictable process Y and a semimartingale X, we always mean the
integral over the half open interval (0, t] excluding zero, which is written

∫ t

0+
YsdXs in

the terminology of Protter [55]. Sometimes, we use the short-hand notation Y •X. For
stochastic integration with respect to semimartingales, we refer to Jacod and Shiryaev
[42, Sec. I.4d].

Concerning the drift α : Ω × R+ × R+ → R and the volatilities σ1, . . . , σn : Ω ×
R+ × R+ → R we make the following assumptions.

2.2.1 Assumptions.
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1. α(t, T ) = 0 and σi(t, T ) = 0, i = 1, . . . , n for all 0 ≤ T < t.

2. The mappings α, σ1, . . . , σn are P⊗B(R+)-measurable.

3. For all 0 ≤ t ≤ T it holds∫ T

0

∫ T

t

|α(s, v)|dvds <∞,∫ T

0

∫ T

t

|σi(s, v)|2dvds <∞, i = 1, . . . , n.

4. For each t ∈ R+, it holds α(t, •), σ1(t, •), . . . , σn(t, •) ∈ C1(R+), the derivatives
are again integrable, and for all 0 ≤ t ≤ T the following identities are valid.∫ t

0

∂

∂T
α(s, T )ds =

∂

∂T

∫ t

0

α(s, T )ds,∫ t

0

∂

∂T
σi(s, T )dX i

s =
∂

∂T

∫ t

0

σi(s, T )dX i
s, i = 1, . . . , n.

We have to comment on these assumptions. We impose the first condition, because
for T < t the drift and the volatilities are not meaningful.

The second and the third condition guarantee that for each T ∈ R+ the pro-
cesses α(•, T ) and σ1(•, T ), . . . , σn(•, T ) are locally bounded and predictable, whence
the forward rate equation (2.2.1) is well-defined. They also ensure that we may apply
stochastic Fubini theorems in the proofs of Proposition 2.2.4 (the bond price equation)
and Proposition 2.2.12 (the Musiela parametrization).

The fourth condition, which is rather ad hoc, is needed in order to interchange
differentiation and stochastic integration. That is also needed for the proof of the
Musiela parametrization, as well as our earlier assumption that f ∗(0, •) ∈ C1(R+).

In the sequel, we abbreviate forward rate equations of the form (2.2.1) as{
df(t, T ) = α(t, T )dt+ σ(t, T )dXt,

f(0, T ) = f ∗(0, T )
, (2.2.2)

and agree that, unless stated otherwise, the initial forward rate curve f ∗(0, •) is of
class C1(R+) and that Assumptions 2.2.1 are satisfied.

Heath, Jarrow, and Morton [36] were the first, who have proposed forward rate
models of the type (2.2.2), with a multidimensional driving Wiener process.

In the literature, there are only a few works that deal with term structure models
which take into account the possible occurrence of jumps. Some authors, Shirakawa
[60], Jarrow and Madan [43] or Hyll [40] for instance, consider jump-diffusion models,
where the sources of randomness are a multidimensional Wiener process, and a mul-
tidimensional point process (i.e. vectors of processes with values in N0, like a Poisson
process).



12 Chapter 2. The term structure models

Allowing a continuous jump spectrum, rather than the simple Poisson jump models,
Björk, Kabanov, and Runggaldier [15] consider forward rate dynamics of the form

df(t, T ) = α∗(t, T )dt+ σ∗(t, T )dWt +

∫
E

δ∗(t, x, T )µ(dt, dx). (2.2.3)

Term structure models of this kind are also studied in Gapeev and Küchler [35]. In the
subsequent paper Björk, Di Masi, Kabanov, and Runggaldier [14] the forward rates
are specified as

df(t, T ) = α∗(t, T )dt+ σ∗(t, T )dWt +

∫
E

δ∗(t, x, T )(µ− ν)(dt, dx), (2.2.4)

In both equations, (2.2.3) and (2.2.4), W denotes a multidimensional standard Wiener
process, and µ(dt, dx) denotes a P ⊗ E-σ-finite random measure Jacod and Shiryaev
[42, Def. II.1.6] on a Lusin space (E,E) with compensator ν(dt, dx).

Our term structure models (2.2.2) are contained in these frameworks as follows.
A Grigelionis process X with derivative (β, c,K)D has the canonical decomposition
Xt = X0 + Xc

t + x ∗ (µX − ν)t +
∫ t

0
βsds. It is no further restriction to assume that

the continuous martingale part Xc is given by Xc
t =

∫ t

0

√
csdWs, where W is a n-

dimensional standard Wiener process and
√
cs is the square-root of the symmetric

non-negative definite matrix cs. We choose the Lusin space (E,E) = (Rn,B(Rn)),
and the random measure µ = µX associated to jumps of X. Then, the forward rate
dynamics (2.2.2) are of the form (2.2.4) with coefficients

α∗(t, T ) = α(t, T ) + 〈βt, σ(t, T )〉,
σ∗(t, T ) = σ(t, T )

√
ct,

δ∗(t, x, T ) = 〈x, σ(t, T )〉.

Analogously, if the Grigelionis process X admits the representation X = X0 +Xc +x∗
µX (for instance a Lévy process with Lévy measure K satisfying

∫
|x|≤1

|x|K(dx) <∞),

then the forward rate dynamics are of the form (2.2.3).
Eberlein and Raible [29] and Küchler and Naumann [46] treat term structure mod-

els with deterministic volatility, driven by a single Lévy process. These articles, and
also Gapeev and Küchler [35], start with the specification of the bond prices, and later
the forward rates are derived.

This framework was considerably extended by allowing a multidimensional PIIAC,
also called non-homogeneous Lévy process, as driving process in the forward rate
equation (2.2.2), see Eberlein, Jacod, and Raible [30], Eberlein and Kluge [27] and
Eberlein and Kluge [28].

We remark that, while in most of the mentioned articles, the term structure models
are defined on an interval [0, T ∗] with a finite time horizon T ∗ > 0, we work on R+.

We shall now define the bond prices p(t, T ) and other useful quantities. This
is followed by the formal definition of a finite dimensional realization for the term
structure model.
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2.2.2 Definition.

1. The short rate at time t ∈ R+ is defined as rt := f(t, t).

2. The bond prices at time t with maturity T are given by

p(t, T ) := exp

(
−
∫ T

t

f(t, s)ds

)
, 0 ≤ t ≤ T,

3. We define the discounted bond prices as

z(t, T ) := exp

(
−
∫ t

0

rsds

)
p(t, T ), 0 ≤ t ≤ T.

We remark that the forward rates are thus obtained from the bond prices as

f(t, T ) = − ∂

∂T
ln p(t, T ).

Each of the processes p(•, T ), z(•, T ), f(•, T ) is a priori just defined on the interval
[0, T ]. For notational convenience, we agree that they are extended to R+ by setting
p(t, T ) = p(T, T ) for t ≥ T , and analogously for z(t, T ) and f(t, T ).

2.2.3 Definition.

1. Let d ∈ N. The term structure model (2.2.2) has a d+1-dimensional realization
if there exists a pair (F,Z), where F : R+ ×R+ ×Rd → R is a mapping, and Z
is a d-dimensional semimartingale satisfying{

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt

Z0 = z0

(2.2.5)

for Borel functions µ : R+ × Rd → Rd, γ : R+ × Rd → Rd×n and z0 ∈ Rd, such
that f(t, T ) = F (t, T, Zt) for all 0 ≤ t ≤ T . We call the semimartingale Z from
the pair (F,Z) the state process of the realization.

2. The term structure model (2.2.2) has a finite dimensional realization if it admits
a d+ 1-dimensional realization for some d ∈ N.

3. A d + 1-dimensional realization is said to be affine if there are a, b1, . . . , bd :
R+ × R+ → R such that the mapping F of the associated pair (F,Z) is of the
form

F (t, T, z) = a(t, T ) + 〈b(t, T ), z〉 for all (t, T, z) ∈ R+ × R+ × Rd.
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The reason why we speak about d + 1-dimensional realizations rather than d-
dimensional realizations is that, for each T ∈ R+, the forward rates f(•, T ) are given
by applying the mapping F (•, T, •) on the d + 1-dimensional process (t, Zt). In other
words, we get an extra dimension by adding the time t to the state process Z.

If X is a vector of independent Lévy processes and µ, γ in (2.2.5) are Lipschitz in
the sense of Protter [55, p. 236], then Z is a Markov process according to Protter
[55, Thm. V.32]. When dealing with the Lie algebraic theory, one also considers Fisk-
Stratonovich dynamics. Although the Itô dynamics are of major interest, we mention
that the just cited result, that Z is a Markov process under appropriate conditions,
remains true with Fisk-Stratonovich differentials Protter [55, Thm. V.34].

In order to guarantee that the bond market is free of arbitrage, one usually assumes
the existence of a martingale measure, i.e. a probability measure Q ∼ P such that, for
each T ∈ R+, the discounted bond prices z(•, T ) are local Q-martingales. For more
details on that topic, see, e.g., Björk, Kabanov, and Runggaldier [15].

For the treatment of the realization problem, we assume that the market is arbitrage-
free in the sense that the original probability measure P is a martingale measure.

This condition implies that the drift cannot be chosen freely, but is rather deter-
mined by the volatilities. In order to derive the condition on the drift, we need the
dynamics of the discounted bond prices z(t, T ). We start with an equation for the bond
prices p(t, T ), from which the dynamics of z(t, T ) can easily be derived. For want of

a shorter notation, we define A(t, T ) := −
∫ T

t
α(t, s)ds and Σ(t, T ) := −

∫ T

t
σ(t, s)ds.

Recall that (β, c,K)D denotes the derivative of the Grigelionis process X.

2.2.4 Proposition. For each T ∈ R+, the bond prices p(•, T ) satisfy

dp(t, T ) = p(t−, T )

(
rt + A(t, T ) + 〈βt,Σ(t, T )〉+

1

2
〈Σ(t, T ), ctΣ(t, T )〉

)
dt

+ p(t−, T )Σ(t, T )dXc
t + p(t−, T )

∫
Rn

〈x,Σ(t, T )〉(µX − ν)(dt, dx)

+ p(t−, T )

∫
Rn

(
e〈x,Σ(t,T )〉 − 1− 〈x,Σ(t, T )〉

)
µX(dt, dx). (2.2.6)

Proof. See the appendix.

2.2.5 Corollary. For each T ∈ R+, the discounted bond prices z(•, T ) satisfy

dz(t, T ) = z(t−, T )

(
A(t, T ) + 〈βt,Σ(t, T )〉+

1

2
〈Σ(t, T ), ctΣ(t, T )〉

)
dt

+ z(t−, T )Σ(t, T )dXc
t + z(t−, T )

∫
Rn

〈x,Σ(t, T )〉(µX − ν)(dt, dx)

+ z(t−, T )

∫
Rn

(
e〈x,Σ(t,T )〉 − 1− 〈x,Σ(t, T )〉

)
µX(dt, dx). (2.2.7)

Proof. See the appendix.
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Our idea, in order to derive the drift condition, is as follows. We intend to write
the µX(dt, dx)-integral in (2.2.7) as (µX − ν)(dt, dx)-integral plus ν(dt, dx)-integral.
Since the compensator ν is absolutely continuous, we can then take the latter integral
to the drift term, and obtain that P is a martingale measure if and only if the thus
derived drift term is equal to zero.

The problem, however, is that the integrand needs not to be integrable with respect
to the compensated jump measure µX − ν. Therefore, we make, for the rest of this
section, the following assumptions.

2.2.6 Assumptions.

1. There are z−1 , . . . , z
−
n ∈ (−∞, 0) and z+

1 , . . . , z
+
n ∈ (0,∞) such that, up to a

P-null set, for any t ∈ R+∫ t

0

(∫
|x|≤1

|x|2Ks(dx) +

∫
|x|>1

e〈z,x〉Ks(dx)

)
ds <∞, z ∈ Q, (2.2.8)

where Q denotes the set Q := [z−1 , z
+
1 ] × . . . × [z−n , z

+
n ], and it holds for all

(ω, t) ∈ Ω× R+ (up to an evanescent set)∫
|x|>1

e〈z,x〉K(ω,t)(dx) <∞, z ∈ Q. (2.2.9)

2. There are w−
1 ∈ (z−1 , 0), . . . , w−

n ∈ (z−n , 0) and w+
1 ∈ (0, z+

1 ), . . . , w+
n ∈ (0, z+

n )
such that, up to a P-null set,

Σ(t, T ) ∈ Q0 for all 0 ≤ t ≤ T ,

where Q0 ⊂ Q is defined as Q0 := [w−
1 , w

+
1 ]× . . .× [w−

n , w
+
n ].

The main restriction in the first assumption is of course (2.2.8), since then, condi-
tion (2.2.9) is fulfilled for all t with possible exception of a set of Lebesgue measure
zero.

It follows from Sato [59, Thm. 25.17] that for all (ω, t) ∈ Ω×R+ (up to evanescence)
the function

Ψ(ω,t)(z) := 〈βt(ω), z〉+
1

2
〈z, ct(ω)z〉+

∫
Rn

(
e〈z,x〉 − 1− 〈z, x〉

)
K(ω,t)(dx) (2.2.10)

is definable for all z ∈ C with Re z ∈ Q, and that it holds

eΨ(ω,t)(z) =

∫
Rn

e〈z,x〉µ(ω,t)(dx),

where µ(ω,t) denotes the infinitely divisible distribution with generating triplet (βt(ω),
ct(ω), K(ω,t))1, that is, the characteristic function of µ(ω,t) is given by

µ̂(ω,t)(z) = exp

[
−1

2
〈z, ct(ω)z〉+ i〈βt(ω), z〉+

∫
Rn

(
ei〈z,x〉 − 1− i〈z, x〉

)
K(ω,t)(dx)

]
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for z ∈ Rn. In other words, Ψ(ω,t) denotes the cumulant generating function of µ(ω,t).
This leads to a brief study of cumulant generating functions. Let µ be an infinitely

divisible distribution on Rn with generating triplet (β, c,K)1, satisfying∫
|x|>1

e〈z,x〉K(dx) <∞, z ∈ Q

where Q ⊂ Rn denotes a set as in Assumptions 2.2.6. Then, the cumulant generating
function Ψ is of class C∞(intQ), and the derivatives are obtained by differentiating
under the integral sign. This follows from the dominated convergence principle and
its consequences, see, e.g., Bauer [4, Chap. II.16]. We obtain the following result
concerning the continuity of sample paths.

2.2.7 Lemma. Let I ⊂ R+ be a bounded or unbounded interval. There is equivalence
between

1. The process X has (P− a.s.) only continuous paths on the interval I.

2. It holds K = 0 (P⊗ Leb|B(I))-almost surely.

3. The functions Ψ are (P⊗ Leb|B(I))-almost surely polynomials on Rn.

If these equivalent conditions are satisfied, then the degree of each polynomial Ψ(ω,t) is
at most two.

Proof. The equivalence of the first two statements holds, because dtKt(dx) is the
compensator of the random measure of jumps µX of X, which is unique up to a P-null
set Jacod and Shiryaev [42, Thm. II.1.8].

From the representation (2.2.10) of the cumulant generating functions Ψ(ω,t) for
(ω, t) ∈ Ω× I, and the fact that the partial derivatives of arbitrary order are obtained
by differentiating under the integral sign, it follows by evaluating the derivatives at
zero that each Ψ(ω,t) is a polynomial if and only if K(ω,t) = 0, and that its degree is in
this case at most two.

The one-dimensional case has some special features. Let µ be an infinitely divisible
distribution on R with characteristic triplet (β, c,K)1, satisfying∫

|x|>1

e〈z,x〉K(dx) <∞, z ∈ [z−, z+], (2.2.11)

where z− ∈ (−∞, 0) and z+ ∈ (0,∞). Then, the cumulant generating function Ψ is
holomorphic on G := {z ∈ C |Re z ∈ (z−, z+)}, and it holds

Ψ(0) = 0, (2.2.12)

Ψ′(0) = β, (2.2.13)

Ψ′′(0) = c+

∫
R
x2K(dx), (2.2.14)

Ψ(n)(0) =

∫
R
xnK(dx), n ≥ 3. (2.2.15)
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A rather short proof of these statements can be obtained by using Elstrodt [31, Thm.
IV.5.8], which is also a consequence of the dominated convergence principle. Another
reference on this topic is Lukacs [47].

There is an immediate consequence for infinitely divisible distributions, which will
be useful later, for the proof of Theorem 4.3.6.

2.2.8 Corollary. Let µ1, µ2 be two infinitely divisible distributions on R with gener-
ating triplets (β, c,Ki)1, i = 1, 2, with Lévy measures Ki which fulfill (2.2.11). Then,
the identity ∫

R
xnK1(dx) =

∫
R
xnK2(dx) for all n ≥ 2

implies that µ1 = µ2.

Proof. According to equations (2.2.12)-(2.2.15), one has Ψ
(n)
1 (0) = Ψ

(n)
2 (0) for all n ∈

N0, where Ψ1,Ψ2 denote the corresponding cumulant generating functions. A standard
result in complex analysis, see, e.g., Remmert [57, Thm. 8.1.1], yields that Ψ1 = Ψ2.
Consequently, it holds µ1 = µ2.

After this digression about cumulant generating functions, we turn back to the
original problem. We impose the second condition in Assumptions 2.2.6, because we
intend to insert Σ(t, T ) in Ψ and its partial derivatives. The functions Ψ are of class
C∞ on the interior of Q, but we also need that Σ lies in a compact set. For this reason,
we demand that Σ takes it values in the smaller set Q0.

Note that Assumptions 2.2.6 correspond, in a certain sense, to Assumptions (INT)
and (DET) in Eberlein and Kluge [27, Sec. 3].

Imposing Assumptions 2.2.6, we obtain:

2.2.9 Proposition. For all T ∈ R+, the bond prices p(•, T ) satisfy

dp(t, T ) = p(t−, T ) (rt + A(t, T ) + Ψt(Σ(t, T ))) dt (2.2.16)

+ p(t−, T )Σ(t, T )dXc
t + p(t−, T )

∫
Rn

(
e〈x,Σ(t,T )〉 − 1

)
(µX − ν)(dt, dx),

and for the discounted bond prices z(•, T ) it holds

dz(t, T ) = z(t−, T ) (A(t, T ) + Ψt(Σ(t, T ))) dt (2.2.17)

+ z(t−, T )Σ(t, T )dXc
t + z(t−, T )

∫
Rn

(
e〈x,Σ(t,T )〉 − 1

)
(µX − ν)(dt, dx).

Proof. Note that p(•, T ) and z(•, T ) are bounded for every T ∈ R+, because they are
càdlàg and constant after time t = T . Thus, the Assumptions 2.2.6 imply that∫ t

0

p(s−, T )

∫
Rn

∣∣∣e〈x,Σ(s,T )〉 − 1− 〈x,Σ(s, T )〉
∣∣∣Ks(dx)ds <∞ for all 0 ≤ t ≤ T ,∫ t

0

z(s−, T )

∫
Rn

∣∣∣e〈x,Σ(s,T )〉 − 1− 〈x,Σ(s, T )〉
∣∣∣Ks(dx)ds <∞ for all 0 ≤ t ≤ T .
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Hence, for every T ∈ R+, the processes

t 7→
∫ t

0

p(s−, T )

∫
Rn

∣∣∣e〈x,Σ(s,T )〉 − 1− 〈x,Σ(s, T )〉
∣∣∣ν(ds, dx),

t 7→
∫ t

0

z(s−, T )

∫
Rn

∣∣∣e〈x,Σ(s,T )〉 − 1− 〈x,Σ(s, T )〉
∣∣∣ν(ds, dx)

belong to A+
loc. Applying Jacod and Shiryaev [42, Prop. II.1.28], we can write the

µX(dt, dx)-integrals in (2.2.6) and (2.2.7) as (µX − ν)(dt, dx)-integral plus ν(dt, dx)-
integral, and obtain the stated dynamics.

By L we denote the space of left-continuous functions admitting right-hand limits.

2.2.10 Lemma. Let f, g ∈ L be such that g(t) > 0, t ∈ (0,∞) and
∫ t

0
f(s)g(s)ds = 0

for each t ∈ R+. Then, it holds f(t) = 0 for all t ∈ (0,∞).

Proof. See the appendix.

One may wonder about the following left-continuity assumptions. Without this
regularity, one can only deduce the following identity (2.2.18) for all t up to a set of
Lebesgue measure zero, and that is exactly the reason for proving the previous lemma.
In the sequel, where typically the volatility is of the form σ(t, T, rt−) with a continuous
mapping σ, these assumptions will be satisfied.

Note that, in the following, we drop the argument ω for a more convenient notation
of the cumulant generating functions, and write Ψt instead of Ψ(ω,t). The space L
denotes the space of càglàd adapted processes.

2.2.11 Proposition. Assume that α(•, T ), σ1(•, T ), . . . , σn(•, T ) ∈ L for all T ∈ R+,
and that (up to a P-null set) the mapping (t, z) 7→ Ψt(z) is continuous in z and left-
continuous in t. Then, P is a martingale measure if and only if, for every T ∈ (0,∞),
it holds (up to a P-null set)∫ T

t

α(t, s)ds = Ψt

(
−
∫ T

t

σ(t, s)ds

)
, t ∈ (0, T ]. (2.2.18)

Proof. It follows from equation (2.2.17) of Proposition 2.2.9 that z(•, T ) is a local
martingale if and only if the process∫ t

0

z(s−, T ) (A(s, T ) + Ψs(Σ(s, T ))) ds

vanishes, because a special semimartingale is a local martingale if and only if the finite
variation part vanishes. Applying Lemma 2.2.10 (note in particular that Ψt(Σ(t, T ))
has left-continuous paths) yields the assertion.
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Note that the exceptional P-null set, where (2.2.18) does not hold, may depend on
T ∈ (0,∞). Thus, we cannot simply differentiate with respect to T . Nevertheless,
presuming we are allowed to (for instance if α, σ and Ψ are deterministic, or later, in
the proof of Lemma 4.1.10), differentiating - as we have mentioned above, cumulant
generating functions are of class C∞ - yields the condition

α(t, T ) = −
〈
σ(t, T ),∇Ψt

(
−
∫ T

t

σ(t, s)ds

)〉
(2.2.19)

on the drift. Let us look at a few examples. For a n-dimensional driving standard
Wiener process X, the cumulant generating function and its gradient are given by

Ψ(z) =
1

2
|z|2, ∇Ψ(z) = z,

and equation (2.2.19) becomes

α(t, T ) =
n∑

i=1

σi(t, T )

∫ T

t

σi(t, s)ds,

which is the classical drift condition known from Heath, Jarrow, and Morton [36].
Henceforth, we will also refer to equation (2.2.19) as HJM drift condition.

As a slight generalization of the preceding case, assume the Grigelionis process X
has (P − a.s.) only continuous paths. According to Lemma 2.2.7, it holds K = 0
(P ⊗ Leb)-almost surely, where K stems from the derivative (β, c,K)D. Noting that
the matrices ct are symmetric, it thus holds

Ψt(z) = 〈βt, z〉+
1

2
〈z, ctz〉,

∇Ψt(z) = βt +
(
〈c1•(t), z〉, . . . , 〈cn•(t), z〉

)
,

and we obtain the HJM drift condition

α(t, T ) = −〈σ(t, T ), βt〉+
n∑

i,j=1

cij(t)σi(t, T )

∫ T

t

σj(t, s)ds.

If the driving process X is a PIIAC in the terminology of Eberlein and Kluge [27],
and the volatility structure is deterministic, equation (2.2.18) is just the equation from
Prop. 9 of the just mentioned paper. It is also in accordance with equation (5.16) in
Björk, Di Masi, Kabanov, and Runggaldier [14].

Let W be a m-dimensional standard Wiener process, and let A be a n-dimensional
finite variation process of the form At =

∑
s≤t ∆As = x ∗ µA

t . Consider the interest
rate model {

df(t, T ) = α(t, T )dt+ σ(t, T )dWt + η(t, T )dAt,

f(0, T ) = f ∗(0, T )
.
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The drift β from the derivative (β, 0, K)D of A is given by βj
t =

∫
Rn xjKt(dx) for

j = 1, . . . , n, which is seen from the canonical decomposition of A. Concerning the
cumulant generating functions of X = (W,A), it therefore holds

Ψt(w, z) =
1

2
|w|2 +

∫
Rn

(
e〈z,x〉 − 1

)
Kt(dx),

∂

∂wi

Ψt(w, z) = wi, i = 1, . . . ,m,

∂

∂zj

Ψt(w, z) =

∫
Rn

xie
〈z,x〉Kt(dx), j = 1, . . . , n.

We obtain the HJM drift condition

α(t, T ) =
m∑

i=1

σi(t, T )

∫ T

t

σi(t, s)ds

−
∫

Rn

〈x, η(t, T )〉 exp

(
−
〈
x,

∫ T

t

η(t, s)ds
〉)

Kt(dx).

This equation coincides with the drift condition (28) in Björk, Kabanov, and Rung-
galdier [15, Prop. 3.15] and with equation (2.12) in Gapeev and Küchler [35].

Finally, we look at two concrete examples of driving processes, where the HJM drift
condition is given by an explicit expression. Let f(t, T ) be a term structure model{

df(t, T ) = α(t, T )dt+ σ(t, T )dWt + η(t, T )dNt,

f(0, T ) = f ∗(0, T )
,

where W denotes a m-dimensional Brownian motion, and where N consists of n in-
dependent Poisson processes Jacod and Shiryaev [42, Def. I.3.26] with intensities
E[N j

t ] =
∫ t

0
λj(s)ds. Then it holds for the cumulant generating functions of the driv-

ing process X = (W,N)

Ψt(w, z) =
1

2
|w|2 +

n∑
j=1

λj(t)
(
ezj − 1

)
,

∇Ψt(w, z) =
(
w, λ1(t)e

z1 , . . . , λn(t)ezn
)
.

We derive, cf., e.g., equation (2) in Hyll [40], the HJM drift condition

α(t, T ) =
m∑

i=1

σi(t, T )

∫ T

t

σi(t, s)ds−
n∑

j=1

λj(t)ηj(t, T ) exp

(
−
∫ T

t

ηj(t, s)ds

)
.

Term structure models driven by bilateral Gamma processes are studied in Küchler
and Naumann [46, Sec. 5]. The cumulant generating function and its derivative of a
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bilateral Gamma process X with parameters α+, α−, λ+, λ− > 0 are given by

Ψ(z) = α+ ln

(
λ+

λ+ − z

)
+ α− ln

(
λ−

λ− + z

)
,

Ψ′(z) =
α+

λ+ − z
− α−

λ− + z
.

This yields the HJM drift condition

α(t, T ) = −σ(t, T )

(
α+

λ+ +
∫ T

t
σ(t, s)ds

− α−

λ− −
∫ T

t
σ(t, s)ds

)
.

Note that it necessarily holds Q ⊂ (−λ−, λ+), where Q denotes the compact set from
Assumptions 2.2.6.

Sometimes, we use the so-called Musiela parametrization (see Brace and Musiela
[17] and Musiela [53]) of forward rates rt(x) = f(t, t+x). It was originally formulated
for term structure models driven by Brownian motions, but it is also valid in our setup.

2.2.12 Proposition. For each x ∈ R+, the forward rates rt(x) = f(t, t+ x) satisfy{
drt(x) =

[
∂
∂x
rt(x) + α(t, t+ x)

]
dt+ σ(t, t+ x)dXt

r0(x) = f ∗(0, x)
.

Proof. See the appendix.





Chapter 3

Finite dimensional realizations

Considering term structure models where the driving processes are al-
lowed to make jumps, we treat in this chapter the existence of finite di-
mensional realizations by an extension of the Lie algebraic method, which
was applied in Björk and Svensson [13] for driving Brownian motions.

In order to make the following definitions and results better under-
standable, we start by illustrating the relevant geometric ideas of the Lie
algebraic theory. A survey about the geometric ideas for driving Brownian
motion can be found in Björk [8]. We describe these ideas and extend the
geometry to driving processes with jumps. Our goal is then the establish-
ment of Theorem 3.1.17 and Theorem 3.1.21, two results, which will later
provide formulas for the coefficients of forward rate equations admitting
realizations.

Then, using Lie algebras, we give a necessary criterion for the existence
of finite dimensional realizations for infinite dimensional equations with
values in a Banach space. We also argue that the converse implication is
not valid.

The applications to finance start in the third section, where we embed
term structure models in the framework of infinite dimensional Banach
space valued equations, and apply the results derived in the section before.

The rest of the chapter is devoted to the study of concrete volatility
structures. First, we consider the case of deterministic volatility. The more
interesting case of deterministic direction volatility is studied afterwards.

3.1 Geometric background and preparatory results

The first part of this section shall provide an illustration of the Lie algebraic method.
This theory deals with the existence of finite dimensional realizations of Banach space
valued equations. As we shall see in Section 3.3, term structure models can be incor-
porated into this framework.

23
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Let X be a real Banach space of dimension n ∈ N ∪ {∞}. In applications to term
structure models, X is of course infinite dimensional, but for the sake of illustration,
one may as well think of Rn. In the sequel, we use the symbol F for Fréchet derivatives
(see, e.g., Sec. III.5 in Werner [62]).

3.1.1 Definition.

1. Let U ⊂ X be an open subset. A vector field on U is a mapping f : U → X. It
is called smooth if it is infinitely often Fréchet differentiable.

2. For smooth vector fields f, g on U , the Lie bracket [f, g] is the vector field on U ,
which is defined by

[f, g](x) := Ff(x)[g(x)]− Fg(x)[f(x)], x ∈ U.

3. For smooth vector fields f1, . . . , fn on U , we define the Lie algebra generated by
f1, . . . , fn as

{f1, . . . , fn}LA :=
⋂
L∈L

L,

where L denotes the set of all linear spaces L (over R) of smooth vector fields
on U with the properties

• f1, . . . , fn ∈ L.

• If g, h ∈ L, so is the Lie bracket [g, h] ∈ L.

The dimension of the Lie algebra F = {f1, . . . , fn}LA at some point x ∈ U is
defined as the dimension of the linear space {f(x) | f ∈ F} ⊂ X.

3.1.2 Remark. A collection f1, . . . , fn of smooth vector fields on U provides a distri-
bution F in the terminology of Björk and Svensson [13, Sec. 2], and the Lie algebra
generated by f1, . . . , fn is the minimal involutive (i.e. closed under the Lie bracket)
distribution containing F .

The intuitive meanings of Lie brackets and Lie algebras will be explained below.
We emphasize that the subsequent illustrations have purely motivational character,
and are therefore written in an informal manner. In particular, the cited results, like
the Frobenius theorem, are in general just valid in a local sense. For the sake of
simplicity, we consider, in this informal passage, only time-homogeneous equations
with one driving process.

Let r = (rt)t∈R+ be a X-valued stochastic process satisfying{
drt = α(rt)dt+ σ(rt−)dXt

r0 = r∗
,
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Figure 3.1.1: The vector field from equation (3.1.1) and a tangential manifold.

where r∗ ∈ X and α, σ are smooth vector fields on X. The driving process X denotes
a one-dimensional semimartingale.

Fix an integer d ∈ N such that d < n. Recall that n ∈ N∪{∞} denotes the dimen-
sion of the Banach space X. We are interested in finding a d-dimensional realization,
i.e. a pair (G,Z), where G denotes a mapping G : Rd → X, and Z a d-dimensional
process such that rt = G(Zt), t ∈ R+.

Consider for instance the following differential equation in X = R2.{
drt = (−r2(t), r1(t))dt

r0 = (1, 0)
. (3.1.1)

Note that the volatility vector field is equal to zero, whence (3.1.1) is an ordinary
differential equation. It has the solution rt = (cos t, sin t). Hence, the existence of a
one-dimensional realization is evident. The deterministic process r and the drift vector
field are visualized in Figure 3.1.1.

Returning to the general realization problem, we rely on the following two facts.
The terms ”invariant” and ”tangential” will be explained below.

3.1.3 Remarks.

1. There exists a d-dimensional realization if and only if there exists a d-dimensional
invariant manifold G ⊂ X.
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Figure 3.1.2: The tangential manifold of Figure 3.1.1 and one tangent space.

2. There exists a d-dimensional tangential manifold G ⊂ X if and only if the dimen-
sion of the Lie algebra generated by α and σ is at most d, i.e. dim{α, σ}LA ≤ d.

By an invariant manifold G, we mean a manifold with r∗ ∈ G and rt ∈ G for all
t ∈ R+, i.e. the process r starts in the manifold G, and never leaves the manifold.
Hence, the term ”invariant” means invariant with respect to the process r. We see
from Figure 3.1.1 that G = {r ∈ R2 | |r| = 1} is an invariant manifold for the process
r given by equation (3.1.1).

A manifold G is said to be tangential if α(r), σ(r) ∈ TG(r) for all r ∈ G, where TG(r)
denotes the tangent space of the manifold G at point r. Thus, the term ”tangential” is
to be understood in the sense tangential with respect to the drift α and the volatility
σ. Figure 3.1.2 shows the tangent space of the manifold G = {r ∈ R2 | |r| = 1} at the
marked point. Regarding Figure 3.1.1, we observe that G is not only invariant, but
also tangential.

While the first statement of Remarks 3.1.3 is geometrically obvious, the second
statement relies on the Frobenius theorem, which is a classical result from differential
geometry that was extended to the infinite dimensional case by Björk and Svensson
[13].

We briefly explain the geometric intuition of this theorem. A more detailed survey
of the geometric ideas can be found in Björk [8].

It is, at first glance, tempting to think that there exists always a two-dimensional
tangential manifold, i.e. a manifold G such that α(r), σ(r) ∈ TG(r) for all r ∈ G, and
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that it can be constructed as follows. Assuming, for the sake of geometric intuition,
that α and σ are vector fields in the Euclidian space R3, we start by solving the
differential equation {

F ′(t) = α(F (t))

F (0) = r∗
,

which yields a curve in R3. For every fixed point F (t) on this curve, we solve the
differential equation {

∂
∂s
G(t, s) = σ(G(t, s))

G(t, 0) = F (t)
,

and obtain a surface in R3 parameterized by G. In the special case where α and σ
are linear vector fields in R3, i.e. α(r) = Ar and σ(r) = Br with A,B ∈ R3×3, the
parametrization of the surface is given by

G(t, s) = eBs
(
eAtr∗

)︸ ︷︷ ︸
curve in R3︸ ︷︷ ︸

surface in R3

. (3.1.2)

However, the thus derived manifold G is, in general, not a tangential manifold. One
reason, which denies the tangency, is that the parametrization of the manifold should
also be obtained by executing the geometric program above in reverse order. In the
case of linear vector fields, we get the parametrization

H(t, s) = eAs
(
eBtr∗

)︸ ︷︷ ︸
curve in R3︸ ︷︷ ︸

surface in R3

, (3.1.3)

and the corresponding manifold H usually differs from G. We observe a certain lack
of commutativity in the geometric program above, and this lack of commutativity
is measured by the Lie bracket. This is the meaning of the Lie bracket introduced
in Definition 3.1.1, which exhibits whether we can find a two-dimensional tangential
manifold, namely if and only if [α, σ] = 0. For linear vector fields, the Lie bracket
is just [α, σ] = AB − BA, and indeed, in the case where the two matrices A and B
are commutative, the two manifold G and H, parameterized by (3.1.2) and (3.1.3),
coincide.

In general, if we are in Rn or a Banach space of infinite dimension, the Frobenius
theorem tells us that there exists a tangential manifold with dimension at most d,
if and only if dim{α, σ}LA ≤ d. It can be found by choosing a generating system
f1, . . . , fm of {α, σ}LA, and then executing the geometric program described above
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with the vector fields f1, . . . , fm. This yields a tangential manifold, regardless of the
order, in which we perform the construction.

With regard to Remarks 3.1.3 it arises the question when a tangential manifold is
invariant, and vice versa. For deterministic equations, like (3.1.1), these two properties,
tangency and invariance of a manifold, are indeed equivalent, see also Figure 3.1.1.
The next step is to check what happens for a driving standard Wiener process, consider
for instance {

drt = (−r2(t), r1(t))dWt

r0 = (1, 0)
, (3.1.4)

which is equation (3.1.1) with dt replaced by dWt. A natural guess is that, because
of the continuity of the Wiener process, a manifold G is tangential if and only if it
is invariant, and that a realization for the process r satisfying (3.1.4) is given by
(cosWt, sinWt). This conjecture, however, is not correct, since an application of Itô’s
formula on (cosWt, sinWt) yields a drift term consisting of second order derivatives.
This gap can be fixed by changing to Fisk-Stratonovich dynamics, i.e. consider instead{

drt = (−r2(t), r1(t)) ◦ dWt

r0 = (1, 0)
, (3.1.5)

where ◦dWt denotes the Fisk-Stratonovich integral, which will be formally intro-
duced later (Definition 3.1.19). Indeed, the process r from (3.1.5) can be realized as
rt = (cosWt, sinWt). Since we can always, by changing the drift term, convert Itô dy-
namics to Fisk-Stratonovich dynamics, and vice versa, considering Fisk-Stratonovich
differentials is no restriction. We refer to Björk and Christensen [10] for more details
on this topic.

We have now, on an intuitive level, argued that the main result of Björk and
Svensson [13] is valid, namely that there exists a d-dimensional realization if and only
if

dim{α, σ}LA ≤ d.

In this text, we are mainly interested in driving semimartingales that are allowed
to make jumps. As we shall see, the appearance of jumps causes new effects, and the
geometry described above changes notably.

We go on to illustrate, still using informal arguments, that for driving processes
with jumps, only one implication of the just cited theorem holds, namely that the
existence of a d-dimensional realization implies dim{α, σ}LA ≤ d, and that, for this
implication, additional assumptions on the semimartingale X are required.

In view of Remarks 3.1.3 we have to check whether it is still true that a manifold
G is tangential if and only if it is invariant. Consider the equation{

drt = (−r2(t), r1(t))d(t+Nt)

r0 = (1, 0)
, (3.1.6)
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Figure 3.1.3: The vector field from equation (3.1.7) with an invariant manifold.

where N denotes a Poisson process. The manifold G = {r ∈ R2 | |r| = 1} provides
a one-dimensional tangential manifold. Figure 3.1.2 shows the tangent space of G at
the marked point. Assume the first jump of the Poisson process N occurs at this
point. Then, the process r makes a jump in tangential direction, and consequently, it
leaves the manifold G. This example shows that a tangential manifold is, in general,
not invariant. We note, however, that invariance would be implied if the tangential
manifold were affine. But in general, the implication from tangency to invariance fails.
It was already mentioned in Björk and Christensen [10, Sec. 6], where the situation was
studied with an additional marked point process, that, besides tangency, the manifold
must fulfill an extra condition, namely that it is invariant regarding all possible jumps.

Concerning the implication from invariance to tangency, consider the following
equation {

drt = (1, 0)dNt

r0 = (0, 0)
, (3.1.7)

where N denotes a Poisson process. The image of the process r consists of all
points {(i, 0) | i ∈ N0}, as indicated in Figure 3.1.3.

The existence of a one-dimensional realization is apparent. There are several one-
dimensional invariant manifolds, and one is plotted in Figure 3.1.3. It is evident that
this invariant manifold G is not tangential. However, the reason, why things go wrong,
is the Poisson process, which only makes jumps of size one. Replace it by a process
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with the property that it makes arbitrary small jumps, take for instance a Lévy process
with Lévy measure K satisfying 0 ∈ int supp(K). Then the effect shown in Figure
3.1.3, which is due to the vacancies left by the Poisson process, cannot occur, and it
is plausible that invariance implies tangency.

If we insist on jump processes like the Poisson process, and impose the additional
condition that the invariant manifold G is affine, then it is also geometrically obvious
that tangency is implied. In our example (3.1.7), the condition that G shall be affine
implies that G = {(x, 0) |x ∈ R}, which is a tangential manifold.

To sum up, we have discussed that, if the driving processes X has jumps, only one
implication holds, namely if there exists a d-dimensional realization (G,Z), it holds
dim{α, σ}LA ≤ d. To establish this result, we have to impose extra conditions on
the semimartingale X. We need it to make arbitrary small jumps, for this reason we
will introduce non-degenerate Grigelionis processes in Definition 3.1.15. Supposing
it is already known that the mapping G is affine, we essentially only need that the
process X makes jumps, that is why we will define linearly non-degenerate Grigelionis
processes in Definition 3.1.15.

After these geometric explanations of the Lie algebraic theory, we shall turn back
to the development of precise mathematical results. In this section, we proceed as
follows. Next, we prove some auxiliary results, then we give the required definitions,
which are motivated by the geometric aspects above, and finally arrive at Theorem
3.1.17 and Theorem 3.1.21, which provide formulas for the drift and the volatilities of
forward rate equations admitting realizations.

For any measure µ on (Rn,B(Rn)), its support supp(µ) is defined to be the set of
all x ∈ Rn such that µ(U) > 0 for any open set U ⊂ Rn containing x. The support
supp(µ) is a closed set. For any random variable X : (Ω,F,P) → (Rn,B(Rn)), the
support of PX is called the support of X, denoted by supp(X). It is the smallest closed
set F ⊂ Rn satisfying P(X ∈ F ) = 1.

3.1.4 Lemma. Let n,m ∈ N. Let X : (Ω,F,P) → (Rn,B(Rn)) be a random variable
and f, g ∈ C(Rn,Rm). There is equivalence between

1. f ◦X = g ◦X (P− a.s.);

2. f(x) = g(x) for all x ∈ supp(X).

Proof. See the appendix.

3.1.5 Lemma. Let n,m ∈ N. Let f ∈ C(Rn,Rm) and µ be a measure on (Rn,B(Rn))
such that f = 0 (µ− a.s.). Then it holds f(x) = 0 for all x ∈ supp(µ).

Proof. See the appendix.

3.1.6 Lemma. Let Z be a d-dimensional semimartingale and W1,W2 ∈ C(R+ × Rd)
such that

∫ t

0
W1(s, Zs−)ds =

∫ t

0
W2(s, Zs−)ds up to evanescence. Then, it holds

W1(t, z) = W2(t, z), t ∈ (0,∞), z ∈ supp(Zt−).
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Proof. See the appendix.

Let n ∈ N. The set M+(Rn×n) denotes the set of all symmetric, non-negative
definite n×n-matrices, whereas M++(Rn×n) is the set of all symmetric, positive definite
n × n-matrices. By K+(Rn) we denote the set of all measures K on (Rn,B(Rn))
satisfying K({0}) = 0 and

∫
Rn(|x|2 ∧ 1)K(dx) < ∞. The set K++(Rn) consists of all

K ∈ K+(Rn) with exception of the zero measure.

3.1.7 Definition. Assume, given a Grigelionis process X with derivative (β̃, c̃, K̃)D,
there exists a d-dimensional semimartingale Z and mappings

β : R+ × Rd → Rn

c : R+ × Rd → M+(Rn×n)

K : R+ × Rd → K+(Rn)

,

such that, up to evanescence,
β̃t(ω) = β(t, Zt−(ω))

c̃t(ω) = c(t, Zt−(ω))

K̃(ω,t) = K(t, Zt−(ω))

.

Then, we call (β, c,K;Z)D a Z-derivative of X.

If the mappings β, c,K can be chosen such that
β : R+ → Rn

c : R+ → M+(Rn×n)

K : R+ → K+(Rn)

,

i.e. the choice of the semimartingale Z does not matter, we also say that the derivative
is deterministic, and denote it by (β, c,K)D, which is consistent with Definition 2.1.6.
This situation occurs in particular, if X is a Lévy process, or, more general, a so-called
PIIAC in the sense of Eberlein, Jacod, and Raible [30].

3.1.8 Definition. Let X be a Grigelionis process with Z-derivative (β, c,K;Z)D. We
say that the derivative is of type (C) if for all (t, z) ∈ (0,∞)× Rd

β(t, z) = 0

c(t, z) ∈ M++(Rn×n)

K(t, z) = 0

,

and it holds c ∈ C(R+,Rn×n).
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3.1.9 Definition. Let X be a Grigelionis process with Z-derivative (β, c,K;Z)D. We
say that the derivative is of type (D) if for all (t, z) ∈ (0,∞)× Rd

β(t, z) = 0

c(t, z) = 0

K(t, z) ∈ K++(Rn)

.

When dealing with finite dimensional realizations, we need some assumptions about
supports. They are mild, but indispensable.

3.1.10 Definition. Let X be a Grigelionis process with Z-derivative (β, c,K;Z)D.
We say that (X,Z) has regular supports if the following conditions are satisfied.

1. It holds suppK(t, z1) = suppK(t, z2) for all t ∈ (0,∞) and all z1, z2 ∈ Rd. For
every t ∈ (0,∞), we may therefore abbreviate supp(Kt).

2. Defining SX := {(t, x) | t ∈ (0,∞), x ∈ supp(Kt)}, there exists, for each (t, x) ∈
SX , an ε > 0 such that {(s, x) | s ∈ (t− ε, t+ ε)} ⊂ SX .

3. Defining SZ := {(t, z) | t ∈ (0,∞), z ∈ supp(Zt−)}, there exists, for each (t, z) ∈
SZ, an ε > 0 such that {(s, z) | s ∈ (t− ε, t+ ε)} ⊂ SZ.

3.1.11 Lemma. Let X be a Grigelionis process with derivative (0, c, 0;Z)D of type
(C), and W1,W2 ∈ C(R+×Rd,Rn) be such that

∫ t

0
W1(s, Zs−)dXs =

∫ t

0
W2(s, Zs−)dXs

up to evanescence. Then, it holds

W1(t, z) = W2(t, z), t ∈ (0,∞), z ∈ supp(Zt−).

Proof. Set W := W1 −W2, which is again of class C(R+ × Rd,Rn). By Jacod and
Shiryaev [42, Thm. I.4.40.d] the relation〈∫ •

0

W (s, Zs−)dXs,

∫ •

0

W (s, Zs−)dXs

〉
t
=

∫ t

0

〈W (s, Zs−), c(s, Zs−)W (s, Zs−)〉ds

is valid. Thus, it holds
∫ t

0
〈W (s, Zs−), c(s, Zs−)W (s, Zs−)〉ds = 0 up to evanescence.

Applying Lemma 3.1.6 we obtain

〈W (t, z), c(t, z)W (t, z)〉 = 0, t ∈ (0,∞), z ∈ supp(Zt−).

Since the matrices c(t, z) are positive definite, we are done.

The space Gloc(µ
X) denotes the linear space of (µX − ν)-integrable functions, and

for any W ∈ Gloc(µ
X) we denote by W ∗ (µX − ν) the stochastic integral of W with

respect to µX − ν Jacod and Shiryaev [42, Def. II.1.27].
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3.1.12 Lemma. Let X be a n-dimensional Grigelionis process with derivative given
by (0, 0, K)D, and W ∈ Gloc(µ

X). Then, the process Y := W ∗ (µX − ν) is a one-
dimensional Grigelionis process with derivative (0, 0, KY )D, where, for fixed (ω, t) ∈
Ω × R+, the measure KY

(ω,t) is given by KY
(ω,t)(dx) := 1R\{0}(x)K

W
(ω,t)(dx), with KW

(ω,t)

denoting the image of the measure K(ω,t) under the mapping x 7→ W (ω, t, x)1Rn\{0}(x).

Proof. We define the random measure νY (dt, dx) := dtKY
t (dx). To any P ⊗ B(R)-

measurable function V , we associate the function VW : Ω × R+ × Rn → R, defined
as

VW (ω, t, x) := V (ω, t,W (ω, t, x)1Rn\{0}(x))1R\{0}(W (ω, t, x))1Rn\{0}(x),

which is P ⊗ B(Rn)-measurable, and if in addition, V is non-negative, then VW is
non-negative, too. Since the compensator of µX is of the absolutely continuous form
ν(dt, dx) = dtKt(dx), it holds ν(ω; {t} × Rn) = 0 for all (ω, t) ∈ Ω × R+ (up to
evanescence). Consequently, by the definition of the stochastic integral W ∗ (µX − ν)
Jacod and Shiryaev [42, Def. II.1.27], the jumps of the purely discontinuous local
martingale Y are given by

∆Yt(ω) = W (ω, t,∆Xt(ω))1Rn\{0}(∆Xt(ω)).

We deduce for any P⊗B(R)-measurable function V

V (ω, t, x) ∗ µY =
∑

0<s≤t

V (ω, s,W (ω, s,∆Xs(ω))1Rn\{0}(∆Xs(ω))) (3.1.8)

1R\{0}(W (ω, s,∆Xs(ω)))1Rn\{0}(∆Xs(ω)) = VW (ω, t, x) ∗ µX ,

as well as

V (ω, t, x) ∗ νY =

∫ t

0

∫
Rn

V (ω, s,W (ω, s, x)1Rn\{0}(x)) (3.1.9)

1R\{0}(W (ω, s, x))1Rn\{0}(x)K(ω,t)(dx)ds = VW (ω, t, x) ∗ ν.

Since ν is predictable, equation (3.1.9) yields that the integral process V ∗ νY is pre-
dictable for any predictable function V . Thus, the random measure νY is predictable.
Since ν is the compensator of µX , we infer from (3.1.8) and (3.1.9) that for any non-
negative P⊗B(R)-measurable function V it holds

E
[
V ∗ µY

∞
]

= E
[
VW ∗ µX

∞
]

= E
[
VW ∗ ν∞

]
= E

[
V ∗ νY

∞
]
.

Thus, νY is the compensator of µY .

3.1.13 Lemma. Let X be a Grigelionis process with derivative (0, 0, K;Z)D of type
(D) such that (X,Z) has regular supports, and let W1,W2 ∈ C(R+×Rd×Rn) be such
that ∫ t

0

∫
Rn

W1(s, Zs−, x)(µ
X − ν)(ds, dx) =

∫ t

0

∫
Rn

W2(s, Zs−, x)(µ
X − ν)(ds, dx)
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up to evanescence. Then it holds

W1(t, z, x) = W2(t, z, x), t ∈ (0,∞), z ∈ supp(Zt−), x ∈ supp(Kt).

Proof. Set W := W1 −W2, which is again of class C(R+ × Rd × Rn). Denote by νY

the compensator of the random measure µY of jumps of the process Y defined as

Yt :=

∫ t

0

∫
Rn

W (s, Zs−, x)(µ
X − ν)(ds, dx).

According to Lemma 3.1.12 (note that Kt,z({0}) = 0 for all measures Kt,z) we obtain

νY (ω; [0, t]× Rn) =

∫ t

0

∫
Rn

1R\{0}(W (s, Zs−(ω), x))Ks,Zs−(ω)(dx)ds.

Thus, there exists a P-null set A such that the paths t 7→ Zt−(ω) are left-continuous
for each ω ∈ Ω \ A and∫ t

0

∫
Rn

1R\{0}(W (s, Zs−(ω), x))Ks,Zs−(ω)(dx)ds = 0, (ω, t) ∈ Ω \ A× R+.

Let ω ∈ Ω \ A be arbitrary. We conclude that there is a Borel set Bω ⊂ (0,∞) with
Leb((0,∞) \Bω) = 0 such that for each t ∈ Bω∫

Rn

1R\{0}(W (t, Zt−(ω), x))Kt,Zt−(ω)(dx) = 0.

Hence, it holds for every t ∈ Bω

W (t, Zt−(ω), x) = 0 for Kt,Zt−(ω)-almost all x ∈ Rn.

Applying Lemma 3.1.5 yields (note that the supports of Kt,z do not depend on z, since
(X,Z) has regular supports)

W (t, Zt−(ω), x) = 0 for all t ∈ Bω and x ∈ supp(Kt).

From the left-continuity of the trajectory t 7→ Zt−(ω) and the continuity of W we
deduce

W (t, Zt−(ω), x) = 0 for all t ∈ (0,∞) and x ∈ supp(Kt),

because assuming W (t, Zt−(ω), x) 6= 0 for some t ∈ (0,∞) and x ∈ supp(Kt) leads
(note that Leb((0,∞) \ Bω) = 0 as well as the second condition of Definition 3.1.10)
to the contradiction that W (s, Zs−(ω), x) 6= 0 for all s ∈ [v, t] where v stems from the
interval (0, t). Now, we apply Lemma 3.1.4 for fixed t ∈ (0,∞) and x ∈ supp(Kt),
which completes the proof.
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Let X be a n-dimensional semimartingale for some n ∈ N. We set C(X) := {i ∈
{1, . . . , n} |Xc

i 6= 0}. If X is a special semimartingale with canonical decomposition
X = X0 +M +B, we moreover define D(X) := {i ∈ {1, . . . , n} |Md

i 6= 0}.
If C(X) 6= ∅, we define the vector process C(X) := (Xc

i )i∈C(X), and if C(X) = ∅,
the process C(X) is defined to be the (one-dimensional) zero process. If X is a special
semimartingale, the process D(X) is defined analogously by means of the index set
D(X) and the purely discontinuous martingale parts Md

i .
For matrices A and vectors b, we denote by Ac and bc the submatrices and sub-

vectors indexed by C(X). Provided the semimartingale X is special, Ad and bd are
defined analogously with the index set D(X).

Assume X is a special semimartingale. Let K be a measure on (Rn,B(Rn)). If
D(X) 6= ∅, it is of the form D(X) = {τ(1) < . . . < τ(m)} ⊂ {1, . . . , n}. The measure
Kd on (Rm,B(Rm)) is defined by

Kd(Bτ(1) × . . .×Bτ(m)) := K({x ∈ Rn |xi ∈ Bi for i ∈ D(X), xi = 0 for i /∈ D(X)}),

where Bτ(1), . . . , Bτ(m) ∈ B(R). If D(X) = ∅, the measure Kd is defined to be the zero
measure on (R,B(R)).

3.1.14 Definition. Let X be a Grigelionis process with Z-derivative (β, c,K;Z)D.
We say that the derivative (β, c,K;Z)D is decomposable if

1. C(X) ∪D(X) = {1, . . . , n} (but C(X) and D(X) need not be disjoint);

2. If C(X) 6= ∅, then C(X) has the type (C)-derivative (0, cc, 0;Z)D;

3. If D(X) 6= ∅, then D(X) has the type (D)-derivative (0, 0, Kd;Z)D.

3.1.15 Definition. Let X be a Grigelionis process with derivative (0, 0, K;Z)D of type
(D).

1. The process X is called non-degenerate if for all t ∈ (0,∞) there are linearly
independent vectors vj(t) ∈ Rn, j = 1, . . . , n and ε(t) > 0 such that

⋃n
j=1{λvj(t) :

λ ∈ [0, ε(t)]} ⊂ supp(Kt,z) for all z ∈ Rd.

2. The process X is said to be linearly non-degenerate if for all t ∈ (0,∞) there are
linearly independent vectors vj(t) ∈ Rn, j = 1, . . . , n such that v1(t), . . . , vn(t) ∈
supp(Kt,z) for all z ∈ Rd.

Later in practice, we assume that (X,Z) has regular supports, implying that the
supports supp(Kt,z) do not depend on z ∈ Rd. Then, the process X is non-degenerate
if the supports supp(Kt) contain n (which is the dimension of X) line segments of
positive length, starting in zero and pointing in linearly independent directions. This
corresponds to the condition of small jumps, that we have exhibited in the informal
treatment of the realization problem. Formally, this condition is required in the proof
of Theorem 3.1.17 in order to derive equation (3.1.26).
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The process X is linearly non-degenerate, if the supports supp(Kt) just contain
n linearly independent points. As we have pointed out in the informal geometric
discussion, the conditions on the driving process X can be relaxed if one already
knows that a given realization is affine, and this relaxation formally means that X is
just linearly non-degenerate instead of being non-degenerate.

3.1.16 Definition. Let X be a Grigelionis process with decomposable derivative.

1. The Grigelionis process X is called non-degenerate if D(X) = ∅ or D(X) is
non-degenerate.

2. The Grigelionis process X is said to be linearly non-degenerate if D(X) = ∅ or
D(X) is linearly non-degenerate.

The class of non-degenerate Grigelionis processes is quite large. For example, let
the Grigelionis process X consist of m + n independent processes X = (W1, . . . ,Wm,
L1, . . . , Ln), where the Wi are standard Wiener, and the Lj Lévy processes whose Lévy

measures Kj satisfy 0 ∈ int supp(Kj). Then, X is non-degenerate, because, by the
independency of the processes, the Lévy measure of (L1, . . . , Ln) is concentrated on
the union of the coordinate axes.

Most of the Lévy processes, that have been used in mathematical finance, have in-
deed the property 0 ∈ int supp(K), where K denotes the Lévy measure. A well-known
class of processes, having this property, is constituted by the generalized hyperbolic
distributions, which were introduced in Barndorff-Nielsen [2]. Barndorff-Nielsen and
Halgreen [3] have shown that generalized hyperbolic distributions are infinitely divisi-
ble. These processes were introduced in finance by Eberlein and Keller [26]. Hyperbolic
term structure models are treated in Eberlein and Raible [29, Sec. 5]. Another class of
Lévy processes, fulfilling 0 ∈ int supp(K), is the class of bilateral Gamma processes,
see Sec. 5 in Küchler and Naumann [46], where term structure models driven by bi-
lateral Gamma processes are considered. In particular, the variance Gamma processes
in the sense of Madan [49] have this property.

However, Poisson processes, or more general compound Poisson processes, are not
non-degenerate. We have explained in the intuitive part of this section, why these
processes, which have a lack of small jumps, must be excluded. As a matter of fact,
there are works, like Shirakawa [60], Jarrow and Madan [43] or Hyll [40], which deal
with term structure models driven by jump-diffusions, where one source of randomness
is given by a point process. In order to integrate those models in the study of the real-
ization problem, we have introduced the notion of linearly non-degenerate processes.
If the driving process of a forward rate model is linearly non-degenerate, but not non-
degenerate, like a Poisson process, we confine ourselves to the study of the realization
problem to affine realizations. Since concrete realizations for term structure models,
that have been constructed in the literature, see, e.g., Björk and Landén [12], have
always turned out to be affine, this restriction does not seem to be severe. Anyway, in
Chapter 4 we will, for other reasons, mainly study affine realizations.
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We are ready to prove the first announced result, which later allows the identifica-
tion of drift and volatilities of forward rate equations admitting realizations. Theorem
3.1.17, which is designed for Itô dynamics, will be applied in Chapter 4, whereas we
use the later Theorem 3.1.21, which is an analogous result regarding Fisk-Stratonovich
integrals, in this chapter.

We emphasize that, for convenience of notation, we do, concerning vectors, not
distinguish between row and column vectors. It will always be clear from the context
if a vector is meant to be a row or a column vector.

3.1.17 Theorem. Let d, n ∈ N, continuous mappings
µ : R+ × Rd → Rd

γ : R+ × Rd → Rd×n

α : R+ × Rd → R

σ : R+ × Rd → Rn

,

and f ∈ C2,2(R+ × Rd) be given. Let X be a Grigelionis process with decomposable
derivative (β, c,K;Z)D such that (D(X), Z) has regular supports. Assume that Zt and
f(t, Zt) have the dynamics

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt, (3.1.10)

df(t, Zt) = α(t, Zt−)dt+ σ(t, Zt−)dXt. (3.1.11)

Then, the following statements are valid.

1. For all t ∈ (0,∞), z ∈ supp(Zt−) and x ∈ supp(Kd
t ) it holds

〈σd(t, z), x〉 = f(t, z + γd(t, z)x)− f(t, z). (3.1.12)

2. If X is non-degenerate, it holds for every t ∈ (0,∞) and z ∈ supp(Zt−)

α(t, z) =
∂

∂t
f(t, z) + 〈∇zf(t, z), µ(t, z)〉

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

f(t, z)〈γi•(t, z)
∗, c(t, z)γj•(t, z)

∗〉, (3.1.13)

σ(t, z) = ∇zf(t, z)γ(t, z). (3.1.14)

3. If X is linearly non-degenerate, and there are a, b ∈ C2(R+) such that for all
t ∈ (0,∞) and z ∈ supp(Zt−) it holds

f(t, z + γ(t, z)x) = a(t) + 〈b(t), z + γ(t, z)x〉, x ∈ supp(Kt) ∪ {0},
∇zf(t, z) = b(t),
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then the identities

α(t, z) =
∂

∂t
a(t) +

〈 ∂
∂t
b(t), z

〉
+ 〈b(t), µ(t, z)〉, (3.1.15)

σ(t, z) = b(t)γ(t, z) (3.1.16)

are valid for all t ∈ (0,∞) and z ∈ supp(Zt−).

Proof. By Itô’s formula Jacod and Shiryaev [42, Thm. I.4.57] we obtain

f(t, Zt) = f(0, Z0) +

∫ t

0

∂

∂s
f(s, Zs−)ds+

d∑
i=1

∫ t

0

∂

∂zi

f(s, Zs−)dZ i
s

+
1

2

d∑
i,j=1

∫ t

0

∂2

∂zi∂zj

f(s, Zs−)d〈Zc
i , Z

c
j 〉s

+
∑

0<s≤t

[
f(s, Zs)− f(s, Zs−)−

d∑
i=1

∂

∂zi

f(s, Zs−)∆Zi
s

]
, (3.1.17)

where the last term is in V. Taking into account the jumps ∆Zt = γ(t, Zt−)∆Xt, the
differentials

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt,

d〈Zc
i , Z

c
j 〉t = 〈γi•(t, Zt−)∗, c(t, Zt−)γj•(t, Zt−)∗〉dt, i, j = 1, . . . , d,

and the associativity of the Itô integral Jacod and Shiryaev [42, I.4.37], we write
equation (3.1.17) as

df(t, Zt) =
∂

∂t
f(t, Zt−)dt+ 〈∇zf(t, Zt−), µ(t, Zt−)〉dt+∇zf(t, Zt−)γ(t, Zt−)dXt

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

f(t, Zt−)〈γi•(t, Zt−)∗, c(t, Zt−)γj•(t, Zt−)∗〉dt

+

∫
Rn

(
f(t, Zt− + γ(t, Zt−)x)− f(t, Zt−)

− 〈∇zf(t, Zt−), γ(t, Zt−)x〉
)
µX(dt, dx), (3.1.18)

where the µX(dt, dx)-integral is in V. The process f(t, Zt) is a special semimartingale,
because the dynamics (3.1.11) provide a decomposition where the finite variation part
is predictable. According to Prop. I.4.23 and Lemma I.3.10 in Jacod and Shiryaev
[42], the µX(dt, dx)-integral in (3.1.18) belongs to Aloc. Therefore, we may integrate
with respect to (µX − ν)(dt, dx) plus ν(dt, dx) Jacod and Shiryaev [42, Prop. II.1.28],
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and write equation (3.1.18) as

df(t, Zt) =

[
∂

∂t
f(t, Zt−) + 〈∇zf(t, Zt−), µ(t, Zt−) + γ(t, Zt−)β(t, Zt−)〉

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

f(t, Zt−)〈γi•(t, Zt−)∗, c(t, Zt−)γj•(t, Zt−)∗〉

+

∫ (
f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−)

− 〈∇zf(t, Zt−), γd(t, Zt−)x〉
)
Kd

t,Zt−(dx)

]
dt

+∇zf(t, Zt−)γc(t, Zt−)dC(X)t

+
(
f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−)

)
(µD(X) − νD(X))(dt, dx). (3.1.19)

According to Jacod and Shiryaev [42, Cor. II.2.38] the functions Wi(ω, t, x) = xi

belong to Gloc(µ
X). Applying Jacod and Shiryaev [42, Prop. II.1.30.b] the dynamics

(3.1.11) of f(t, Zt) can be expressed as

df(t, Zt) = (α(t, Zt−) + 〈β(t, Zt−), σ(t, Zt−)〉)dt+ σc(t, Zt−)dC(X)t

+ 〈x, σd(t, Zt−)〉(µD(X) − νD(X))(dt, dx). (3.1.20)

Since the continuous local martingale part, the purely discontinuous local martingale
part and the finite variation part of a special semimartingale are unique (which fol-
lows from Cor. I.3.16 and Thm. I.4.18 in Jacod and Shiryaev [42]), we obtain from
equations (3.1.19) and (3.1.20)

∫ t

0

α(s, Zs−)ds+

∫ t

0

〈β(s, Zs−), σ(s, Zs−)−∇zf(s, Zs−)γ(s, Zs−)〉ds

=

∫ t

0

[
∂

∂s
f(s, Zs−) + 〈∇zf(s, Zs−), µ(s, Zs−)〉

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

f(s, Zs−)〈γi•(s, Zs−)∗, c(s, Zs−)γj•(s, Zs−)∗〉
]
ds

+

∫ t

0

∫ (
f(s, Zs− + γd(s, Zs−)x)− f(s, Zs−)

− 〈∇zf(s, Zs−)γd(s, Zs−), x〉
)
Kd

s,Zs−(dx)ds, (3.1.21)
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as well as∫ t

0

σc(s, Zs−)dC(X)s =

∫ t

0

∇zf(s, Zs−)γc(s, Zs−)dC(X)s, (3.1.22)∫ t

0

∫
〈x, σd(s, Zs−)〉(µD(X) − νD(X))(ds, dx)

=

∫ t

0

∫ (
f(s, Zs− + γd(s, Zs−)x)− f(s, Zs−)

)
(µD(X) − νD(X))(ds, dx). (3.1.23)

Applying Lemma 3.1.11 on equation (3.1.22) we obtain

σc(t, z) = ∇zf(t, z)γc(t, z), t ∈ (0,∞), z ∈ supp(Zt−), (3.1.24)

and an application of Lemma 3.1.13 on equation (3.1.23) yields the identity (3.1.12).
Provided, X is non-degenerate and m := |D(X)| ∈ {1, . . . , n} (otherwise the

formula (3.1.14) for σ(t, z) follows immediately from (3.1.24), and we can continue
after equation (3.1.26)), there are, for all t ∈ (0,∞), linearly independent vectors
vj(t) ∈ Rm, j = 1, . . . ,m and ε(t) > 0 such that

⋃m
j=1{λvj(t) : λ ∈ [0, ε(t)]} ⊂

supp(Kt). Thus, it holds for for all t ∈ (0,∞), z ∈ supp(Zt−) and j = 1, . . . ,m

〈γd(t, z)vj(t),∇zf(t, z)〉 =
∂

∂(γd(t, z)vj(t))
f(t, z)

= lim
h→0

f(t, z + hγd(t, z)vj(t))− f(t, z)

h
= 〈σd(t, z), vj(t)〉. (3.1.25)

In the last step, we have used equation (3.1.12). Since the vectors vj(t), j = 1, . . . ,m
are linearly independent, they provide a basis of Rm, and consequently it holds for all
t ∈ (0,∞) and z ∈ supp(Zt−)

〈σd(t, z)−∇zf(t, z)γd(t, z), x〉 = 0, x ∈ Rm.

We conclude that for all t ∈ (0,∞) and all z ∈ supp(Zt−)

σd(t, z) = ∇zf(t, z)γd(t, z). (3.1.26)

Together with (3.1.24), the identity (3.1.14) for σ(t, z) is proven. Applying Lemma
3.1.4 on equations (3.1.12) and (3.1.14) we obtain that, for all t ∈ (0,∞) and x ∈
supp(Kd

t ), it holds

〈σd(t, Zt−), x〉 = f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−) P− a.s.

σ(t, Zt−) = ∇zf(t, Zt−)γ(t, Zt−) P− a.s.

By the continuity assumptions on f and the coefficients, and the right-continuity of Z
(notice also the second point in Definition 3.1.10), we obtain, up to a P-null set,

〈σd(t, Zt−), x〉 = f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−), t ∈ (0,∞), x ∈ supp(Kd
t )

σ(t, Zt−) = ∇zf(t, Zt−)γ(t, Zt−), t ∈ (0,∞).



3.1 Geometric background and preparatory results 41

Hence, equation (3.1.21) simplifies to∫ t

0

α(s, Zs−)ds =

∫ t

0

[
∂

∂s
f(s, Zs−) + 〈∇zf(s, Zs−), µ(s, Zs−)〉

+
1

2

d∑
i,j=1

∂2

∂zi∂zj

f(s, Zs−)〈γi•(s, Zs−)∗, c(s, Zs−)γj•(s, Zs−)∗〉
]
ds.

Applying Lemma 3.1.6, we obtain the stated formula (3.1.13) for α(t, z).
If the assumptions from the third part of the theorem are satisfied, it holds for all

t ∈ (0,∞) and z ∈ supp(Zt−)

f(t, z + γd(t, z)x) = a(t) + 〈b(t), z + γd(t, z)x〉, x ∈ supp(Kd
t ) ∪ {0},

∂

∂t
f(t, z) =

∂

∂t
a(t) +

〈 ∂
∂t
b(t), z

〉
.

The latter identity is valid, because (D(X), Z) has regular supports (see the third
condition in Definition 3.1.10). Using equation (3.1.12), we get that for all t ∈ (0,∞)
and z ∈ supp(Zt−) it holds

〈σd(t, z), vj(t)〉 = 〈b(t), γd(t, z)vj(t)〉, j = 1, . . . ,m

where vj(t), j = 1, . . . ,m are linearly independent vectors from supp(Kt), which cor-
responds to equation (3.1.25). Now, arguing as above, we obtain equations (3.1.15)
and (3.1.16).

3.1.18 Remark. The assumptions of the third statement of Theorem 3.1.17 look a bit
strange, and of course, they are in particular fulfilled if the whole function f is affine.
The present formulation of this result will turn out to be useful in Chapter 4.

As we have mentioned in the description of the geometric ideas, we also need
the Fisk-Stratonovich integral in order to avoid second order derivative terms, which
appear by application of Itô’s formula.

Let M,N be two n-dimensional continuous local martingales for some n ∈ N. We
define 〈M,N〉 :=

∑n
i=1〈Mi, Ni〉, where for the one-dimensional components, the angle

bracket denotes the predictable quadratic covariation of Mi and Ni Jacod and Shiryaev
[42, Sec. I.4a], or, equivalently, the compensator of [Mi, Ni] Jacod and Shiryaev [42,
Prop. I.4.50.b].

3.1.19 Definition. For two n-dimensional semimartingales X,Y the Fisk-Stratonovich
integral of Y with respect to X is defined as∫ t

0

Ys− ◦ dXs :=

∫ t

0

Ys−dXs +
1

2
〈Y c, Xc〉t.

We also use the short-hand notation Y− ◦X.
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Note that in Protter [55, p. 75] the Fisk-Stratonovich integral is defined as
∫ t

0
Ys− ◦

dXs :=
∫ t

0
Ys−dXs + 1

2
[Y,X]ct , where [Y,X]c denotes the path by path continuous part

of the quadratic co-variation [Y,X]. By Jacod and Shiryaev [42, Thm. I.4.52] it holds
[Y,X]t = 〈Y c, Xc〉t +

∑
s≤t ∆Ys∆Xs, implying [Y,X]c = 〈Y c, Xc〉, whence these two

definitions of the Fisk-Stratonovich integral are consistent.
The next auxiliary result is useful in order to alternate Itô dynamics with Fisk-

Stratonovich dynamics. For any semimartingale Z, we define the process Ẑ by Ẑt(ω) :=
(t, Zt(ω)).

3.1.20 Lemma. Let X be a Grigelionis process with Z-derivative (β, c,K;Z)D. As-
sume Z satisfies a stochastic differential equation

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt, (3.1.27)

where µ ∈ C(R+ ×Rd,Rd) and γ ∈ C2,2(R+ ×Rd,Rd×n). Then, the following identity
is valid for each i = 1, . . . , d.

〈γi•(Ẑ)c, Xc〉t =
n∑

j=1

n∑
k=1

d∑
l=1

∫ t

0

cjk(s, Zs−)

[
∂

∂zl

γij(s, Zs−)

]
γlk(s, Zs−)ds.

Proof. See the appendix.

The following result is an analogue of Theorem 3.1.17 for Fisk-Stratonovich inte-
grals. For this reason, the proof is contained in the appendix.

3.1.21 Theorem. Let d, n ∈ N, continuous mappings
µ : R+ × Rd → Rd

γ : R+ × Rd → Rd×n

α : R+ × Rd → R

σ : R+ × Rd → Rn

,

and f ∈ C2,2(R+ × Rd) be given. Let X be a Grigelionis process with decomposable
derivative (β, c,K;Z)D such that (D(X), Z) has regular supports. Assume that Zt and
f(t, Zt) have the dynamics

dZt = µ(t, Zt−)dt+ γ(t, Zt−) ◦ dXt, (3.1.28)

df(t, Zt) = α(t, Zt−)dt+ σ(t, Zt−) ◦ dXt. (3.1.29)

Then, the following statements are valid.

1. For all t ∈ (0,∞), z ∈ supp(Zt−) and x ∈ supp(Kd
t ) it holds

〈σd(t, z), x〉 = f(t, z + γd(t, z)x)− f(t, z). (3.1.30)
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2. If X is non-degenerate, it holds for every t ∈ (0,∞) and z ∈ supp(Zt−)

α(t, z) =
∂

∂t
f(t, z) + 〈∇zf(t, z), µ(t, z)〉, (3.1.31)

σ(t, z) = ∇zf(t, z)γ(t, z). (3.1.32)

3. If X is linearly non-degenerate, and there are a, b ∈ C2(R+) such that for all
t ∈ (0,∞) and z ∈ supp(Zt−) it holds

f(t, z + γ(t, z)x) = a(t) + 〈b(t), z + γ(t, z)x〉, x ∈ supp(Kt) ∪ {0},
∇zf(t, z) = b(t),

then the identities

α(t, z) =
∂

∂t
a(t) +

〈 ∂
∂t
b(t), z

〉
+ 〈b(t), µ(t, z)〉, (3.1.33)

σ(t, z) = b(t)γ(t, z) (3.1.34)

are valid for all t ∈ (0,∞) and z ∈ supp(Zt−).

Proof. See the appendix.

3.2 The Lie algebraic approach

In this section, X denotes a real Banach space consisting of functions r : R+ → R. In
our applications below, the space X will be a space of forward rate curves. We assume
that the norm of this space is chosen such that for all r ∈ X and every sequence (rn)n∈N
in X the convergence rn → r in X implies that rn(x) → r(x) for each x ∈ R+.

Let r be a X-valued process whose paths are right-continuous and admit left-hand
limits, abbreviated càdlàg. By this, we mean the following. For each t ∈ R+, the
sequence rs is a Cauchy sequence in X as s ↓ t with limit rt, and for each t ∈ (0,∞)
the sequence rs is a Cauchy sequence in X as s ↑ t, whose limit is denoted by rt−.
Moreover, we set r0− := r0.

Let X be a n-dimensional Grigelionis process whose derivative (β, c,K)D is deter-
ministic (a Lévy process for instance), and α, σ1, . . . , σn : R+ × X → X. We assume
that r satisfies the X-valued equation{

drt = α(t, rt−)dt+ σ(t, rt−)dXt

r0 = r∗
, (3.2.1)

where r∗ ∈ X. The equation (3.2.1) is to be understood as follows. The process r
is a stochastic process with values in X, and for each x ∈ R+, the process r(x) is a
semimartingale satisfying{

drt(x) = α(t, rt−)(x)dt+ σ(t, rt−)(x)dXt

r0(x) = r∗(x)
.
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In the sequel, we deal with functions G : R+ × Rd → X. We say that such a function
is of class Cm for some m ∈ N, if it is m-times Fréchet differentiable on the open
subset (0,∞)×Rd, and the Fréchet derivative FmG : (0,∞)×Rd → L(m)(R×Rd,X)
- the latter is the space of continuous multilinear operators from (R× Rd)m to X - is
continuous, and can be extended to a continuous function on R+ × Rd. Note that for
any ẑ0 ∈ R+ × Rd, ẑ ∈ R× Rd one has

FG(ẑ0)[ẑ] = lim
h→0

G(ẑ0 + hẑ)−G(ẑ0)

h
.

Due to the assumption that convergence in X implies pointwise convergence, for each
x ∈ R+, the function (t, z) 7→ G(t, z)(x) is of class Cm(R+ × Rd), and the partial
derivatives of G(•)(x) at some point ẑ0 are obtained by inserting the unit vectors in
FmG(ẑ0)[•](x).

For any G : R+×Rd → X, we introduce the mapping Ĝ : (0,∞)×Rd → (0,∞)×X

by Ĝ(t, z) := (t, G(t, z)).
The following definition of a finite dimensional realization differs a bit from Defi-

nition 2.2.3. It is adapted to the present framework.

3.2.1 Definition.

1. Let d ∈ N. The equation (3.2.1) has a d + 1-dimensional realization if there

exists a pair (G,Z), where G : R+ × Rd → X is of class C2 and such that Ĝ
is a homeomorphism, and Z is a d-dimensional semimartingale with (D(X), Z)
having regular supports, satisfying{

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt

Z0 = z0

,

for functions µ ∈ C(R+ × Rd,Rd), γ ∈ C2,2(R+ × Rd,Rd×n) and z0 ∈ Rd, such
that rt = G(t, Zt) for all t ∈ R+. We call the semimartingale Z from the pair
(G,Z) the state process of the realization.

2. The equation (3.2.1) has a finite dimensional realization if it admits a d + 1-
dimensional realization for some d ∈ N.

3. A d+1-dimensional realization (G,Z) is said to be affine, if there are a, b1, . . . , bd :
R+ → X of class C2 such that

G(t, z) = a(t) + 〈b(t), z〉 for all (t, z) ∈ R+ × Rd.

Provided, there exists a finite dimensional realization (G,Z), the image Ĝ := Im(Ĝ)
is a d + 1-dimensional manifold, parameterized by Ĝ. The linear space TĜ(r̂0) :=
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Im(FĜ(ẑ0)), where ẑ0 := Ĝ−1(r̂0), denotes the tangent space of Ĝ at point r̂0 ∈ Ĝ. The
tangent space has the representation

TĜ(r̂0) = span
{(

1, ∂
∂t
G(ẑ0)

)
,
(
0, ∂

∂z1
G(ẑ0)

)
, . . . ,

(
0, ∂

∂zd
G(ẑ0)

)}
, (3.2.2)

because for fixed x ∈ R+ it holds

FĜ(t0, z0)[t, z](x) = lim
h→0

Ĝ((t0, z0) + h(t, z))(x)− Ĝ(t0, z0)(x)

h

=

(
t, lim

h→0

G((t0, z0) + h(t, z))(x)−G(t0, z0)(x)

h

)
= t

(
1,
∂

∂t
G(t0, z0)(x)

)
+

d∑
i=1

zi

(
0,

∂

∂zi

G(t0, z0)(x)

)
.

Vector fields, Lie brackets and Lie algebras have already been introduced in Defi-
nition 3.1.1.

The following result will be essential in the sequel. It is a consequence of the
Frobenius Theorem Björk and Svensson [13, Thm. 2.1].

3.2.2 Theorem. Let Y be an arbitrary real Banach space and U ⊂ Y be an open
subset. Let f1, . . . , fd be linearly independent smooth vector fields on U , and r0 ∈ U .
The following statements are equivalent.

1. For all r ∈ U from a neighborhood of r0 there exists a d-dimensional manifold
Gr ⊂ Y with r ∈ Gr, such that for all r∗ from a neighborhood of r in Gr

f1(r
∗), . . . , fd(r

∗) ∈ TGr(r
∗).

2. For all r ∈ U from a neighborhood of r0 it holds

[fi, fj](r) ∈ span{f1(r), . . . , fd(r)}, i, j = 1, . . . , d.

Proof. The statement is a particular case of Björk and Svensson [13, Thm. 2.2], see
also Remark 3.1.2.

For a differentiable function f : (0,∞)× X → Y we define the Fréchet derivatives

Ft : (0,∞)× X → L(R,Y),

Fr : (0,∞)× X → L(X,Y)

with respect to t and with respect to r as

Ftf(t0, r0)[t] := Ff(t0, r0)[t, 0],

Frf(t0, r0)[r] := Ff(t0, r0)[0, r].
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Concerning the Fréchet derivative F : (0,∞)× X → L(R× X,Y), the identity

Ff(t0, r0)[t, r] = Ftf(t0, r0)[t] + Frf(t0, r0)[r]

is valid, because it holds

f((t0, r0) + h(t, r))− f(t0, r0) = Ff(t0, r0)[h(t, r)] +R(h(t, r))

= hFf(t0, r0)[t, 0] + hFf(t0, r0)[0, r] +R(h(t, r)), where lim
‖u‖→0

R(u)

‖u‖
= 0.

By r̂ we denote the R+ × X-valued process r̂t(ω) = (t, rt(ω)).

3.2.3 Lemma. Assume the X-valued process r satisfies (3.2.1), and has a finite di-
mensional realization, and that one of the following conditions is satisfied.

• The process X is non-degenerate;

• The process X is linearly non-degenerate and the realization is affine.

Then it holds for each x ∈ R+

〈σ(r̂)(x)c, Xc〉t =
n∑

i,j=1

∫ t

0

cij(s)Frσi(t, rs−)[σj(t, rs−)](x)ds.

Proof. See the appendix.

Now we come to the announced necessary criterion for the existence of finite dimen-
sional realizations, formulated in the terms of the drift and the volatilities of the equa-
tion (3.2.1). In order to apply the Frobenius Theorem 3.2.2, we extend α, σ1, . . . , σn,
by taking into account the time t, to mappings α̂, σ̂1, . . . , σ̂n : (0,∞) × X → R × X,
that is to vector fields on (0,∞) × X, which is an open subset in the Banach space
R× X. With regard to Lemma 3.2.3, we define α̂, σ̂1, . . . , σ̂n by

α̂(t, r) := (1, α̃(t, r)), (3.2.3)

σ̂i(t, r) := (0, σi(t, r)) for i = 1, . . . , n, (3.2.4)

where α̃ : (0,∞)× X → X is defined as

α̃(t, r) := α(t, r)− 1

2

n∑
i,j=1

cij(t)Frσi(t, r)[σj(t, r)]. (3.2.5)

We presume that α̂, σ̂1, . . . , σ̂n are smooth vector fields on (0,∞)× X.
The next result can be regarded as one implication of Björk and Svensson [13,

Thm. 3.2] for non-degenerate Grigelionis processes with deterministic derivative (we
have argued in Section 3.1 that the converse cannot hold). However, one should note
the fact that Björk and Svensson [13] consider local realizations, while we focus on
global realizations, which causes minor deviations in the formulation of the theorem.
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3.2.4 Theorem. Let X be non-degenerate, and r0 ∈ X. Assume for all r from a
neighborhood U(r0) of r0 the equation (3.2.1) with initial value r∗ := r has a d + 1-
dimensional realization (Gr, Zr). Let (t0, r0) ∈ (0,∞) × X be arbitrary. Assume for
every (t∗, r∗) from a neighborhood of (t0, r0) there exist r ∈ U(r0) and z∗ ∈ Rd such
that

(t∗, z∗) ∈ int {(t, z) | t ∈ (0,∞), z ∈ supp(Zr(t−)},

and Gr(t
∗, z∗) = r∗. Then it holds in a neighborhood of (t0, r0)

dim {α̂, σ̂1, . . . , σ̂n}LA ≤ d+ 1.

Proof. By assumption, for each r ∈ U(r0) there exists a realization (Gr, Zr), where
the semimartingale Zr has the dynamics

dZr(t) = µr(t, Zr(t−))dt+ γr(t, Zr(t−))dXt

with µr ∈ C(R+×Rd,Rd) and γr ∈ C2,2(R+×Rd,Rd×n). According to Lemma 3.1.20,
the processes Zr satisfy

dZr(t) = µ̃r(t, Zr(t−))dt+ γr(t, Zr(t−)) ◦ dXt, (3.2.6)

where the components µ̃i
r, i = 1, . . . , d of µ̃r are as follows,

µ̃i
r(t, z) = µi

r(t, z)−
1

2

n∑
j=1

n∑
k=1

d∑
l=1

cjk(t)

[
∂

∂zl

γr
ij(t, z)

]
γr

lk(t, z).

By Lemma 3.2.3, for each x ∈ R+, the process r fulfills the Fisk-Stratonovich dynamics

drt(x) = α̃(t, rt−)(x)dt+ σ(t, rt−)(x) ◦ dXt,

where α̃ was defined in (3.2.5). Inserting the realization rt = Gr(t, Zt), we obtain for
every r ∈ U(r0) and x ∈ R+

dGr(t, Zr(t))(x) = α̃(t, Gr(t, Zr(t−)))(x)dt+ σ(t, Gr(t, Zr(t−)))(x) ◦ dXt. (3.2.7)

We have assumed at the beginning of this section that convergence in X implies point-
wise convergence. Hence, the coefficients from (3.2.7) are continuous, and Gr(•)(x) is
of class C2 for each x ∈ R+. Applying Theorem 3.1.21 on the relations (3.2.6) and
(3.2.7), we obtain for each r ∈ U(r0) and x ∈ R+

α̃(t, Gr(t, z))(x) =
∂

∂t
Gr(t, z)(x) + 〈∇zGr(t, z)(x), µ̃r(t, z)〉, (3.2.8)

σ(t, Gr(t, z))(x) = ∇zGr(t, z)(x)γr(t, z), (3.2.9)

where t ∈ (0,∞) and z ∈ supp(Zr(t−)).
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Let us show that the first condition of the Frobenius Theorem 3.2.2 is satisfied.
By hypothesis, for any (t∗, r∗) from a neighborhood of (t0, r0) there exist r ∈ U(r0)
and z∗ ∈ Rd such that Ĝr(t

∗, z∗) = (t∗, r∗), i.e. (t∗, r∗) lies in the d + 1-dimensional

manifold Ĝr, and a neighborhood

U(t∗, z∗) ⊂ {(t, z) | t ∈ (0,∞), z ∈ supp(Zr(t−))}

of (t∗, z∗). Since Ĝr is a homeomorphism, Ĝr(U(t∗, z∗)) is a neighborhood of (t∗, r∗)

in Ĝr, and it holds

Ĝr(U(t∗, z∗)) ⊂
⋃

t∈(0,∞)

{t} ×Gr(t, supp(Zr(t−))).

Using equations (3.2.8) and (3.2.9), it follows from the representation (3.2.2) of the
tangent spaces that for all (t̃, r̃) ∈ Ĝr(U(t∗, z∗)) it holds

α̂(t̃, r̃), σ̂1(t̃, r̃), . . . , σ̂n(t̃, r̃) ∈ TĜr
(t̃, r̃).

Since the tangency of a manifold to a vector field is preserved under the Lie bracket
(see, e.g., Filipović and Teichmann [34, Prop. 3.10]), an application of Theorem 3.2.2
yields that in neighborhood of (t0, r0)

dim {α̂, σ̂1, . . . , σ̂n}LA ≤ d+ 1.

Note that Theorem 3.2.4 deals with generic realizations Björk and Svensson [13,
p. 213], i.e. for all r from a neighborhood U(r0) of r0 the equation (3.2.1) with initial
value r∗ := r admits a realization. For this reason, we demand that the derivative of
the driving process X is deterministic. It only makes sense to allow that the derivative
depends on the state process Z if one has just one fixed initial curve, and therefore
only one state process.

With regard to the conditions of Theorem 3.2.4, one may in particular think of
”large” neighborhoods U(r0), like the whole space X, as it is done in the next result,
where we focus on affine realizations. Since concrete realizations for term structure
models, that have been constructed in the literature, have always turned out to be
affine, this restriction seems justified.

Of course, one could prove exactly the same result as in Theorem 3.2.4 for affine
realizations and driving linearly non-degenerate processes. In view of the known re-
alizations for structure models, see in particular Björk and Landén [12], we assume
a special structure of the affine realizations, which ensures that one of the technical
conditions, which we impose in Theorem 3.2.4, is automatically fulfilled.

For r ∈ X and t ∈ R+ define the right-shift Θtr as Θtr(x) := r(t + x), x ∈ R+.
Concerning the space X, we furthermore assume that
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• Θtr ∈ X for all r ∈ X and t ∈ (0,∞);

• For each r ∈ X and t ∈ (0,∞) there exists a r̃ ∈ X such that r = Θtr̃.

3.2.5 Theorem. Let X be linearly non-degenerate. Assume, for all r ∈ X, the equa-
tion (3.2.1) with initial value r∗ := r has a d+1-dimensional affine realization (Gr, Zr),
and there is a neighborhood U(0) ⊂ Rd of zero, such that Zr(0) = 0 for all r ∈ X,
U(0) ⊂ supp(Zr(t−)) for all (t, r) ∈ (0,∞)× X, and

Gr(t, z) = Θtr + a(t) + 〈b(t), z〉, (t, z, r) ∈ R+ × Rd × X

with a, b1, . . . , bd : R+ → X such that a(0) = 0. Then, for all (t0, r0) ∈ (0,∞) × X, it
holds in a neighborhood of (t0, r0)

dim {α̂, σ̂1, . . . , σ̂n}LA ≤ d+ 1.

Proof. For arbitrary (t0, r0) ∈ (0,∞) × X and (t∗, r∗) from a neighborhood of (t0, r0)
we choose r ∈ X such that Θt∗r = r∗ − a(t∗). Then it holds Gr(t

∗, 0) = r∗, and by
hypothesis

(t∗, 0) ∈ int {(t, z) | t ∈ (0,∞), z ∈ supp(Zr(t−)}.

Now we can proceed as in the proof of Theorem 3.2.4, using the identities of Theorem
3.1.21, which are valid for linearly non-degenerate processes.

3.3 Term structure models

We have to specify a space of forward rate curves in order to incorporate term structure
models into the framework of infinite dimensional Banach space valued equations of
the preceding section. We choose one of the spaces Hβ,γ introduced in Björk and
Svensson [13].

3.3.1 Definition. Fix real numbers β > 1 and γ > 0. For all f, g ∈ C∞(R+) define

〈f, g〉β,γ :=
∞∑

n=0

β−n

∫ ∞

0

(
∂n

∂xn
f(x)

)(
∂n

∂xn
g(x)

)
e−γxdx.

The space Hβ,γ is defined as the space of all f ∈ C∞(R+) satisfying

‖f‖β,γ :=
√
〈f, f〉β,γ <∞.

According to Björk and Svensson [13, Prop. 4.2] the space H (the parameters
β, γ are considered to be fixed in the sequel, whence we suppress the subindices),
equipped with the inner product 〈•, •〉β,γ, is a Hilbert space, and fn → f in H implies



50 Chapter 3. Finite dimensional realizations

that f
(m)
n → f (m) uniformly on compacts for every m ∈ N0, whence in particular

fn(x) → f(x) for each x ∈ R+. It also follows from Björk and Svensson [13, Prop. 4.2]
that the operator ∂/∂x is a smooth vector field on this space. The smoothness of ∂/∂x
is essential in order to apply the results of the preceding chapter, because it appears
in the drift term of the Musiela parametrization. To sum up, so far all requirements
on the space H, imposed in Section 3.2, are fulfilled.

In order to establish Theorem 3.2.5, we have imposed further conditions on the
space. For all f ∈ H and t ∈ (0,∞) it holds Θtf ∈ H, because ‖Θtf‖ ≤ eγt‖f‖, as
one easily verifies by the definition of the norm in H. By Björk and Svensson [13, Prop.
4.2] every f ∈ H can be uniquely extended to a holomorphic function on the complex
plane, which ensures that for each t ∈ (0,∞) there exists a function g ∈ C∞(R+) such
that f = Θtg, but it is not clear whether ‖g‖ <∞.

This hints to the drawback of the space H, namely that it is a very small space. In
particular, it was pointed out by Filipović and Teichmann that it does not include the
forward rate curves generated by the model introduced in Cox, Ingersoll, and Ross [24].
For this reason, Filipović and Teichmann [33] extended the theory to a larger space,
see Section 6 in Björk [8] for an overview of this extension and for further references
on that topic.

This extension, however, is far from trivial to carry out. The technical price, one
has to pay for going into the deep parts of this so-called theory of convenient analysis,
is quite high. Therefore, we follow Björk [8, Sec. 6] who formulated the main result
of Filipović and Teichmann [33] in pedestrian terms for the working mathematician
as follows: ”When you are searching for finite dimensional realizations for equations
of HJM type, you can compute the relevant Lie algebra without worrying about the
space, since Filipović and Teichmann will always provide you with a convenient space
to work in.”

We focus on forward rate models of the form{
df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
(3.3.1)

with coefficients α, σ1, . . . , σn : R+ × R+ ×H → R, where rt denotes the whole curve
rt = f(t, t+ •) of forward rates. Unless stated otherwise, we always make the following
assumptions for the term structure models of the type (3.3.1).

3.3.2 Assumptions.

1. The derivative (β, c,K)D of the n-dimensional driving process X is deterministic.

2. There are z−1 , . . . , z
−
n ∈ (−∞, 0) and z+

1 , . . . , z
+
n ∈ (0,∞) such that for any

t ∈ R+ ∫ t

0

(∫
|x|≤1

|x|2Ks(dx) +

∫
|x|>1

e〈z,x〉Ks(dx)

)
ds <∞, z ∈ Q,
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where Q denotes the set Q := [z−1 , z
+
1 ] × . . . × [z−n , z

+
n ], and furthermore, for all

t ∈ R+ it holds ∫
|x|>1

e〈z,x〉Kt(dx) <∞, z ∈ Q.

3. There are w−
1 ∈ (z−1 , 0), . . . , w−

n ∈ (z−n , 0) and w+
1 ∈ (0, z+

1 ), . . . , w+
n ∈ (0, z+

n )
such that

−
∫ T

t

σ(t, s, r)ds ∈ Q0, (t, T, r) ∈ R+ × R+ ×H.

where Q0 ⊂ Q is defined as Q0 := [w−
1 , w

+
1 ]× . . .× [w−

n , w
+
n ].

The second assumption ensures that the cumulant generating function

Ψ(t, z) := 〈βt, z〉+
1

2
〈z, ctz〉+

∫
Rn

(
e〈z,x〉 − 1− 〈z, x〉

)
Kt(dx)

is definable for all (t, z) ∈ R+ ×Q (see Section 2.2). The third assumption guarantees
that

Ψ

(
t,−

∫ T

t

σ(t, s, r)ds

)
exists for all (t, T, r) ∈ R+ × R+ ×H.

In order to apply Theorem 3.2.4 later, we assume that X is non-degenerate (or
linearly non-degenerate, if we want to apply Theorem 3.2.5, the result for affine real-
izations). As usual, we assume that the model is free of arbitrage (in the sense that P
is a martingale measure). In view of Proposition 2.2.11, we presume that the drift is
given by

α(t, T, r) = −
〈
σ(t, T, r),∇zΨ

(
t,−

∫ T

t

σ(t, s, r)ds

)〉
for t, T ∈ R+ and r ∈ H. In order to incorporate the forward rate model (3.3.1) in
the framework of H-valued equations, we switch to the Musiela parametrization of
forward rates rt(x) = f(t, t+ x), which is, according to Proposition 2.2.12, given by{

drt(x) =
[

∂
∂x
rt(x) + α(t, t+ x, rt)

]
dt+ σ(t, t+ x, rt−)dXt

r0(x) = f ∗(0, x)
. (3.3.2)

We also presume f ∗(0, •) ∈ H, that α(t, t + •, r), σ1(t, t + •, r), . . . , σn(t, t + •, r) ∈ H

for all (t, r) ∈ R+ × H, and that r is a H-valued process with càdlàg paths. Then
(3.3.2) is an equation of the form (3.2.1).
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In view of (3.2.3), (3.2.4) from the previous section, we define the vector fields
α̂, σ̂1, . . . σ̂n on (0,∞)×H as

α̂(t, r) := (1, α̃(t, r)), (3.3.3)

σ̂i(t, r) := (0, σ̃i(t, r)) for i = 1, . . . , n, (3.3.4)

where α̃, σ̃1, . . . , σ̃n : (0,∞)×H → H are defined by

σ̃i(t, x, r) := σi(t, t+ x, r) for i = 1, . . . , n,

α̃(t, x, r) :=
∂

∂x
r −

〈
σ̃(t, x, r),∇zΨ

(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
− 1

2

n∑
i,j=1

cij(t)Frσ̃i(t, r)[σ̃j(t, r)](x).

Provided, all assumptions imposed in Section 3.2 are fulfilled (in particular α̂, σ̂1, . . . σ̂n

must be smooth vector fields on (0,∞)×H), we can apply Theorem 3.2.4 which tells
us that

dim {α̂, σ̂1, . . . , σ̂n}LA <∞ (3.3.5)

is a necessary condition for the existence of a finite dimensional realization of the HJM
interest rate model (3.3.1). If the driving process X is just linearly non-degenerate,
(3.3.5) provides a necessary condition for the existence of an affine realization, see
Theorem 3.2.5.

We have explained in Section 3.1, why, from a geometric point of view, (3.3.5) does,
in general, not provide a sufficient condition for the existence of a finite dimensional
realization. At this point, it is worth to mention the following. In Filipović and
Teichmann [33] and the following papers Filipović and Teichmann [32], Filipović and
Teichmann [34] the extended Lie algebra theory is used in order to analyze a number
of concrete problems concerning forward rate equations driven by Wiener processes.
In particular, Filipović and Teichmann prove the remarkable result that any forward
rate model, admitting a finite dimensional realization, must necessarily have an affine
term structure. It would be nice to have such a result in our setting, where the driving
processes are allowed to have jumps. This would support that in the case of forward
rate models the converse of Theorem 3.2.4 might be true.

In the upcoming sections, we compute the relevant Lie algebras for concrete volatil-
ity structures. As we shall see, for all considered volatilities with finite dimensional
Lie algebra, there exists a finite dimensional realization, and it is indeed affine. For
concrete constructions of finite dimensional realizations, we do not need the technical
assumptions imposed in Section 3.2, for instance that r is a H-valued càdlàg process
or that the driving process X is non-degenerate.
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3.4 Deterministic volatility

We move on to present some applications of the theory developed above. We start with
the simplest case with the volatility σ(t, T ) being deterministic, that is not dependent
on r ∈ H. In this special situation, the fact that the driving processes are allowed to
have jumps, does not change anything essential. The results known for models based
on Wiener processes, see Björk and Svensson [13, Sec. 5], and Björk and Landén [12,
Prop. 4.1] for a concrete realization with stationary volatility, are valid in our setting.
This coincides with the results of Björk and Gombani [11, Sec. 8] where the situation of
deterministic volatility is analyzed for forward rate models with an additional driving
marked point processes.

Before we turn to interest rate models with deterministic volatility structures, we
require an auxiliary result concerning the computation of Lie algebras. Let mappings
D, σ1, . . . , σn : R+ → H be given. Define the vector fields α̂, σ̂1, . . . , σ̂n on (0,∞)×H

by

α̂(t, r) :=

(
1,

∂

∂x
r +D(t)

)
,

σ̂i(t, r) := (0, σi(t)) for i = 1, . . . , n.

We assume that α̂, σ̂1, . . . , σ̂n are smooth vector fields on (0,∞)×H.

3.4.1 Lemma. The Lie algebra generated by α̂, σ̂1, . . . , σ̂n is given by

{α̂, σ̂1, . . . , σ̂n}LA = span
{
α̂,
(
0,
(

∂
∂t
− ∂

∂x

)j
σi

)
| i = 1, . . . , n, j ∈ N0

}
.

Proof. See the appendix.

Now, let a HJM term structure model of the type (3.3.1) with deterministic volatil-
ities σ1, . . . , σn : R+ × R+ → R be given. We assume that the n-dimensional driving
process X is non-degenerate. Recall that Assumptions 3.3.2 always have to be fulfilled.
In view of Proposition 2.2.11, we presume that the drift is given by

α(t, T ) = −
〈
σ(t, T ),∇zΨ

(
t,−

∫ T

t

σ(t, s)ds

)〉
, t, T ∈ R+.

In order to apply Theorem 3.2.4, we have to compute the Lie algebra of the vector fields
α̂, σ̂1, . . . , σ̂n from (3.3.3) and (3.3.4), which are for deterministic volatilities given by

α̂(t, r) = (1, α̃(t, r)),

σ̂i(t, r) = (0, σ̃i(t)) for i = 1, . . . , n,

where α̃ : (0,∞)×H → H and σ̃1, . . . , σ̃n : (0,∞) → H are

σ̃i(t, x) = σi(t, t+ x) for i = 1, . . . , n,

α̃(t, x, r) =
∂

∂x
r −

〈
σ̃(t, x),∇zΨ

(
t,−

∫ x

0

σ̃(t, y)dy

)〉
.
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Note that Frσ̃i(t, r)[σ̃j(t, r)] = 0, because the volatility is deterministic. Assuming
that α̂, σ̂1, . . . , σ̂n are smooth vector fields on (0,∞)×H, the relevant Lie algebra is,
due to Lemma 3.4.1,

{α̂, σ̂1, . . . , σ̂n}LA = span
{
α̂,
(
0,
(

∂
∂t
− ∂

∂x

)j
σ̃i,
)
| i = 1, . . . , n, j ∈ N0

}
.

Provided, the Lie algebra is finite dimensional at some point in (t, r) ∈ (0,∞) × H,
we obtain

dim span
{(

∂
∂t
− ∂

∂x

)j
σ̃i(t, •) | i = 1, . . . , n, j ∈ N0

}
≤ d.

Hence, for every i ∈ {1, . . . , n} there exists an integer mi ∈ {0, . . . , d−1} and a vector
(η(i,0)(t), η(i,1)(t), . . . , η(i,mi+1)(t)) 6= 0 such that

mi+1∑
j=0

η(i,j)(t)

(
∂

∂t
− ∂

∂x

)j

σ̃i(t, x) = 0, x ∈ R+.

Because of the identity ( ∂
∂t
− ∂

∂x
)σi(t, t + x) = ∂

∂t
σi(t, T )

∣∣
T=t+x

, we obtain that the

mappings σi(t, •) : [t,∞) → R, i = 1, . . . , n satisfy the differential equation

mi+1∑
j=0

η(i,j)(t)
∂j

∂tj
σi(t, T ) = 0, T ∈ [t,∞). (3.4.1)

We go on to show that, under mild regularity assumptions, the differential equations
(3.4.1), satisfied for each t ∈ R+, are sufficient for the existence of a finite dimensional
realization for the interest rate model (3.3.1). As we have mentioned at the end of
Section 3.3, we do not need the technical assumptions from Section 3.2, e.g. that r is
a H-valued càdlàg process or that the driving process X is non-degenerate.

3.4.2 Definition. A function f ∈ C∞(R+×R+) is called ∂/∂t-regular if there are an
integer n ∈ N and mappings ηi ∈ C(R+), i = 0, . . . , n such that, for each T ∈ R+, the
mapping f(•, T ) : [0, T ] → R satisfies the differential equation

∂n+1

∂tn+1
f(t, T ) +

n∑
i=0

ηi(t)
∂i

∂ti
f(t, T ) = 0, t ∈ [0, T ].

3.4.3 Remarks.

• In the proof of the upcoming Proposition 3.4.6 and Proposition 3.5.11, we define
the state process Z by means of a stochastic differential equation. For this rea-
son, we demand that the ηi in Definition 3.4.2 are continuous, since then, the
existence of a unique solution Z is ensured.
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• If a function f is ∂/∂t-regular, then it also satisfies a differential equation
of the kind (3.4.1) by setting ηn+1 ≡ 1. Then, for each t ∈ R+ the vector
(η0(t), η1(t), . . . , ηn+1(t)) is non-trivial.

An inherent class of ∂/∂t-regular functions are those of the form f(t, T ) = g(T −
t), where g is a quasi-exponential function Björk and Svensson [13, Sec. 5], that is
span{g(i) | i ∈ N0} has finite dimension. In this case, the ηi can be chosen to be
constant, and are therefore continuous.

3.4.4 Definition. A function f : R+×Rn → R is L-Lipschitz if there exists a function
L ∈ L (the space of left-continuous functions admitting right-hand limits) such that

|f(t, x)− f(t, y)| ≤ L(t)‖x− y‖1, t ∈ R+ and x, y ∈ Rn.

If f, g are L-Lipschitz with functions L,M , then f + g is obviously L-Lipschitz
with function L+M .

For a semimartingale X and a stopping time τ , the process Xτ−, stopped at time
τ−, is defined as

Xτ−
t (ω) := Xt(ω)1[0,τ(ω))(t) +Xτ(ω)−(ω)1[τ(ω),∞)(t).

The space D denotes the space of adapted càdlàg processes.

3.4.5 Lemma. Let f ∈ C(R+ × Rn) be L-Lipschitz. Then, the operator F : Dn → D
defined as F (X)t := f(t,Xt) is functional Lipschitz in the sense of Protter [55, p.
195].

Proof. By hypothesis, it follows immediately that the operator F is process Lipschitz,
i.e. for any X, Y ∈ Dn and for any stopping time τ , the identity Xτ− = Y τ− implies
F (X)τ− = F (Y )τ−, and it holds for each t ∈ R+

‖F (X)t − F (Y )t‖ ≤ L(t)‖Xt − Yt‖.

Therefore, see Protter [55, page 195], the operator F is functional Lipschitz.

3.4.6 Proposition. Assume σ1, . . . , σn are ∂/∂t-regular. Then, the interest rate model
(3.3.1) admits an affine realization in the sense of Definition 2.2.3.

Proof. By hypothesis, there exist m1, . . . ,mn ∈ N0 and η(i,j) ∈ C(R+) for (i, j) ∈
V := {(i, j) | i = 1, . . . , n, j = 0, . . . ,mi} such that, for all T ∈ R+, the mappings
σi(•, T ) : [0, T ] → R, i = 1, . . . , n satisfy the differential equations

∂mi+1

∂tmi+1
σi(t, T ) +

mi∑
j=0

η(i,j)(t)
∂j

∂tj
σi(t, T ) = 0, t ∈ [0, T ]. (3.4.2)
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Note that d := |V | = n+
∑n

j=1mj. Define the function F : R+ × R+ × Rd → R by

F (t, T, z(i,j) | (i, j) ∈ V ) := f ∗(0, T ) +

∫ t

0

α(s, T )ds+
n∑

i=1

mi∑
j=0

∂j

∂tj
σi(t, T )z(i,j).

Consider the following d-dimensional stochastic differential equation (3.4.3) for the
state process Z = (Z(i,j) | (i, j) ∈ V ).

dZ(i,0)(t) = η(i,0)(t)Z(i,mi)(t)dt+ dX i
t , i = 1, . . . , n

dZ(i,j)(t) =
(
η(i,j)(t)Z(i,mi)(t)− Z(i,j−1)(t)

)
dt, i = 1, . . . , n, j = 1, . . . ,mi

Z(0) = 0

.

(3.4.3)

Note that the coefficients appearing in the stochastic differential equation (3.4.3) are
(up to summation) given by operators G : Dd → D of the form G(Z)t = g(t)Z(i,j)(t)
for some (i, j) ∈ V and a continuous function g. Using Lemma 3.4.5, the operators are
functional Lipschitz. According to Protter [55, Thm V.7], the stochastic differential
equation (3.4.3) has a unique solution Z, which is a semimartingale. By Itô’s formula
Jacod and Shiryaev [42, Thm I.4.57] we obtain for fixed T ∈ R+

dF (t, T, Zt) =
∂

∂t
F (t, T, Zt)dt+

n∑
i=1

mi∑
j=0

∂

∂z(i,j)

F (t, T, Zt−)dZ(i,j)(t)

= α(t, T )dt+
n∑

i=1

mi∑
j=0

∂j+1

∂tj+1
σi(t, T )Z(i,j)(t)dt+

n∑
i=1

mi∑
j=0

∂j

∂tj
σi(t, T )dZ(i,j)(t).

Inserting the dynamics (3.4.3) of Z, we obtain

dF (t, T, Zt) = α(t, T )dt+
n∑

i=1

mi∑
j=0

∂j+1

∂tj+1
σi(t, T )Z(i,j)(t)dt

+
n∑

i=1

(
η(i,0)(t)σi(t, T )Z(i,mi)(t)dt+ σi(t, T )dX i

t

)
+

n∑
i=1

mi∑
j=1

∂j

∂tj
σi(t, T )

(
η(i,j)(t)Z(i,mi)(t)− Z(i,j−1)(t)

)
dt.

Because of the differential equations (3.4.2) it holds for each i = 1, . . . , n

mi∑
j=0

(
∂j+1

∂tj+1
σi(t, T )Z(i,j)(t)

)
+ η(i,0)(t)σi(t, T )Z(i,mi)(t)

+

mi∑
j=1

∂j

∂tj
σi(t, T )

(
η(i,j)(t)Z(i,mi)(t)− Z(i,j−1)(t)

)
= 0,
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whence we get

dF (t, T, Zt) = α(t, T )dt+ σ(t, T )dXt.

Taking into account Z0 = 0, which implies F (0, •, Z0) = f ∗(0, •), we have proven that
the pair (F,Z) provides a d+ 1-dimensional affine realization.

Note that the mapping F of the realization (F,Z) is affine. Referring to Section
3.1, this explains, geometrically, why the appearance of jumps does not matter in the
present situation.

3.5 Deterministic direction volatility

We go on to study the more interesting case of deterministic direction volatility
σ(t, T, r) = ϕ(t, r)λ(t, T ). In the time-homogeneous case σ(t, x) = ϕ(r)λ(x), the
vector field has constant direction, but varying length, which explains the term ”deter-
ministic direction volatility”. Unlike the results of the preceding section, the occurrence
of jumps now gives rise to another behavior concerning finite dimensional realizations.
Consequently, our results differ from those in Björk and Svensson [13, Sec. 6], which
are obtained for driving Wiener processes. The computation of Lie algebras, carried
out below, leads us to prove the existence of local approximative realizations.

We start with the study of the one-dimensional case, i.e. let the driving process
X with deterministic derivative (β, c,K)D for the interest rate model (3.3.1) be one-
dimensional, and non-degenerate. As announced, the model is supposed to be of
deterministic direction volatility type σ(t, T, r) = ϕ(t, r)λ(t, T ) with ϕ : R+ ×H → R
and λ : R+ × R+ → R. With regard to Proposition 2.2.11, we presume that the drift
is given by

α(t, T, r) = −σ(t, T, r)
∂

∂z
Ψ

(
t,−

∫ T

t

σ(t, s, r)ds

)
for all t, T ∈ R+ and r ∈ H. We set for each t, x ∈ R+

λ̃(t, x) := λ(t, t+ x),

D̃(t, x) :=

∫ x

0

λ̃(t, y)dy.

In order to check the existence of a finite dimensional realization, we have to consider
the vector fields α̂, σ̂ from (3.3.3) and (3.3.4), which are in this case

α̂(t, r) = (1, α̃(t, r)),

σ̂(t, r) = (0, σ̃(t, r)),
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where α̃, σ̃ : (0,∞)×H → H are given by

σ̃(t, x, r) = ϕ(t, r)λ̃(t, x),

α̃(t, x, r) =
∂

∂x
r − ϕ(t, r)λ̃(t, x)

∂

∂z
Ψ
(
t,−ϕ(t, r)D̃(t, x)

)
− 1

2
c(t)ϕ(t, r)Frϕ(t, r)[λ̃(t)]λ̃(t, x),

because Frσ̃(t, r)[σ̃(t, r)] = ϕ(t, r)Frϕ(t, r)[λ̃(t)]λ̃(t). As usual, we assume that these
are smooth vector fields on (0,∞) ×H. If the driving process X has discontinuities,
not all of the functions Ψ(t, •) are polynomials (see Lemma 2.2.7), which makes the
structure of the Lie algebra {α̂, σ̂}LA much more complicated. However, at least each
Ψ(t, •) is holomorphic (see Section 2.2), so we can use the power series representations

∂

∂z
Ψ(t, z) =

∞∑
i=0

ai(t)z
i, (3.5.1)

valid on any open interval (−M,M) ⊂ Q, with ai : R+ → R, i ∈ N0.

At this point, we assume that for some M > 0 it holds Q0 ⊂ (−M,M) ⊂ Q, where
Q and Q0 denote the compact sets from Assumptions 3.3.2. This ensures that the
power series representation (3.5.1) is valid on Q0.

Our idea is as follows. Consider the following interest rate models fm(t, T ) for
m ∈ N {

dfm(t, T ) = αm(t, T, rt−)dt+ σ(t, T, rt−)dXt

fm(0, T ) = f ∗(0, T )
, (3.5.2)

where the only differences are the drift terms αm, which we define as

αm(t, T, r) := −σ(t, T, r)
∂

∂z
Ψm

(
t,−

∫ T

t

σ(t, s, r)ds

)
for t, T ∈ R+ and r ∈ H, where the Ψm : R+×R → R for m ∈ N are chosen such that
Ψm(t, 0) = Ψ(t, 0) = a0(t), t ∈ R+ and

∂

∂z
Ψm(t, z) =

m∑
i=0

ai(t)z
i, (t, z) ∈ R+ × R.

Note that Ψm → Ψ as m → ∞, whence limm→∞ αm = α. Introduce the new vector
fields α̂m, m ∈ N on (0,∞)×H by

α̂m(t, r) := (1, α̃m(t, r)),
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where the α̃m : (0,∞)×H → H are given by

α̃m(t, x, r) :=
∂

∂x
r − ϕ(t, r)λ̃(t, x)

∂

∂z
Ψm(t,−ϕ(t, r)D̃(t, x))

− 1

2
c(t)ϕ(t, r)Frϕ(t, r)[λ̃(t)]λ̃(t, x).

We assume that these are smooth vector fields on (0,∞) × H. The computation of
the Lie algebras {α̂m, σ̂}LA can be accomplished. We set for m ∈ N

Jm := {j ∈ {0, 1, . . . ,m} | aj(t) 6= 0 for some t ∈ (0,∞)}.

3.5.1 Lemma. Assume that for all (t, r) ∈ (0,∞)×H

ϕ(t, r) 6= 0,

det
(
aj(t)Fi+1

r (ϕj+1(t, r))[λ̃(t); . . . ; λ̃(t)]
)

i=1,...,|Jm|
j∈Jm

6= 0, m ∈ N.

Then it holds for each m ∈ N

{α̂m, σ̂}LA = span{(1, ∂
∂x
r), (0, ( ∂

∂t
− ∂

∂x
)i(λ̃D̃j)) | i ∈ N0, j ∈ Jm ∪ {0}}.

Proof. See the appendix.

3.5.2 Remarks.

• Note that the Fi+1
r (ϕj+1(t, r))[λ̃(t); . . . ; λ̃(t)] denote the i + 1 - th order Fréchet

derivative of ϕj+1 with respect to r, operating on the i + 1-dimensional vector
with each entry λ̃(t).

• We need the condition ϕ(t, r) 6= 0 for the proof. It is also assumed in Björk and
Svensson [13, Sec. 6].

• If α shall describe the drift of an interest rate model driven by a standard Wiener
process, one has ∂

∂z
Ψ(t, z) = z, and the non-singularity condition of the matrix

becomes

F2
rΦ(t, r)[λ̃(t); λ̃(t)] 6= 0,

where Φ(t, r) := ϕ2(t, r), and is thus consistent with Björk and Svensson [13].
In this case, the Lie algebra is given by

{α̂, σ̂}LA = span{(1, ∂
∂x
r), (0, ( ∂

∂t
− ∂

∂x
)iλ̃), (0, ( ∂

∂t
− ∂

∂x
)i(λ̃D̃)) | i ∈ N0}.
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With regard to Lemma 3.5.1, it is reasonable to assume that all λDj, j ∈ N0

are ∂/∂t-regular, where D(t, T ) :=
∫ T

t
λ(t, s)ds (recall the treatment of deterministic

volatility in Section 3.4, where the relevant Lie algebra was of the same structural
type). This looks like a very restrictive condition at first glance, but is for instance
satisfied if λ is stationary, i.e. λ(t, T ) = λ̃(T − t), and λ̃ is quasi-exponential, because
products and primitives of quasi-exponential functions are again quasi-exponential
Björk and Svensson [13, Lemma 5.1].

In this case, the Lie algebras {α̂m, σ̂}LA, m ∈ N are, according to Lemma 3.5.1,
finite dimensional, and their dimension grows with increasing m. This suggests, but
does not prove, that no finite dimensional realization for the term structure model ex-
ists if the driving processes X has discontinuous paths (by Lemma 2.2.7, the process X
has continuous paths if and only if each Ψ(t, •) is a polynomial), and that the intrinsic
reason is the infinite dimensional structure of the Ψ(t, •), which are not polynomials.
A later result, namely Theorem 4.4.1, which is proven in the framework of benchmark
realizations, supports this conjecture. Nevertheless, Lemma 3.5.1 also suggests that
there might exist a sequence of finite dimensional systems (of increasing dimension)
converging to the forward rate model, and we arrive at the following Definition 3.5.3.
We will establish such a convergence in a local sense. Recall that for a semimartingale
X and a stopping time τ , the process Xτ−, stopped at time τ−, is defined as

Xτ−
t (ω) := Xt(ω)1[0,τ(ω))(t) +Xτ(ω)−(ω)1[τ(ω),∞)(t).

For a process X ∈ D (the space of adapted càdlàg processes) and 1 ≤ p ≤ ∞ we define

‖X‖Sp :=

∥∥∥∥ sup
t∈R+

|Xt|
∥∥∥∥

Lp

,

which is the Sp-norm defined in Protter [55, p. 188].
We say that a sequence (Xm)m∈N of processes in D converges to X ∈ D in the

Sp-sense, denoted by Xm
Sp

→ X, if ‖Xm −X‖Sp → 0 as m→∞.

3.5.3 Definition. A term structure model f(t, T ) has a local approximative realization
if there exist a stopping time τ , which is P−a.s. positive, and a sequence (Gm, Zm)m∈N
of finite dimensional semimartingales Zm and mappings Gm : R+ × R+ × Rdm → R,
where dm denotes the dimension of Zm, such that for all 1 ≤ p ≤ ∞ and x ∈ R+

Gm(•, x, Zm)τ− Sp

→ r(x)τ− as m→∞.

At this point, we turn to term structure models of the form (3.3.1) that are slightly
more general. Namely, now the non-degenerate driving process X with deterministic
derivative (β, c,K)D may be n-dimensional for some n ∈ N, and the volatility is of the
form

σi(t, T, r) =

mi∑
j=1

ϕ(i,j)(t, r)λ(i,j)(t, T ), i = 1, . . . , n (3.5.3)
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withm1, . . . ,mn ∈ N, ϕ(i,j) : R+×H → R and λ(i,j) : R+×R+ → R for i = 1, . . . , n and
j = 1, . . . ,mi. Volatility structures of this type with finitely many driving standard
Wiener processes have been studied in Björk and Landén [12, Sec. 6.1]. With regard
to Proposition 2.2.11, we presume that the drift is given by

α(t, T, r) = −
〈
σ(t, T, r),∇zΨ

(
t,−

∫ T

t

σ(t, s, r)ds

)〉
for all t, T ∈ R+ and r ∈ H. In view of Definition 3.5.3 we turn our attention to
interest rate models{

df(t, T ) = α∗(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
, (3.5.4)

which are, with exception of the drift term, like the models introduced above. We
define the drift as

α∗(t, T, r) := −
〈
σ(t, T, r),∇zΨ

∗
(
t,−

∫ T

t

σ(t, s, r)ds

)〉
for t, T ∈ R+ and r ∈ H, where Ψ∗ : R+ × Rn → R is of the form

Ψ∗(t, z) =
e∑

u=1

aku(t)z
k1

u
1 · · · zkn

u
n (3.5.5)

with e ∈ N, k1, . . . , ke ∈ Nn
0 and ak1 , . . . , ake : R+ → R. Set for i = 1, . . . , n and

j = 1, . . . ,mi

λ̃(i,j)(t, x) := λ(i,j)(t, t+ x),

D̃(i,j)(t, x) :=

∫ x

0

λ̃(i,j)(t, y)dy.

In order to check the existence of a finite dimensional realization for the modified term
structure model (3.5.4), consider the vector fields α̂∗, σ̂1, . . . , σ̂n, defined in (3.3.3) and
(3.3.4), which are in the present situation

α̂∗(t, r) = (1, α̃∗(t, r)),

σ̂i(t, r) = (0, σ̃i(t, r)), i = 1, . . . , n

where α̃∗, σ̃1, . . . , σ̃n : (0,∞)×H → H are given by

σ̃i(t, x, r) =

mi∑
j=1

ϕ(i,j)(t, r)λ̃(i,j)(t, x), i = 1, . . . , n

α̃∗(t, x, r) =
∂

∂x
r −

〈
σ̃(t, x, r),∇zΨ

∗
(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
− 1

2

n∑
i=1

n∑
j=1

mi∑
k=1

mj∑
l=1

cij(t)ϕ(j,l)(t, r)Frϕ(i,k)(t, r)[λ̃(j,l)(t)]λ̃(i,k)(t, x),
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because

Frσ̃i(t, r)[σ̃j(t, r)] =

mi∑
k=1

mj∑
l=1

ϕ(j,l)(t, r)Frϕ(i,k)(t, r)[λ̃(j,l)(t)]λ̃(i,k)(t).

Let V := {(v, w) | v = 1, . . . , n, w = 1, . . . ,mv}, and denote by U the set of all
(u, v, w, l), where v = 1, . . . , n, w = 1, . . . ,mv, u = 1, . . . , e with kv

u 6= 0, and l(i,j) ∈ N0,
i = 1, . . . , n, j = 1, . . . ,mi such that

mi∑
j=1

l(i,j) =

{
ki

u, i 6= v

ki
u − 1, i = v

.

For each (u, v, w, l) ∈ U we define

ϕ(u,v,w,l)(t, r) := −ϕ(v,w)(t, r)
n∏

i=1

mi∏
j=1

(
−ϕ(i,j)(t, r)

)l(i,j) ,
λ̃(u,v,w,l)(t, x) := λ̃(v,w)(t, x)

n∏
i=1

mi∏
j=1

(
D̃(i,j)(t, x)

)l(i,j)
.

3.5.4 Lemma. For all (t, r) ∈ (0,∞)×H and x ∈ R+ the identity

−
〈
σ̃(t, x, r),∇zΨ

∗
(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
=
∑
u∈U

bu(t)ϕu(t, r)λ̃u(t, x)

is valid, where the (bu)u∈U are given by

b(u,v,w,l)(t) := aku(t)

(
n∏

i=1

ki
u!

l(i,1)! · · · l(i,mi)!

)
.

Proof. See the appendix.

As usual, we assume that the vector fields α̂∗, σ̂1, . . . , σ̂n are smooth vector fields on
(0,∞)×H. In this setting, the structure of the Lie algebra becomes more complicated
than in Lemma 3.5.1, and we restrict ourselves to find spaces that include the Lie
algebra.

3.5.5 Lemma. Assume for each i ∈ {1, . . . , n} there exists an index j ∈ {1, . . . ,mi}
such that

ϕ(i,j)(t, r) 6= 0 for all (t, r) ∈ (0,∞)×H.

Then, the following inclusion is valid.

{α̂∗, σ̂1, . . . , σ̂n}LA ⊂ span{(1, ∂
∂x
r), (0, ( ∂

∂t
− ∂

∂x
)jλ̃v) | j ∈ N0, v ∈ V ∪ U}.
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Proof. See the appendix.

By Lemma 3.5.5, the necessary condition for the existence of a finite dimensional
realization is fulfilled, provided the λv, v ∈ V ∪ U , where the λu, u ∈ U are defined
later in (3.5.8), are ∂/∂t-regular. As we shall see next, in this case there exists in fact a
finite dimensional realization. For technical reasons, we confine ourselves to volatility
structures which may depend on finitely many points of the forward rate curve rt.

For the rest of this section, we choose d ∈ N and benchmark points 0 ≤ x1 <
. . . < xd. The process r denotes rt = (f(t, t + x1), . . . , f(t, t + xd)). Since we now
intend to give concrete realizations, the technical assumptions imposed in Section 3.2
are no longer required, in particular the driving process X does not need to be non-
degenerate.

Unless stated otherwise, the interest rate models appearing in the rest of this
section have to satisfy the following.

3.5.6 Assumptions.

1. The derivative (β, c,K)D of the n-dimensional driving process X is deterministic.

2. There are z−1 , . . . , z
−
n ∈ (−∞, 0) and z+

1 , . . . , z
+
n ∈ (0,∞) such that for any

t ∈ R+ ∫ t

0

(∫
|x|≤1

|x|2Ks(dx) +

∫
|x|>1

e〈z,x〉Ks(dx)

)
ds <∞, z ∈ Q,

where Q denotes the set Q := [z−1 , z
+
1 ] × . . . × [z−n , z

+
n ], and furthermore, for all

t ∈ R+ it holds ∫
|x|>1

e〈z,x〉Kt(dx) <∞, z ∈ Q.

3. There are w−
1 ∈ (z−1 , 0), . . . , w−

n ∈ (z−n , 0) and w+
1 ∈ (0, z+

1 ), . . . , w+
n ∈ (0, z+

n )
such that

−
∫ T

t

σ(t, s, r)ds ∈ Q0, (t, T, r) ∈ R+ × R+ × Rd.

where Q0 ⊂ Q is defined as Q0 := [w−
1 , w

+
1 ]× . . .× [w−

n , w
+
n ].

The second assumption ensures that the cumulant generating function

Ψ(t, z) := 〈βt, z〉+
1

2
〈z, ctz〉+

∫
Rn

(
e〈z,x〉 − 1− 〈z, x〉

)
Kt(dx)
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is definable for all (t, z) ∈ R+ ×Q (see Section 2.2). The third assumption guarantees
that

Ψ

(
t,−

∫ T

t

σ(t, s, r)ds

)
exists for all (t, T, r) ∈ R+×R+×Rd. The term structure models, which we will study,
are of the type {

df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
, (3.5.6)

with f ∗(0, •) ∈ C(R+), and where the volatility structure is assumed to be of the form

σi(t, T, r) =

mi∑
j=1

ϕ(i,j)(t, r)λ(i,j)(t, T ), i = 1, . . . , n

with m1, . . . ,mn ∈ N, ϕ(i,j) ∈ C(R+ × Rd) and λ(i,j) ∈ C(R+ × R+) for i = 1, . . . , n
and j = 1, . . . ,mi. We assume that P is a martingale measure, whence, in view of
Proposition 2.2.11, we demand the drift is equal to

α(t, T, r) = −
〈
σ(t, T, r),∇zΨ

(
t,−

∫ T

t

σ(t, s, r)ds

)〉
for t, T ∈ R+ and r ∈ Rd. With regard to Lemma 3.5.5, we will, beside these arbitrage
free forward rate models, also take into account models of the form{

df(t, T ) = α∗(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
, (3.5.7)

where the only difference to the model (3.5.6) is the drift α∗, which is assumed to be
given by

α∗(t, T, r) := −
〈
σ(t, T, r),∇zΨ

∗
(
t,−

∫ T

t

σ(t, s, r)ds

)〉
for t, T ∈ R+ and r ∈ Rd, where Ψ∗ : R+ × Rn → R is of the form

Ψ∗(t, z) =
e∑

u=1

aku(t)z
k1

u
1 · · · zkn

u
n

with e ∈ N, k1, . . . , ke ∈ Nn
0 and ak1 , . . . , akd

: R+ → R. In Proposition 3.5.11 we need
that Ψ∗ is continuous, it is therefore wise to assume that ak1 , . . . , akd

∈ C(R+).
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For both types of term structure models, we introduce the following notation. We
set for i = 1, . . . , n and j = 1, . . . ,mi

D(i,j)(t, T ) :=

∫ T

t

λ(i,j)(t, s)ds.

Let V := {(v, w) | v = 1, . . . , n, w = 1, . . . ,mv}, and denote by U the set of all
(u, v, w, l), where v = 1, . . . , n, w = 1, . . . ,mv, u = 1, . . . , e with kv

u 6= 0, and l(i,j) ∈ N0,
i = 1, . . . , n, j = 1, . . . ,mi such that

mi∑
j=1

l(i,j) =

{
ki

u, i 6= v

ki
u − 1, i = v

.

For (u, v, w, l) ∈ U we define

ϕ(u,v,w,l)(t, r) := −ϕ(v,w)(t, r)
n∏

i=1

mi∏
j=1

(
−ϕ(i,j)(t, r)

)l(i,j) ,
λ(u,v,w,l)(t, T ) := λ(v,w)(t, T )

n∏
i=1

mi∏
j=1

(
D(i,j)(t, T )

)l(i,j) . (3.5.8)

3.5.7 Lemma. For all t, T ∈ R+ and r ∈ Rd the identity

α∗(t, T, r) =
∑
u∈U

bu(t)ϕu(t, r)λu(t, T )

is valid, where the (bu)u∈U are given by

b(u,v,w,l)(t) := aku(t)

(
n∏

i=1

ki
u!

li1! · · · limi
!

)
.

Proof. This is proven exactly as Lemma 3.5.4.

3.5.8 Definition. The space CL
b (R+×Rd) denotes the space of all f ∈ C0,1(R+×Rd)

for which there is a function L ∈ L such that for each t ∈ R+

sup
x∈Rd

|f(t, x)| ≤ L(t),

sup
x∈Rd

∣∣∣∣ ∂∂xi

f(t, x)

∣∣∣∣ ≤ L(t) for all i = 1, . . . , d.

Note that the product of two functions f, g ∈ CL
b (R+ × Rd) belongs again to

CL
b (R+ × Rd), because

∣∣∣ ∂
∂xi

(fg)(t, x)
∣∣∣ ≤ ∣∣∣f(t, x) ∂

∂xi
g(t, x)

∣∣∣+ ∣∣∣g(t, x) ∂
∂xi
f(t, x)

∣∣∣.
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3.5.9 Lemma. Assume f ∈ CL
b (R+ ×Rd). Then, for every T > 0 there is a constant

L > 0 such that

sup
(t,x)∈[0,T ]×Rd

|f(t, x)| ≤ L,

sup
(t,x)∈[0,T ]×Rd

∣∣∣∣ ∂∂xi

f(t, x)

∣∣∣∣ ≤ L for all i = 1, . . . , d.

Proof. See the appendix

3.5.10 Lemma. Let G ⊂ Rn be an open, convex set, f ∈ C1(G), and L > 0 be a
constant. Then, there is equivalence between

1. |f(x)− f(y)| ≤ L‖x− y‖1 for all x, y ∈ G.

2. supx∈G | ∂
∂xi
f(x)| ≤ L for each i = 1, . . . , n.

Proof. See the appendix

3.5.11 Proposition. Assume Ψ∗ ∈ C(R+ × Rn), that all λv, v ∈ V ∪ U are ∂/∂t-
regular, and that ϕv ∈ CL

b (R+ × Rd) for all v ∈ V . Then, the forward rate model
(3.5.7) admits an affine realization in the sense of Definition 2.2.3.

Proof. By the assumed ∂/∂t-regularity, there exist, for each v ∈ V ∪U , integers qv ∈ N0

and functions η(v,k) ∈ C(R+), k = 0, . . . , qv such that, for each T ∈ R+, the following
differential equations are valid.

∂qv+1

∂tqv+1
λv(t, T ) +

qv∑
k=0

η(v,k)(t)
∂k

∂tk
λv(t, T ) = 0, t ∈ [0, T ]. (3.5.9)

Let W := {(v, k) | v ∈ V ∪ U, k = 0, . . . , qv}. We define the mapping F : R+ × R+ ×
R|W | → R by

F (t, T, z(v,k) | v ∈ V ∪ U, k = 0, . . . , qv) := f ∗(0, T ) +
∑

v∈V ∪U

qv∑
k=0

∂k

∂tk
λv(t, T )z(v,k).

In order to define the state process Z = (Z(v,k) | v ∈ V ∪U, k = 0, . . . , qv), consider the
following |W |-dimensional stochastic differential equation (3.5.10), where the indices
v = (v1, v2) take all values from V , and the u take all values from U , and F̃ denotes
F̃ (t, z) := (F (t, t+ x1, z), . . . , F (t, t+ xd, z)) for (t, z) ∈ R+ × R|W |.

dZ(v,0)(t) = η(v,0)(t)Z(v,qv)(t)dt+ ϕv(t, F̃ (t, Zt−))dXv1
t

dZ(v,k)(t) =
[
η(v,k)(t)Z(v,qv)(t)− Z(v,k−1)(t)

]
dt, k = 1, . . . , qv

dZ(u,0)(t) =
[
η(u,0)(t)Z(u,qu)(t) + bu(t)ϕu(t, F̃ (t, Zt−))

]
dt

dZ(u,k)(t) =
[
η(u,k)(t)Z(u,qu)(t)− Z(u,k−1)(t)

]
dt, k = 1, . . . , qu

Z(0) = 0

. (3.5.10)
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We wish to show that the operators appearing in the stochastic differential equation
(3.5.10) for Z are functional Lipschitz. Those operators G : D|W | → D in (3.5.10)
on which we cannot directly apply Lemma 3.4.5, are (up to summation) of the form
G(Z)t = g(t, Zt) with a function g ∈ C(R+ × R|W |) of the type

g(t, z) = f(t)ψ(t, F̃ (t, z)),

where f is continuous (note that Ψ∗ is continuous in t), and where ψ is, since all ϕv,
v ∈ V ∪ U belong to CL

b (R+ × Rd) (note that this space is closed under products),
L-Lipschitz with a function L ∈ L (apply Lemma 3.5.10). Thus it holds, by the
definition of F , for all t ∈ R+ and z1, z2 ∈ R|W |

|g(t, z1)− g(t, z2)| ≤ L(t)|f(t)|
d∑

i=1

∑
v∈V ∪U

qv∑
k=0

∣∣∣∣ ∂k

∂tk
λv(t, T )

∣∣∣∣
T=t+xi

∣∣∣∣ ‖z1 − z2‖1,

that is, g is also L-Lipschitz. According to Lemma 3.4.5, the operator G is functional
Lipschitz. By Protter [55, Thm. V.7] the stochastic differential equation (3.5.10) has
a unique solution Z, which is a semimartingale. By Itô’s formula Jacod and Shiryaev
[42, Thm. I.4.57] we obtain for fixed T ∈ R+ the relation

dF (t, T, Zt) =
∑

v∈V ∪U

qv∑
k=0

∂k+1

∂tk+1
λv(t, T )Z(v,k)(t)dt

+
∑

v∈V ∪U

qv∑
k=0

∂k

∂tk
λv(t, T )dZ(v,k)(t).

Incorporating the dynamics (3.5.10) we get

dF (t, T, Zt) =
∑

v∈V ∪U

qv∑
k=0

∂k+1

∂tk+1
λv(t, T )Z(v,k)(t)dt

+
∑
v∈V

λv(t, T )
(
η(v,0)(t)Z(v,qv)(t)dt+ ϕv(t, F̃ (t, Zt−))dXv1

t

)
+
∑
v∈V

qv∑
k=1

∂k

∂tk
λv(t, T )

(
η(v,k)(t)Z(v,qv)(t)− Z(v,k−1)(t)

)
dt

+
∑
u∈U

λu(t, T )
(
η(u,0)(t)Z(u,qu)(t) + bu(t)ϕu(t, F̃ (t, Zt−))

)
dt

+
∑
u∈U

qu∑
k=1

∂k

∂tk
λu(t, T )

(
η(u,k)(t)Z(u,qu)(t)− Z(u,k−1)(t)

)
dt.
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By the differential equations (3.5.9) it holds for every v ∈ V ∪ U
qv∑

k=0

∂k+1

∂tk+1
λv(t, T )Z(v,k)(t) + η(v,0)(t)λv(t, T )Z(v,qv)(t)

+

qv∑
k=1

∂k

∂tk
λv(t, T )

(
η(v,k)(t)Z(v,qv)(t)− Z(v,k−1)(t)

)
= 0.

Taking into account the formula for α∗ from Lemma 3.5.7, we arrive at

dF (t, T, Zt) = α∗(t, T, F̃ (t, Zt−))dt+ σ(t, T, F̃ (t, Zt−))dXt.

Since Z0 = 0, which implies F (0, •, Z0) = f ∗(0, •), we have shown that the pair (F,Z)
provides an affine realization.

We observe that the constructed realization is affine, like in the case of deterministic
volatility. Proposition 3.5.11 can immediately be applied to term structure models
driven by continuous local martingales.

3.5.12 Corollary. Assume X has a deterministic derivative (0, c, 0)D, and the fol-
lowing conditions are fulfilled.

• c ∈ C(R+,Rn×n);

• Each λ(i,j), i = 1, . . . , n, j = 1, . . . ,mi is ∂/∂t-regular;

• Each λ(i,j)D(k,l), i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . , n, l = 1, . . . ,mk is
∂/∂t-regular;

• It holds ϕ(i,j) ∈ CL
b (R+ × Rd) for all i = 1, . . . , n, j = 1, . . . ,mi.

Then, the term structure model (3.5.6) has a finite dimensional realization.

Proof. By hypothesis, Ψ is given by Ψ(t, z) = 1
2
〈z, c(t)z〉 for (t, z) ∈ R+ × Rn, and

it is continuous. One also verifies that the required ∂/∂t-regularity conditions of
Proposition 3.5.11 are satisfied, which yields the existence of a finite dimensional
realization.

By MD(Rn×n) we denote the set of all n× n-matrices which are diagonal.

3.5.13 Corollary. Assume X has a deterministic derivative (0, c, 0)D, and the fol-
lowing conditions are satisfied.

• c ∈ C(R+,Rn×n) and c(t) ∈ MD(Rn×n) for all t ∈ R+;

• Each λ(i,j), i = 1, . . . , n, j = 1, . . . ,mi is ∂/∂t-regular;

• Each λ(i,j)D(i,k), i = 1, . . . , n, j = 1, . . . ,mi, k = 1, . . . ,mi is ∂/∂t-regular;
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• It holds ϕ(i,j) ∈ CL
b (R+ × Rd) for all i = 1, . . . , n, j = 1, . . . ,mi.

Then, the forward rate model (3.5.6) has a finite dimensional realization.

Proof. By, hypothesis, Ψ is given by Ψ(t, z) = 1
2

∑n
i=1 cii(t)z

2
i for (t, z) ∈ R+ × Rn,

and it is continuous. One also verifies that the required ∂/∂t-regularity conditions
of Proposition 3.5.11 are satisfied, which yields the existence of a finite dimensional
realization.

3.5.14 Remark. The assumptions in Corollary 3.5.13 on the driving process are in
particular satisfied if X is a standard Wiener process. Note that the ∂/∂t-regularity
conditions correspond to condition (29) in Björk and Landén [12].

So far, Proposition 3.5.11 could be applied to term structure models driven by
continuous local martingales. For the general case, where we wish to find a local
approximative realization, we need further results.

Recall that for a semimartingaleX and a stopping time τ , the processXτ−, stopped
at time τ−, is defined as

Xτ−
t (ω) := Xt(ω)1[0,τ(ω))(t) +Xτ(ω)−(ω)1[τ(ω),∞)(t).

Then, each trajectory t 7→ Xτ−
t (ω) is continuous at time t = τ(ω), and constant

thereafter.

3.5.15 Lemma. Let A ∈ V, r be a d-dimensional semimartingale, τ be a stopping
time and f ∈ C(R+ × R+ × Rd). Then the processes X and Y , defined as

Xt :=

(∫ t

0

f(s, t, rs−)dAs

)τ−

,

Yt :=

∫ t

0

f(s, t ∧ τ, rτ−
s− ))dAτ−

s ,

coincide (up to indistinguishability).

Proof. Let ω ∈ Ω be such that τ(ω) ∈ (0,∞), otherwise the assertion is trivial. Define
the signed measures µω, µ

τ−
ω on ((0,∞),B(0,∞)) by

µω((a, b]) := Ab(ω)− Aa(ω),

µτ−
ω ((a, b]) := Aτ−

b (ω)− Aτ−
a (ω), (0 ≤ a ≤ b).

We observe that

Xt(ω) = Yt(ω) =

∫ t

0

f(s, t, rs−(ω))µω(ds) for t < τ(ω). (3.5.11)
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Since f is continuous, (s, t) 7→ f(s, t, rs−(ω)) is bounded on [0, τ(ω)]× [0, τ(ω)]. Hence,
applying Lebesgue’s dominated convergence theorem yields

lim
t↑τ(ω)

Xt(ω) = lim
t↑τ(ω)

∫
f(s, t, rs−(ω))1(0,t](s)µω(ds)

=

∫
f(s, τ(ω), rs−(ω))1(0,τ(ω))(s)µω(ds). (3.5.12)

Note that µτ− � µ with Radon-Nikodym derivative 1(0,τ(ω)). Therefore, we obtain for
t ≥ τ(ω)

Yt(ω) =

∫
f(s, τ(ω), rτ−

s− (ω)))1(0,t](s)µ
τ−
ω (ds)

=

∫
f(s, τ(ω), rs−(ω)))1(0,τ(ω))(s)µω(ds). (3.5.13)

Since, t 7→ Xt(ω) is continuous at t = τ(ω), and constant thereafter, the identities
(3.5.12) and (3.5.13) imply

Xt(ω) = Yt(ω) for t ≥ τ(ω). (3.5.14)

The assertion of the lemma follows from combining (3.5.11) and (3.5.14).

We also need the notion of Sp-convergence in the multidimensional case. Recall
that D denotes the space of adapted càdlàg processes. For a process X ∈ Dd and
1 ≤ p ≤ ∞ we define

‖X‖Sp :=

∥∥∥∥ sup
t∈R+

‖Xt‖1

∥∥∥∥
Lp

.

One verifies that ‖•‖Sp is a norm on the space Dd. In the one-dimensional case, it is
the Sp-norm defined in Protter [55, p. 188].

We say that a sequence (Xm)m∈N of processes in Dd converges to X ∈ Dd in the

Sp-sense, denoted by Xm
Sp

→ X, if ‖Xm −X‖Sp → 0 as m→∞.

Remember that we have fixed d benchmark points 0 ≤ x1 < . . . < xd, and that
r denotes rt = (f(t, t + x1), . . . , f(t, t + xd)). This also concerns the term structure
models (3.5.15) from the next result.

3.5.16 Proposition. For m ∈ N0 let fm(t, T ) be a term structure model of the form{
dfm(t, T ) =

∑n
i=1 σ(m,i)(t, T, r

m
t−)dAi

t

fm(0, T ) = f ∗(0, T )
, (3.5.15)
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where A ∈ Vn and f ∗(0, •) ∈ C1(R+), and where σ(m,i) ∈ C(R+×R+×Rd) for m ∈ N0

and i = 1, . . . , n. Assume there are T ∗, L > 0 such that it holds for all i = 1, . . . , n

lim
m→∞

sup
(t,T,r)∈[0,T ∗+xd]×[0,T ∗+xd]×Rd

∣∣σ(0,i)(t, T, r)− σ(m,i)(t, T, r)
∣∣ = 0, (3.5.16)∣∣σ(m,i)(t, T, r1)− σ(m,i)(t, T, r2)

∣∣ ≤ L‖r1 − r2‖1, m ∈ N (3.5.17)

for all t, T ∈ [0, T ∗ + xd] and r1, r2 ∈ Rd. Then, there is a stopping time τ , which is
P− a.s. positive, such that for all x ∈ R+ and 1 ≤ p ≤ ∞

rm(x)τ− Sp

→ r0(x)
τ− as m→∞.

Proof. Let 1 ≤ p ≤ ∞ be arbitrary. For each i = 1, . . . , n set τi := inf{t >
0 |Var(Ai)t >

1
2dnL

}, where ”Var” denotes the variation processes of the Ai. The
τi are stopping times by Protter [55, Thm. I.3]. Since the Ai have right-continuous
paths, the stopping time τ := τ1 ∧ . . . ∧ τn ∧ T ∗ is P− a.s. positive. Note that for all
x ∈ R+ and m ∈ N0 the forward rates rt(x)m = fm(t, t+ x) are given by

rt(x)m = f ∗(0, t+ x) +
n∑

i=1

∫ t

0

σ(m,i)(s, t+ x, rm(s−))dAi
s, t ∈ R+.

Using Lemma 3.5.15, it holds for each m ∈ N

∥∥rτ−
0 − rτ−

m

∥∥
Sp ≤

n∑
i=1

d∑
j=1

∥∥∥∫ t

0

(
σ(0,i)(s, (t ∧ τ) + xj, r

τ−
0 (s−))

− σ(m,i)(s, (t ∧ τ) + xj, r
τ−
0 (s−))

)
dAτ−

i (s)
∥∥∥

Sp

+
n∑

i=1

d∑
j=1

∥∥∥∫ t

0

(
σ(m,i)(s, (t ∧ τ) + xj, r

τ−
0 (s−))

− σ(m,i)(s, (t ∧ τ) + xj, r
τ−
m (s−))

)
dAτ−

i (s)
∥∥∥

Sp
. (3.5.18)

Since it holds ‖H−•B‖Sp ≤ ‖Var(B)∞H‖Sp for any H ∈ D and B ∈ V, for all i =
1, . . . , n, j = 1, . . . , d the convergence

∥∥∥∫ t

0

(
σ(0,i)(s, (t ∧ τ) + xj, r

τ−
0 (s−))− σ(m,i)(s, (t ∧ τ) + xj, r

τ−
0 (s−))

)
dAτ−

i (s)
∥∥∥

Sp

≤ 1

2dnL
sup

(s,t,r)∈[0,T ∗]×[0,T ∗]×Rd

∣∣σ(0,i)(s, t+ xj, r)− σ(m,i)(s, t+ xj, r)
∣∣→ 0 as m→∞

(3.5.19)
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is valid by (3.5.16), where we take into account the definition of τ . Moreover, it holds
for each i = 1, . . . , n, j = 1, . . . , d∥∥∥∫ t

0

(
σ(m,i)(s, (t ∧ τ) + xj, r

τ−
0 (s−))− σ(m,i)(s, (t ∧ τ) + xj, r

τ−
m (s−))

)
dAτ−

i (s)
∥∥∥

Sp

≤ 1

2dn

∥∥rτ−
0 − rτ−

m

∥∥
Sp (3.5.20)

by the Lipschitz condition (3.5.17). Incorporating (3.5.19) and (3.5.20) in the inequal-
ity (3.5.18), we deduce

rτ−
m

Sp

→ rτ−
0 as m→∞. (3.5.21)

Now let x ∈ R+ be arbitrary. For each m ∈ N we obtain∥∥r0(x)τ− − rm(x)τ−∥∥
Sp

≤
n∑

i=1

∥∥∥∥∫ t

0

(
σ(0,i)(s, t+ x, rτ−

0 (s−))− σ(m,i)(s, t+ x, rτ−
0 (s−))

)
dAτ−

i (s)

∥∥∥∥
Sp

+
n∑

i=1

∥∥∥∥∫ t

0

(
σ(m,i)(s, t+ x, rτ−

0 (s−))− σ(m,i)(s, t+ x, rτ−
m (s−))

)
dAτ−

i (s)

∥∥∥∥
Sp

is valid. Arguing as before, we get that for all i = 1, . . . , n∥∥∥∥∫ t

0

(
σ(0,i)(s, t+ x, rτ−

0 (s−)− σ(m,i)(s, t+ x, rτ−
0 (s−)

)
dAτ−

i (s)

∥∥∥∥
Sp

tends to zero for m→∞, as well as∥∥∥∥∫ t

0

(
σ(m,i)(s, t+ x, rτ−

0 (s−))− σ(m,i)(s, t+ x, rτ−
m (s−))

)
dAτ−

i (s)

∥∥∥∥
Sp

≤ 1

2dn

∥∥rτ−
0 − rτ−

m

∥∥
Sp → 0 as m→∞,

because of the convergence (3.5.21), which completes the proof.

3.5.17 Definition. A set {f1, . . . , fn} of functions from R+ × R+ into R is called
∂/∂t-regular if for each i = 1, . . . , n and m1, . . . ,mn ∈ N0 the function fig

m1
1 · · · gmn

n

is ∂/∂t-regular, where gj(t, T ) :=
∫ T

t
fj(t, s)ds, j = 1, . . . , n.

A class of ∂/∂t-regular sets are those {f1, . . . , fn}, where fi(t, T ) = gi(T−t) for i =
1, . . . , n, with quasi-exponential functions g1, . . . , gn, because products and primitives
of quasi-exponential functions are again quasi-exponential Björk and Svensson [13,
Lemma 5.1].

3.5.18 Theorem. Assume the following conditions are fulfilled.
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• X ∈ Vn has a deterministic derivative;

• The cumulant generating function Ψ is of class C0,2(R+ × intQ);

• The set of functions {λ(i,j) | i = 1, . . . , n, j = 1, . . . ,mi} is ∂/∂t-regular;

• ϕ(i,j) ∈ CL
b (R+ × Rd) for all i = 1, . . . , n, j = 1, . . . ,mi.

Then, the interest rate model (3.5.6) has a local approximative realization.

Proof. Let T ∗ > 0 be arbitrary. Since Ψ ∈ C0,2(R+ × intQ) there exists, see, e.g.,
Heuser [37, Thm. 115.6], a sequence (Ψm)m∈N of polynomials on Rn+1 such that

lim
m→∞

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂∂zi

Ψ(t, z)− ∂

∂zi

Ψm(t, z)

∣∣∣∣ = 0, i = 1, . . . , n, (3.5.22)

lim
m→∞

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂2

∂zi∂zj

Ψ(t, z)− ∂2

∂zi∂zj

Ψm(t, z)

∣∣∣∣ = 0, i, j = 1, . . . , n. (3.5.23)

Define the mappings αm : R+ × R+ × Rd → R for each m ∈ N by

αm(t, T, r) := −
〈
σ(t, T, r),∇zΨm

(
t,−

∫ T

t

σ(t, s, r)ds

)〉
.

Using Lemma 3.5.9 on the ϕ(i,j), and the continuity of the λ(i,j), it follows that the σi,
i = 1, . . . , n are bounded on [0, T ∗]× [0, T ∗]×Rd. Therefore, it holds, by the uniform
convergence (3.5.22),

lim
m→∞

sup
(t,T,r)∈[0,T ∗]×[0,T ∗]×Rd

|αm(t, T, r)− α(t, T, r)| = 0. (3.5.24)

Choose ε > 0. By the uniform convergence (3.5.22), (3.5.23), there exists an index
m0 ∈ N such that for all m ≥ m0

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂∂zi

Ψm(t, z)− ∂

∂zi

Ψ(t, z)

∣∣∣∣ ≤ ε, i = 1, . . . , n,

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂2

∂zi∂zj

Ψm(t, z)− ∂2

∂zi∂zj

Ψ(t, z)

∣∣∣∣ ≤ ε, i, j = 1, . . . , n.

It follows that for all m ≥ m0 and all (t, z) ∈ [0, T ∗]×Q0 it holds∣∣∣∣ ∂∂zi

Ψm(t, z)

∣∣∣∣ ≤ ∣∣∣∣ ∂∂zi

Ψ(t, z)

∣∣∣∣+ ε, i = 1, . . . , n,∣∣∣∣ ∂2

∂zi∂zj

Ψm(t, z)

∣∣∣∣ ≤ ∣∣∣∣ ∂2

∂zi∂zj

Ψ(t, z)

∣∣∣∣+ ε, i, j = 1, . . . , n,
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Since [0, T ∗] × Q0 is a compact set, we conclude that there exists a constant M > 0
such that for each m ≥ m0

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂∂zi

Ψm(t, z)

∣∣∣∣ ≤M, i = 1, . . . , n, (3.5.25)

sup
(t,z)∈[0,T ∗]×Q0

∣∣∣∣ ∂2

∂zi∂zj

Ψm(t, z)

∣∣∣∣ ≤M, i, j = 1, . . . , n. (3.5.26)

The partial derivatives ∂
∂rk
σi(t, T, r) for i = 1, . . . , n and k = 1, . . . , d are given by

∂

∂rk

σi(t, T, r) =

mi∑
j=1

∂

∂rk

ϕ(i,j)(t, r)λ(i,j)(t, T ).

For each m ≥ m0, the first order derivatives ∂
∂rk
αm(t, T, r), k = 1, . . . , d are equal to

∂

∂rk

αm(t, T, r) = −
n∑

i=1

(
mi∑
j=1

∂

∂rk

ϕ(i,j)(t, r)λ(i,j)(t, T )

)
∂

∂zi

Ψm

(
t,−

∫ T

t

σ(t, s, r)ds

)

−
n∑

i=1

[
mi∑
j=1

ϕ(i,j)(t, r)λ(i,j)(t, T )

]
[

n∑
j=1

∂2

∂zi∂zj

Ψm

(
t,−

∫ T

t

σ(t, s, r)ds

)(
−

mj∑
l=1

∂

∂rk

ϕ(j,l)(t, r)D(j,l)(t, T )

)]
.

The space CL
b (R+ ×Rd) is closed under products. Due to (3.5.25),(3.5.26), the conti-

nuity of the λ(i,j) and D(j,l), and Lemma 3.5.9, we obtain that there exists a constant
L > 0 satisfying

sup
(t,T,r)∈[0,T ∗]×[0,T ∗]×Rd

∣∣∣∣ ∂∂rk

αm(t, T, r)

∣∣∣∣ ≤ L, k = 1, . . . , d, m ≥ m0,

sup
(t,T,r)∈[0,T ∗]×[0,T ∗]×Rd

∣∣∣∣ ∂∂rk

σi(t, T, r)

∣∣∣∣ ≤ L, i = 1, . . . , n, k = 1, . . . , d.

Applying Lemma 3.5.10 we obtain that for each i = 1, . . . , n and m ≥ m0

‖αm(t, T, r1)− αm(t, T, r2)‖1 ≤ L‖r1 − r2‖1, t, T ∈ [0, T ∗] and r1, r2 ∈ Rd,

‖σi(t, T, r1)− σi(t, T, r2)‖1 ≤ L‖r1 − r2‖1, t, T ∈ [0, T ∗] and r1, r2 ∈ Rd. (3.5.27)

Each Ψm is of the form Ψm(t, z) =
∑e

u=1 t
luz

k1
u

1 · · · zkn
u

n , so in particular of the type
(3.5.5), and it is continuous on R+ ×Rn. Thus, Proposition 3.5.11 provides us with a
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finite dimensional realization (Fm, Zm) for each forward rate model fm(t, T ), m ≥ m0

specified as {
dfm(t, T ) = αm(t, T, rt−)dt+ σ(t, T, rt−)dXt

fm(0, T ) = f ∗(0, T )
.

For the mappings Gm(t, x, z) := Fm(t, t+x, z) the identity rm(x)t = Gm(t, x, Zm(t)) is
valid. Proposition 3.5.16, which may be applied by virtue of (3.5.24), (3.5.27) and the
assumption X ∈ Vn, gives us the existence of a P− a.s. positive stopping time τ such

that Gm(•, x, Zm(t))τ− Sp

→ r(x)τ− as m → ∞ for each x ∈ R+ and 1 ≤ p ≤ ∞, which
proves that the interest rate model (3.5.6) has a local approximative realization.

The range of driving processes X, for which Theorem 3.5.18 can be applied, encom-
passes those Lévy processes with zero Gaussian part and Lévy measure K satisfying∫
|x|≤1

|x|K(dx) < ∞, because then X belongs to V Sato [59, Thm. 21.9] and Ψ does
not depend on t. Examples are compound Poisson processes, bilateral Gamma pro-
cesses, see Küchler and Naumann [46], and in particular variance Gamma processes,
which have been used in a series of papers, see Madan and Seneta [51], Madan and
Milne [50], Carr, Chang, and Madan [18], and Madan [49] for a survey. More generally,
we can apply Theorem 3.5.18 if X is a generalized tempered stable process Cont and
Tankov [23, Sec. 4.5], i.e. the Lévy measure of the generating triplet (0, 0, K) is of the
form

K(dx) =

(
c−

|x|1+α−
e−λ−|x|1(−∞,0)(x) +

c+
x1+α+

e−λ+x1(0,∞)(x)

)
dx,

(c− > 0, c+ > 0, λ− > 0, λ+ > 0 and α− < 2, α+ < 2),

and the parameters satisfy α− < 1, α+ < 1 and at least one of them is non-negative.
This includes some of the CGMY processes in Carr, Geman, Madan, and Yor [19].

The reason, why we have confined ourselves to driving processes X ∈ V is that we
have to establish (see Proposition 3.5.16) a stability result for a sequence of processes
satisfying

rt(x) = f(0, t+ x) +

∫ t

0

α(s, t+ x, rs−)ds+

∫ t

0

σ(s, t+ x, rs−)dXs,

which are equations of Volterra type. However, Proposition 3.5.11, which provides
realizations for term structure models of the kind (3.5.7), is not subject to this restric-
tion, and of course, it is desirable to extend Theorem 3.5.18 to a more general class of
driving processes X.

As an illustration of Theorem 3.5.18, we assume that the term structure model
(3.5.6) is driven by a single Lévy process with zero Gaussian part and Lévy mea-
sure K satisfying

∫
|x|≤1

|x|K(dx) <∞, where the volatility is of the form σ(t, T, r) =
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ϕ(t, r)λ(t, T ). Note that we started, at the beginning of this section, with a volatil-
ity structure of this kind. Presuming that all λDj, j ∈ N0 are ∂/∂t-regular, where

D(t, T ) :=
∫ T

t
λ(t, s)ds (this is in particular fulfilled if λ is stationary, i.e. λ(t, T ) =

λ̃(T − t), and λ̃ is quasi-exponential), and ϕ ∈ CL
b (R+ × Rd), Theorem 3.5.18 yields

the existence of a local approximative realization.

To make things more concrete, assume that for some constant M > 0 it holds
Q0 ⊂ (−M,M) ⊂ Q, whereQ andQ0 denote the compact sets from Assumptions 3.5.6.
Then, we can explicitly construct the desired sequence (Gm, Zm)m∈N by inspecting the
proofs of Theorem 3.5.18 and Proposition 3.5.11. First, we note that the Taylor series
representation

Ψ(z) =
∞∑

j=0

1

j!
Ψ(j)(0)zj, z ∈ Q0

is valid. Define the polynomials Ψm(z) :=
∑m+1

j=0
1
j!
Ψ(j)(0)zj for m ∈ N. Then it holds

Ψ′
m → Ψ′ and Ψ′′

m → Ψ′′ uniformly on Q0, and therefore (Ψm)m∈N provides a sequence
of polynomials as in the proof of Theorem 3.5.18. We verify that

−σ(t, T, r)Ψ′
m

(
−
∫ T

t

σ(t, s, r)ds

)
=

m∑
j=0

1

j!
Ψ(j+1)(0)(−ϕ(t, r))j+1λ(t, T )D(t, T )j.

For each j ∈ N0 there exists an integer qj ∈ N0 and functions η(j,k) ∈ C(R+), k =
0, . . . , qj such that

∂qj+1

∂tqj+1
(λDj)(t, T ) +

qj∑
k=0

η(j,k)(t)
∂k

∂tk
(λDj)(t, T ) = 0.

Looking into the proof of Proposition 3.5.11, we choose the mappings (Fm)m∈N as

Fm(t, T, zk | k = 0, . . . , q0, z(j,k) | j = 0, . . . ,m, k = 0, . . . , qj)

:= f ∗(0, T ) +

q0∑
k=0

∂k

∂tk
λ(t, T )zk +

m∑
j=0

qj∑
k=0

∂k

∂tk
(λDj)(t, T )z(j,k),

and let the state processes

Zm = (Zm
k | k = 0, . . . , q0, Z

m
(j,k) | j = 0, . . . ,m, k = 0, . . . , qj), m ∈ N

be the unique solutions of the following stochastic differential equation (3.5.28), in
which j runs from 0 to m, and F̃ denotes F̃ (t, z) := (F (t, t+x1, z), . . . , F (t, t+xd, z))
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for (t, z) ∈ R+ × Rd.

dZm
0 (t) = η(0,0)(t)Z

m
q0

(t) + ϕ(t, F̃ (t, Zm(t−)))dXt

dZm
k (t) =

[
η(0,k)(t)Z

m
q0

(t)− Zm
k−1(t)

]
dt, k = 1, . . . , q0

dZm
(j,0)(t) =

[
η(j,0)(t)Z

m
(j,qj)

(t) + 1
j!
Ψ(j+1)(0)(−ϕ(t, F̃ (t, Zm(t−))))j+1

]
dt

dZm
(j,k)(t) =

[
η(j,k)(t)Z

m
(j,qj)

(t)− Zm
(j,k−1)(t)

]
dt, k = 1, . . . , qj

Zm(0) = 0

.

(3.5.28)

Setting Gm(t, x, z) := Fm(t, t + x, z) for m ∈ N, we obtain from Proposition 3.5.16

that Gm(•, x, Zm(t))τ− Sp

→ r(x)τ− for some P− a.s. positive stopping time τ .
We observe that the concrete choice of the driving Lévy process X only enters via

1
j!
Ψ(j+1)(0) in the specification of the Zm

(j,0).

For a Poisson process X with intensity λ > 0 for instance, it holds Ψ′(z) = λez,
and thus we have to insert Ψ(j+1)(0) = λ, j ∈ N0 in the stochastic differential equation
(3.5.28). A more realistic term structure model is provided if the driving process X
is a bilateral Gamma process Küchler and Naumann [46, Sec. 5] with parameters
α+, α−, λ+, λ− > 0. Then, it necessarily holds Q ⊂ (−λ−, λ+), where Q denotes
the compact set from Assumptions 3.5.6, and Ψ′ is given by Ψ′(z) = α+

λ+−z
− α−

λ−+z
.

Consequently, we have to insert

1

j!
Ψ(j+1)(0) =

α+

(λ+)j+1
+

α−

(−λ−)j+1
, j ∈ N0

in the stochastic differential equation (3.5.28).





Chapter 4

Benchmark realizations

In the preceding chapter, we have treated the existence of finite dimen-
sional realizations using the Lie algebraic approach. We shall now go an
alternative way, in the framework of benchmark realizations. After some
preliminaries, we show that this is no strong restriction, since in general,
a benchmark realization can be obtained from a finite dimensional realiza-
tion with an arbitrary state process by an adequate transformation. Using
the fact that P is a martingale measure, we derive a couple of integro-
differential equations, used in the sequel for the realization question.

After these preparations, we start with the study of deterministic volatil-
ity structures. Then, for deterministic direction volatility models driven by
a process which has jumps, we prove, roughly speaking, that the existence
of a realization implies that the volatility must be deterministic. Using
this fact we show that, in principle, short rate realizations for interest rate
models driven by a jump process can only exist if the volatility is determin-
istic. These results exhibit the restrictive nature of term structure models,
which are driven by processes with jumps, concerning finite dimensional
realizations.

Finally, we treat generic benchmark realizations and show, generalizing
Jeffrey [44], that forward rate models with a generic benchmark realization
must necessarily have a singular Hessian matrix.

4.1 Preparatory results

Throughout this chapter, we consider, for fixed integers d, n ∈ N, HJM term structure
models of the form{

df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
, (4.1.1)

79
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with coefficients α, σ1, . . . , σn ∈ C0,1,0(R+×R+×Rd), where r denotes a set of bench-
mark forward rates rt = (f(t, t+ x1), . . . , f(t, t+ xd)) for fixed benchmark maturities
0 ≤ x1 < . . . < xd. We always make the following assumptions.

4.1.1 Assumptions.

1. The driving process X is a n-dimensional Grigelionis process with r-derivative
(β, c,K; r)D, such that (D(X), r) has regular supports.

2. There are z−1 , . . . , z
−
n ∈ (−∞, 0) and z+

1 , . . . , z
+
n ∈ (0,∞) such that for any

t ∈ R+ and r : [0, t] → Rd∫ t

0

(∫
|x|≤1

|x|2Ks,r(s)(dx) +

∫
|x|>1

e〈z,x〉Ks,r(s)(dx)

)
ds <∞, z ∈ Q,

where Q denotes the set Q := [z−1 , z
+
1 ] × . . . × [z−n , z

+
n ], and furthermore, for all

(t, r) ∈ R+ × Rd it holds∫
|x|>1

e〈z,x〉Kt,r(dx) <∞, z ∈ Q.

3. There are w−
1 ∈ (z−1 , 0), . . . , w−

n ∈ (z−n , 0) and w+
1 ∈ (0, z+

1 ), . . . , w+
n ∈ (0, z+

n )
such that

−
∫ T

t

σ(t, s, r)ds ∈ Q0, for all (t, T, r) ∈ R+ × R+ × Rd,

where Q0 ⊂ Q is defined as Q0 := [w−
1 , w

+
1 ]× . . .× [w−

n , w
+
n ].

4. The function Ψ : R+ × Rd ×Q→ R (see the definition below) is continuous.

The second assumption ensures that the cumulant generating function

Ψ(t, r, z) := 〈β(t, r), z〉+
1

2
〈z, c(t, r)z〉+

∫
Rn

(
e〈z,x〉 − 1− 〈z, x〉

)
Kt,r(dx)

is definable for all (t, r, z) ∈ R+ ×Rd ×Q (see Section 2.2). The function Ψ is of class
C∞ in z, but it need not be continuous in t and r. Therefore, we impose the fourth
assumption. Instead of Ψ(t, r, z), we will also write Ψt,r(z). The third assumption
guarantees that

Ψ

(
t, r,−

∫ T

t

σ(t, s, r)ds

)
exists for all (t, T, r) ∈ R+ × R+ × Rd, and is continuous. As usual, we assume that
the model is free of arbitrage in the sense that P is a martingale measure.
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4.1.2 Definition.

1. A benchmark realization is given by a mapping F ∈ C2,1,2(R+ × R+ × Rd) such
that f(t, T ) = F (t, T, rt) for all 0 ≤ t ≤ T .

2. In the case d = 1 and x1 = 0 a benchmark realization is also called a short rate
realization.

A benchmark realization is (up to minor deviations, as there are the smoothness
conditions on F ) a finite dimensional realization in the sense of Definition 2.2.3 with
state process r, i.e. the realization consists of the pair (F, r).

We remark that Chiarella and Kwon [22] also consider interest rate models of the
type (4.1.1), where drift and volatilities are allowed to depend on a set of benchmark
forward rates, driven by finitely many Wiener processes. They construct, under ap-
propriate assumptions, finite dimensional realizations without imposing restrictions on
the state process. We, however, demand that the state process is a set of benchmark
forward rates.

In Definition 2.2.3 it is assumed that the state process satisfies a stochastic dif-
ferential equation. This is automatically fulfilled for benchmark realizations, which is
the content of the next lemma.

4.1.3 Lemma. Assume the term structure model (4.1.1) admits a benchmark realiza-
tion F . Then, the benchmark forward rate process r satisfies the stochastic differential
equation {

drt = µ(t, rt−)dt+ γ(t, rt−)dXt

r0 = r∗
, (4.1.2)

where r∗ ∈ Rd is given by r∗ = (f ∗(0, x1), . . . , f
∗(0, xd)), and where µ : R+ ×Rd → Rd

has the components

µi(t, r) =
∂

∂T
F (t, T, r)

∣∣∣∣
T=t+xi

+ α(t, t+ xi, r), i = 1, . . . , d, (4.1.3)

and γ : R+ × Rd → Rd×n is given by

γ(t, r) =

 σ1(t, t+ x1, r) · · · σn(t, t+ x1, r)
...

...
σ1(t, t+ xd, r) · · · σn(t, t+ xd, r)

 . (4.1.4)

Proof. The assertion is a direct consequence of the Musiela parametrization (Propo-
sition 2.2.12).
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Affine benchmark realizations, which we will now define, are of particular interest.
The following definition may seem surprising, because we do not impose that such a
realization must be affine everywhere. However, the following definition is sufficient
in order to establish all subsequent results, in particular the third part of Theorem
3.1.17 can be applied. In Theorem 4.4.4 we will show that an a priori arbitrary short
rate realization must automatically be affine under appropriate assumptions. This can
only be done if we use the following definition of an affine benchmark realization.

4.1.4 Definition.

1. A benchmark realization F is called affine if there are a, b1, . . . , bd ∈ C2,1(R+ ×
R+) such that for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t it holds

F (t, T, r + γ(t, r)x) = a(t, T ) + 〈b(t, T ), r + γ(t, r)x〉, x ∈ supp(Kt) ∪ {0},
∇rF (t, T, r) = b(t, T ).

2. An affine benchmark F is said to be stationary if there are a ∈ C2,1(R+ × R+)

and b̃ ∈ C2(R+,Rd) such that for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t it
holds

F (t, T, r + γ(t, r)x) = a(t, T ) + 〈b̃(T − t), r + γ(t, r)x〉, x ∈ supp(Kt) ∪ {0},
∇rF (t, T, r) = b̃(T − t).

We agree that, speaking about an affine benchmark realization F (t, T, r) = a(t, T )+
〈b(t, T ), r〉, always means that it is affine in the weaker sense of Definition 4.1.4.

Now, we discuss the restrictions, that we have to accept, if we treat benchmark
realizations. The coefficients in (4.1.1) may only depend on the state process rt =
(f(t, t+x1), . . . , f(t, t+xd)) of a benchmark realization. This is no further restriction.
If drift and volatilities depend on the whole forward rate curve f(t, t+•), as in Chapter
3, and there exists a benchmark realization, they actually only depend on the set
of forward rates (f(t, t + x1), . . . , f(t, t + xd)), because then, the forward rate curve
f(t, t+ •) can be expressed by means of f(t, t+ x1), . . . , f(t, t+ xd) and the time t.

Nevertheless, the condition that the state process consists of a set of benchmark
forward rates, seems rather restrictive. However, given a finite dimensional realization
with an arbitrary state process, this realization can usually be transformed into a
benchmark realization. See Björk and Svensson [13, Thm. 3.3] for such a result when
the driving processes are Brownian motions.

We illustrate how to perform such a transformation, which also works if the driving
processes have jumps, in the case of affine realizations, which are of major interest in
this chapter. Our ideas follow Björk and Landén [12, Sec. 7], see also Björk and
Gombani [11, Prop. 5.1] for a closely related result.
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4.1.5 Proposition. Assume, an arbitrary term structure model f(t, T ) has an affine
d+1-dimensional realization (G,Z) in the sense of Definition 2.2.3, where G(t, T, z) =
a(t, T ) + 〈b(t, T ), z〉. Assume there are 0 ≤ x1 < . . . < xd such that detB(t) 6= 0 for
all t ∈ R+, where

B(t) :=

 b1(t, t+ x1) · · · bd(t, t+ x1)
...

...
b1(t, t+ xd) · · · bd(t, t+ xd)

 .

Then, defining â(t) := (a(t, t+x1), . . . , a(t, t+xd)), t ∈ R+, an affine realization (F, r),
with rt = (f(t, t+x1), . . . , f(t, t+xd)) as state process, is given by F : R+×R+×Rd → R
defined as

F (t, T, r) := a(t, T )− 〈B−1(t)∗b(t, T ), â(t)〉+ 〈B−1(t)∗b(t, T ), r〉.

Proof. Since (G,Z) provides a realization, it holds for the forward rates f(t, T ) of the
term structure model

f(t, T ) = a(t, T ) + 〈b(t, T ), Zt〉, 0 ≤ t ≤ T, (4.1.5)

and, in particular, for the benchmark forward rates rt = (f(t, t+ x1), . . . , f(t, t+ xd))
the identity

rt = â(t) +B(t)Zt, t ∈ R+

is valid. Since the B(t), t ∈ R+ are non-singular by assumption, we deduce

Zt = B−1(t)(rt − â(t)), t ∈ R+. (4.1.6)

Inserting (4.1.6) into (4.1.5), we see that (F, r) gives the desired realization.

The condition detB(t) 6= 0, t ∈ R+ essentially means that (G,Z) is a realization
of minimal dimension. If the realization is affine and stationary, i.e. G is of the form
G(t, T, z) = a(t, T ) + 〈b(T − t), z〉, which typically arises from stationary volatility
structures, one only needs that

det

 b1(x1) · · · bd(x1)
...

...
b1(xd) · · · bd(xd)

 6= 0

for some 0 ≤ x1 < . . . < xd. An immediate consequence is the following result about
benchmark realizations.

4.1.6 Corollary. Assume, an arbitrary term structure model f(t, T ) has an affine
d+1-dimensional realization (G,Z) in the sense of Definition 2.2.3, where G(t, T, z) =
a(t, T )+〈b(T−t), z〉. Assume that b1, . . . , bd are linearly independent and real analytic.
Then, for any given T ∗ > 0, there exists, apart from finitely many exceptions, for all
0 ≤ x1 < . . . < xd ≤ T ∗ an affine realization (F, r) with rt = (f(t, t+ x1), . . . , f(t, t+
xd)) as state process.
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Proof. Let T ∗ > 0 be arbitrary. According to Björk, Kabanov, and Runggaldier [15,
Prop. 5.5] it holds, apart from finitely many exceptions, for all 0 ≤ x1 < . . . < xd ≤ T ∗

the relation

det

 b1(x1) · · · bd(x1)
...

...
b1(xd) · · · bd(xd)

 6= 0

Thus, an application of Proposition 4.1.5 finishes the proof.

To summarize, we have now justified the upcoming investigation of finite dimen-
sional realizations by going into the framework of benchmark realizations, since we
have seen that this imposes no hard restrictions.

The advantage of this approach is that we obtain deterministic equations, in par-
ticular integro-differential equations in Section 4.2, depending on the variables t, T ,
which represent time, and on r ∈ Rd, representing the state process. From these
equations we obtain conditions concerning the existence of realizations.

The rest of this section is devoted to basic results, which are needed in the sequel.

4.1.7 Lemma.

1. Assume the term structure model (4.1.1) admits a benchmark realization F .
Then, it holds for the initial forward rate curve f ∗(0, •) and the initial condi-
tion r∗ of the benchmark forward rates

f ∗(0, •) = F (0, •, r∗). (4.1.7)

Moreover, the following boundary conditions are valid for i = 1, . . . , d.

F (t, t+ xi, r) = ri, t ∈ (0,∞), r ∈ supp(rt−). (4.1.8)

2. Assume the term structure model (4.1.1) admits an affine benchmark realization
F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉. If t ∈ (0,∞) is such that int supp(rt−) 6= ∅,
then the following boundary conditions hold for i = 1, . . . , d{

a(t, t+ xi) = 0

b(t, t+ xi) = ei

, (4.1.9)

where the ei denote the unit vectors in Rd.

Proof.

1. It holds for all T ∈ R+ the relation f(0, T ) = F (0, T, r0) (P− a.s.), because F is
a realization. Since F0 = {∅,Ω}, the identity (4.1.7) follows. By the continuity
of F , we get for each i = 1, . . . , d

ri
t− = lim

s↑t
F (s, s+ xi, rs) = F (t, t+ xi, lim

s↑t
rs) = F (t, t+ xi, rt−) P− a.s.

Applying Lemma 3.1.4, the boundary condition (4.1.8) is proven.
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2. We infer from equation (4.1.8) that for each t ∈ (0,∞) and i = 1, . . . , d the
identity

a(t, t+ xi) + 〈b(t, t+ xi), r〉 = ri, r ∈ supp(rt−)

is valid. Provided int supp(rt−) 6= ∅, differentiating each of these equations with
respect to r1, . . . , rd yields the desired relation (4.1.9).

4.1.8 Lemma. Assume the term structure model (4.1.1) admits a benchmark realiza-
tion F . If the Grigelionis process X is non-degenerate with derivative (β, c,K; r)D,
then it holds for each t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

α(t, T, r) =
∂

∂t
F (t, T, r) + 〈∇rF (t, T, r), µ(t, r)〉

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

F (t, T, r)〈γi•(t, r)
∗, c(t, r)γj•(t, r)

∗〉, (4.1.10)

σ(t, T, r) = ∇rF (t, T, r)γ(t, r). (4.1.11)

If the Grigelionis process X is linearly non-degenerate with derivative (β, c,K; r)D,
and, in addition, the realization is affine, that is F (t, T, r) = a(t, T )+ 〈b(t, T ), r〉, then
it holds for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

α(t, T, r) =
∂

∂t
a(t, T ) +

〈 ∂
∂t
b(t, T ), r

〉
+ 〈b(t, T ), µ(t, r)〉, (4.1.12)

σ(t, T, r) = b(t, T )γ(t, r). (4.1.13)

Proof. We may apply Theorem 3.1.17 for fixed T ∈ (0,∞), because, by hypothesis,
the function F (•, T, •) is of class C2 in each variable.

4.1.9 Corollary. Assume the term structure model (4.1.1) admits a benchmark real-
ization F . If X is non-degenerate, then it holds for all t ∈ (0,∞) and r ∈ supp(rt−)

µi(t, r) = α(t, t+ xi, r)−
∂

∂t
F (t, T, r)

∣∣∣∣
T=t+xi

, i = 1, . . . , d.

Proof. Set T = t+xi in (4.1.10) and note that F (t, t+xi, r) = ri by Lemma 4.1.7.

Next, we derive the HJM drift condition.

4.1.10 Lemma. Assume the term structure model (4.1.1) admits a benchmark real-
ization F . Then, the following identities are valid for all t ∈ (0,∞), r ∈ supp(rt−)
and T ≥ t.∫ T

t

α(t, s, r)ds = Ψt,r

(
−
∫ T

t

σ(t, s, r)ds

)
, (4.1.14)

α(t, T, r) = −
〈
σ(t, T, r),∇Ψt,r

(
−
∫ T

t

σ(t, s, r)ds

)〉
. (4.1.15)
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Proof. By the continuity of α and σ, and since r has càdlàg paths, α(t, T, rt−),
σ1(t, T, rt−), . . . , σn(t, T, rt−) belong to L for all T ∈ R+. Furthermore, by the conti-
nuity of Ψ (see Assumptions 4.1.1), the function (t, z) 7→ Ψ(t, rt−(ω), z) is continuous
in z and left-continuous in t for all ω ∈ Ω, with possible exception of a P-null set. We
obtain from Proposition 2.2.11 that for fixed T ∈ (0,∞) it holds, up to a P-null set,∫ T

t

α(t, s, rt−)ds = Ψ

(
t, rt−,−

∫ T

t

σ(t, s, rt−)ds

)
, t ∈ (0, T ].

Since Ψ is continuous, we may apply Lemma 3.1.4 for fixed t ∈ (0, T ], which yields
equation (4.1.14). Differentiating (4.1.14), for fixed t ∈ (0,∞) and r ∈ supp(rt−), with
respect to T , we obtain the equation (4.1.15).

4.2 Integro-differential equations

This section presents a couple of integro-differential equations that are valid for bench-
mark realizations.

Once again, we emphasize that, for convenience of notation, we do, concerning
vectors, not distinguish between row and column vectors. It will always be clear from
the context if a vector is meant to be a row or a column vector.

4.2.1 Proposition. Assume x1 = 0 and that the term structure model (4.1.1) admits
a benchmark realization F . Denote by (β, c,K; r)D the derivative of the Grigelionis

process X, and let P (t, T, r) = exp
(
−
∫ T

t
F (t, s, r)ds

)
be the bond prices. Assume

furthermore that the function Φ, defined as

Φ(t, T, r) := 〈∇rP (t, T, r), γ(t, r)β(t, r)〉 (4.2.1)

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

P (t, T, r)〈γi•(t, r)
∗, c(t, r)γj•(t, r)

∗〉

+

∫
Rn

(
P (t, T, r + γ(t, r)x)− P (t, T, r)− 〈∇rP (t, T, r), γ(t, r)x〉

)
Kt,r(dx),

exists on R+ × R+ × Rd, and is continuous. Then, the bond prices satisfy for each
t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

− P (t, T, r)r1 +
∂

∂t
P (t, T, r) + 〈∇rP (t, T, r), µ(t, r)〉+ Φ(t, T, r) = 0.

Proof. See the appendix.

Similar results for short rate models can be found in the literature. Raible [56, Prop.
4.12] provides such an equation for short rate models driven by a one-dimensional Lévy
process. In Björk, Kabanov, and Runggaldier [15, Prop. 6.3] the short rate equation
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is driven by a Wiener process and a marked point process whose intensity may depend
on the short rate. Both mentioned results deal with European options. We could also
extend Proposition 4.2.1 in this direction, but for our purposes, it suffices to have the
equation for the bond prices. For short rate models driven by a single standard Wiener
process, Proposition 4.2.1 yields the differential equation{

−P (t, T, r)r + ∂
∂t
P (t, T, r) + µ(t, r) ∂

∂r
P (t, T, r) + 1

2
γ(t, r)2 ∂2

∂r2P (t, T, r) = 0

P (T, T, r) = 1
,

which is well known from the literature that deals with interest rate theory, see, e.g.,
Björk [7].

4.2.2 Proposition. Assume x1 = 0 and that the term structure model (4.1.1) admits
a benchmark realization F . Denote by (β, c,K; r)D the derivative of the Grigelionis

process X, and let P (t, T, r) = exp
(
−
∫ T

t
F (t, s, r)ds

)
be the bond prices. Assume

furthermore that the function Φ, defined in (4.2.1), exists on R+ × R+ × Rd, and is
continuous. Then, the bond prices satisfy for each t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

− r1 +
∂

∂t

(
lnP (t, T, r)

)
+ 〈∇r

(
lnP (t, T, r)

)
, µ(t, r) + γ(t, r)β(t, r)〉

+
1

2

d∑
i,j=1

[
∂

∂ri

(
lnP (t, T, r)

) ∂
∂rj

(
lnP (t, T, r)

)
+

∂2

∂ri∂rj

(
lnP (t, T, r)

)]
〈γi•(t, r)

∗, c(t, r)γj•(t, r)
∗〉

+

∫
Rn

(
eln P (t,T,r+γ(t,r)x)−ln P (t,T,r) − 1− 〈∇r

(
lnP (t, T, r)

)
, γ(t, r)x〉

)
Kt,r(dx) = 0.

Proof. We insert the relation P (t, T, r) = eln P (t,T,r) in the integro-differential equation
of Proposition 4.2.1, and divide, after carrying out differentiations on the exponential
functions, the obtained expression by P (t, T, r).

The proofs of the next two results rely on the HJM drift condition.

4.2.3 Proposition. Assume that the term structure model (4.1.1) admits a bench-
mark realization F . If X is a non-degenerate Grigelionis process with derivative

(β, c,K; r)D, then the bond prices P (t, T, r) = exp
(
−
∫ T

t
F (t, s, r)ds

)
satisfy for each

t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

− r11{x1=0} +
∂

∂t

(
lnP (t, T, r)

)
+ 〈∇r

(
lnP (t, T, r)

)
, µ(t, r)〉

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

(
lnP (t, T, r)

)
〈γi•(t, r)

∗, c(t, r)γj•(t, r)
∗〉

+ Ψt,r

(
∇r

(
lnP (t, T, r)

)
γ(t, r)

)
= 0.
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Proof. Inserting the formulas (4.1.10), (4.1.11) for α and σ in equation (4.1.14) yields∫ T

t

∂

∂t
F (t, s, r)ds+

〈
∇r

(∫ T

t

F (t, s, r)ds

)
, µ(t, r)

〉
+

1

2

d∑
i,j=1

∂2

∂ri∂rj

(∫ T

t

F (t, s, r)ds

)
〈γi•(t, r)

∗, c(t, r)γj•(t, r)
∗〉

= Ψt,r

(
−∇r

(∫ T

t

F (t, s, r)ds

)
γ(t, r)

)
. (4.2.2)

Note that the interchanging of differentiation and integration is valid, because all
appearing derivatives are continuous and therefore bounded on compact intervals.
Note furthermore that

∂

∂t

∫ T

t

F (t, s, r)ds =

∫ T

t

∂

∂t
F (t, s, r)ds− F (t, t, r).

By the boundary condition (4.1.8) of Lemma 4.1.7 we infer∫ T

t

∂

∂t
F (t, s, r)ds = r11{x1=0} +

∂

∂t

∫ T

t

F (t, s, r)ds. (4.2.3)

Inserting (4.2.3) and
∫ T

t
F (t, s, r)ds = − lnP (t, T, r) into (4.2.2) yields the desired

equation.

4.2.4 Proposition. Assume that the term structure model (4.1.1) admits a bench-
mark realization F . If X is a non-degenerate Grigelionis process with derivative
(β, c,K; r)D, then F satisfies for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

∂

∂t
F (t, T, r) + 〈∇rF (t, T, r), µ(t, r)〉

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

F (t, T, r)〈γi•(t, r)
∗, c(t, r)γj•(t, r)

∗〉

+
〈
∇rF (t, T, r)γ(t, r),∇Ψt,r

(
−
(∫ T

t

∇rF (t, s, r)ds

)
γ(t, r)

)〉
= 0.

Proof. The stated equation follows directly by inserting the formulas (4.1.10), (4.1.11)
for α and σ in equation (4.1.15)

We have derived integro-differential equations under slightly different assumptions.
As we shall see next, both methods lead to the same equations when the realization
is affine. Of particular interest for the subsequent analysis of the realization problem
is Proposition 4.2.8.

Remember that an affine realization F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉 is always to
be understood in the weak sense of Definition 4.1.4. If we say that the realization is
affine everywhere, we mean that the relation F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉 is valid
for all (t, T, r) ∈ R+ × R+ × Rd.
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4.2.5 Proposition. Assume x1 = 0 and that the term structure model (4.1.1) admits
an affine benchmark realization F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉, which is affine ev-

erywhere, such that −(
∫ T

t
b(t, s)ds)γ(t, r) ∈ Q0 (the set from Assumptions 4.1.1) for

each (t, T, r) ∈ R+ × R+ × Rd. Setting

A(t, T ) :=

∫ T

t

a(t, s)ds and B(t, T ) :=

∫ T

t

b(t, s)ds,

it holds for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

r1 +
∂

∂t
A(t, T ) +

〈 ∂
∂t
B(t, T ), r

〉
+ 〈B(t, T ), µ(t, r)〉

−Ψt,r(−B(t, T )γ(t, r)) = 0.

Proof. Inserting lnP (t, T, r) = −(A(t, T ) + 〈B(t, T ), r〉) in the definition (4.2.1) of Φ,
we obtain for each (t, T, r) ∈ R+ × R+ × Rd

Φ(t, T, r) = P (t, T, r)Ψ(t, r,−B(t, T )γ(t, r)).

This is seen by writing P (t, T, r) = eln P (t,T,r), as in the proof of Proposition 4.2.2.
Therefore, Φ exists and is continuous by Assumptions 4.1.1. The stated equation
follows from Proposition 4.2.2.

4.2.6 Proposition. Let X be linearly non-degenerate. Assume that the term structure
model (4.1.1) admits an affine benchmark realization F (t, T, r) = a(t, T )+ 〈b(t, T ), r〉.
Set

A(t, T ) :=

∫ T

t

a(t, s)ds and B(t, T ) :=

∫ T

t

b(t, s)ds.

Let t ∈ (0,∞) be such that int supp(rt−) 6= ∅. Then it holds for all r ∈ supp(rt−) and
T ≥ t

r11{x1=0} +
∂

∂t
A(t, T ) +

〈 ∂
∂t
B(t, T ), r

〉
+ 〈B(t, T ), µ(t, r)〉

−Ψt,r(−B(t, T )γ(t, r)) = 0.

Proof. The assertion follows from inserting the representations (4.1.12), (4.1.13) for α
and σ into (4.1.14), by taking into account∫ T

t

∂

∂t
a(t, s)ds = a(t, t) +

∂

∂t

∫ T

t

a(t, s)ds,∫ T

t

∂

∂t
bi(t, s)ds = bi(t, t) +

∂

∂t

∫ T

t

bi(t, s)ds, i = 1, . . . , d

and the boundary condition (4.1.9) of Lemma 4.1.7, which may be applied due to the
hypothesis int supp(rt−) 6= ∅.



90 Chapter 4. Benchmark realizations

4.2.7 Proposition. Assume x1 = 0 and that the term structure model (4.1.1) admits
an affine benchmark realization F (t, T, r) = a(t, T )+ 〈b(t, T ), r〉, which is affine every-

where, such that −(
∫ T

t
b(t, s)ds)γ(t, r) ∈ Q0 (the set from Assumptions 4.1.1) for each

(t, T, r) ∈ R+ × R+ × Rd. Then it holds for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t

∂

∂t
a(t, T ) +

〈 ∂
∂t
b(t, T ), r

〉
+ 〈b(t, T ), µ(t, r)〉

+
〈
b(t, T )γ(t, r),∇Ψt,r

(
−
∫ T

t

b(t, s)ds γ(t, r)

)〉
= 0.

Proof. The claimed equation follows by differentiating the equation of Proposition
4.2.5 with respect to T .

4.2.8 Proposition. Let X be linearly non-degenerate. Assume that the term structure
model (4.1.1) admits an affine benchmark realization F (t, T, r) = a(t, T )+ 〈b(t, T ), r〉.
Let t ∈ (0,∞) be such that int supp(rt−) 6= ∅. Then it holds for all r ∈ supp(rt−) and
T ≥ t

∂

∂t
a(t, T ) +

〈 ∂
∂t
b(t, T ), r

〉
+ 〈b(t, T ), µ(t, r)〉

+
〈
b(t, T )γ(t, r),∇Ψt,r

(
−
∫ T

t

b(t, s)ds γ(t, r)

)〉
= 0.

Proof. The claimed equation follows by differentiating the equation of Proposition
4.2.6 with respect to T .

4.3 Deterministic volatility

This section is devoted to the study of affine benchmark realizations of term structure
models with deterministic volatility. Most of the time (see Theorem 4.3.6 for an
exception) we assume that β(t, •), c(t, •) and K(t, •) from the derivative (β, c,K; r)D

of the driving process X are constant on supp(rt−), which essentially means that X is
a process with independent increments.

4.3.1 Proposition. Assume the term structure model (4.1.1) has an affine benchmark
realization F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉. Let t ∈ (0,∞) be such that

• For each T ≥ t, the mapping σ(t, T, •) is constant on supp(rt−);

• The mappings β(t, •), c(t, •), K(t, •) are constant on supp(rt−).

Then, γ(t, •) is constant on supp(rt−), and, for each T ≥ t, the mapping α(t, T, •) is
constant on supp(rt−). Moreover, there are µ1(t) ∈ Rd and µ2(t) ∈ Rd×d such that

µ(t, r) = µ1(t) + µ2(t)r, r ∈ supp(rt−).
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Proof. By Lemma 4.1.3, it holds for r ∈ Rd

γ(t, r) =

 σ1(t, t+ x1, r) · · · σn(t, t+ x1, r)
...

...
σ1(t, t+ xd, r) · · · σn(t, t+ xd, r)

 ,

showing that γ(t, •) is constant on supp(rt−). According to Lemma 4.1.10, it holds for
all r ∈ supp(rt−) and T ≥ t

α(t, T, r) = −
〈
σ(t, T, r),∇Ψt,r

(
−
∫ T

t

σ(t, s, r)ds

)〉
.

Thus, α(t, T, •) is for every T ≥ t constant on supp(rt−), because β(t, •), c(t, •) and
K(t, •) are constant on supp(rt−). Since the following identities concern only those
r ∈ Rd from supp(rt−), we write α(t, T ). By Lemma 4.1.3 it holds for i = 1, . . . , d

µi(t, r) =
∂

∂T
a(t, T )

∣∣∣
T=t+xi

+
〈 ∂

∂T
b(t, T )

∣∣∣
T=t+xi

, r
〉

+ α(t, t+ xi).

Defining µ1(t) ∈ Rd as

µi
1(t) :=

∂

∂T
a(t, T )

∣∣
T=t+xi

+ α(t, t+ xi), i = 1, . . . , d,

and µ2(t) ∈ Rd×d by

µ2(t) :=


∂

∂T
b1(t, T )|T=t+x1 · · · ∂

∂T
bd(t, T )|T=t+x1

...
...

∂
∂T
b1(t, T )|T=t+xd

· · · ∂
∂T
bd(t, T )|T=t+xd

 , (4.3.1)

it follows that µ(t, r) = µ1(t) + µ2(t)r for all r ∈ supp(rt−).

4.3.2 Proposition. Assume X is linearly non-degenerate, and the term structure
model (4.1.1) has an affine benchmark realization F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉.
Let t ∈ (0,∞) be such that

• For each T ≥ t, the mapping σ(t, T, •) is constant on supp(rt−);

• The mappings β(t, •), c(t, •), K(t, •) are constant on supp(rt−);

• int supp(rt−) 6= ∅.

Then, the following identity is valid.

∂

∂t
b(t, T ) = −µ2(t)

∗b(t, T ), T ≥ t.
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Proof. Since X is linearly non-degenerate, we may use equation (4.1.12) from Lemma
4.1.8, which yields that for all r ∈ supp(rt−) and T ≥ t

α(t, T, r) =
∂

∂t
a(t, T ) +

〈 ∂
∂t
b(t, T ), r

〉
+ 〈b(t, T ), µ(t, r)〉.

By Proposition 4.3.1 there are µ1(t) ∈ Rd and µ2(t) ∈ Rd×d such that µ(t, r) =
µ1(t)+µ2(t)r for all r ∈ supp(rt−). Therefore, it holds for all r ∈ supp(rt−) and T ≥ t

α(t, T, r) =
∂

∂t
a(t, T ) + 〈b(t, T ), µ1(t)〉+

〈
µ2(t)

∗b(t, T ) +
∂

∂t
b(t, T ), r

〉
Since, by Proposition 4.3.1, α(t, T, •) is constant on supp(rt−) for each T ≥ t, and
int supp(rt−) 6= ∅ by assumption, differentiating with respect to r1, . . . , rd yields the
desired equation.

The next result deals with the special case of short rate realizations, i.e. we consider
term structure models of the type (4.1.1) with d = 1 and x1 = 0.

4.3.3 Corollary. Let X be linearly non-degenerate. Assume the term structure model
(4.1.1) has an affine short rate realization F (t, T, r) = a(t, T ) + b(t, T )r. Suppose for
all t ∈ (0,∞) the following conditions are satisfied.

• For each T ≥ t, the mapping σ(t, T, •) is constant on supp(rt−);

• The mappings β(t, •), c(t, •), K(t, •) are constant on supp(rt−);

• int supp(rt−) 6= ∅.

Then, there are τ1, . . . , τn : (0,∞) → R and ζ ∈ C1(0,∞) with ζ(T ) > 0, T ∈ (0,∞),
such that for each i = 1, . . . , n

σi(t, T, r) = τi(t)ζ(T ), t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t.

Proof. According to Proposition 4.3.2 and the boundary condition (4.1.9) from Lemma
4.1.7, for each fixed T ∈ (0,∞), the function b(•, T ) : (0, T ] → R satisfies the differen-
tial equation {

∂
∂t
b(t, T ) = −µ2(t)b(t, T )

b(T, T ) = 1
.

The mapping µ2, which is given by µ2(t) = ∂
∂T
b(t, T )|T=t, is continuous, because

b ∈ C2,1(R+ × R+). Thus, the unique solution of the differential equation is given by

b(t, T ) = exp

(∫ T

0

µ2(s)ds−
∫ t

0

µ2(s)ds

)
, t ∈ (0, T ].
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Using the formula (4.1.13) from Lemma 4.1.8, we get for t ∈ (0,∞), r ∈ supp(rt−)
and T ≥ t

σ(t, T, r) = γ(t, r)b(t, T ) = γ(t, r) exp

(∫ T

0

µ2(s)ds−
∫ t

0

µ2(s)ds

)
.

Note that, for each t ∈ (0,∞), the mapping γ(t, •) is constant on supp(rt−) by Propo-
sition 4.3.1. Choosing some r(t) ∈ supp(rt−) for every t ∈ (0,∞), the desired factor-
ization is obtained by setting for t, T ∈ (0,∞) and i = 1, . . . , n

τi(t) := γi(t, r(t)) exp

(
−
∫ t

0

µ2(s)ds

)
and ζ(T ) := exp

(∫ T

0

µ2(s)ds

)
.

4.3.4 Remark. As apparent from the proof, mild regularity assumptions on the set
{(t, r) | t ∈ (0,∞), r ∈ supp(rt−)} imply that (r(t))t∈(0,∞) can be chosen such that
t 7→ γ(t, r(t)) = σ(t, t, r(t)) is continuous. Then, the functions τi are also continuous.
Alternatively, one can assume that σ(t, T ) depends nowhere on r.

If the driving process X is a single Lévy process, such a factorization σ(t, T ) =
τ(t)ζ(T ) for deterministic volatility structures is known as necessary and sufficient
condition for the Markov property of the short rate. This was first shown in Carverhill
[20] for term structure models driven by Brownian motions. In Eberlein and Raible [29]
this result was proven for a restricted class of Lévy processes, and extended in Küchler
and Naumann [46] to the general case. This topic was further investigated in Gapeev
and Küchler [35], and Corollary 4.3.3 may be regarded as an analogy of Gapeev and
Küchler [35, Thm. 3.5] for the two-dimensional case, where the term structure model
is driven by a Brownian motion and a purely discontinuous Lévy process with paths of
finite variation on compacts. It is mentioned in Eberlein and Kluge [27, Sec. 5] that,
with a multidimensional driving PIIAC, a factorization as in Corollary 4.3.3 implies
that the short rate is Markovian, even though the driving process does not necessarily
possess stationary increments. This may be seen as an analogy of Corollary 4.3.3 for
several driving processes.

In order to avoid technicalities, we assume for the next result that σ : R+ ×R+ →
Rn does not depend on r ∈ Rd, instead of only presuming that σ(t, T, •) is constant
for all r ∈ supp(rt−), and we assume that the derivative of the driving process X is
deterministic.

4.3.5 Proposition. Let X be a linearly non-degenerate Grigelionis process with de-
terministic derivative, and σ ∈ Cm,m(R+ ×R+,Rn) for some m ∈ N0 ∪ {∞}. Assume
the term structure model (4.1.1) has an affine d + 1-dimensional benchmark realiza-
tion F (t, T, r) = a(t, T )+ 〈b(t, T ), r〉 for some d ∈ N with b ∈ Cm∨2,m∨1(R+×R+,Rd).
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Then, for any t ∈ (0,∞) with int supp(rt−) 6= ∅ it holds concerning the mappings
σ1(t, •), . . . , σn(t, •) : [t,∞) → R and b1(t, •), . . . , bd(t, •) : [t,∞) → R

∂

∂tj
σi(t, •) ∈ span{b1(t, •), . . . , bd(t, •)}, i = 1, . . . , n, j = 0, 1, . . . ,m.

Proof. It is sufficient to show that for each j = 0, 1, . . . ,m there exists a mapping
Mj ∈ Cm−j((0,∞),Rn×d) such that

∂j

∂tj
σ(t, T ) = Mj(t)b(t, T ) for all T ∈ [t,∞). (4.3.2)

We prove (4.3.2) by induction on j.

1. By Lemma 4.1.3, the mapping γ : R+ → Rd×n is given by

γ(t) =

 σ1(t, t+ x1) · · · σn(t, t+ x1)
...

...
σ1(t, t+ xd) · · · σn(t, t+ xd)

 ,

and is thus of class Cm. By the formula (4.1.13) of Lemma 4.1.8, it holds

σ(t, T ) = γ(t)∗b(t, T ).

Thus, for j = 0, equation (4.3.2) holds with M0(s) := γ(s)∗, s ∈ (0,∞).

2. Assume for some j = 0, 1, . . . ,m − 1 there is Mj ∈ Cm−j((0,∞),Rn×d) such
that (4.3.2) is satisfied. Since ∂

∂t
b(t, T ) = −µ2(t)

∗b(t, T ) by Proposition 4.3.2, we
obtain

∂j+1

∂tj+1
σ(t, T ) =

[
∂

∂t
Mj(t)−Mj(t)µ2(t)

∗
]
b(t, T ).

Hence, (4.3.2) is satisfied choosing Mj+1(s) := ∂
∂s
Mj(s) − Mj(s)µ2(s)

∗, s ∈
(0,∞). Note that the demanded smoothness is satisfied, because ∂

∂s
Mj(s) is

of class Cm−j−1, and µ2, which is given by equation (4.3.1) in the proof of
Proposition 4.3.1, is of class Cm−1 by the smoothness assumption on b.

For the case that σ and b are infinitely often differentiable in t and T , Proposition
4.3.5 yields that

dim span
{

∂j

∂tj
σi(t, •) | i = 1, . . . , n, j ∈ N0

}
≤ d,
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implying that for every i ∈ {1, . . . , n} there exists an integer mi ∈ {0, . . . , d− 1} and
a non-trivial vector (η(i,0)(t), η(i,1)(t), . . . , η(i,mi+1)(t)) such that

mi+1∑
j=0

η(i,j)(t)
∂j

∂tj
σi(t, T ) = 0 for all T ∈ [t,∞).

Note that this is exactly the differential equation (3.4.1) from Section 3.4.
We will briefly explore the situation when the volatility is stationary, that is

σ(t, T, r) = σ̃(T − t, r) with σ̃ : R+ × Rd → Rn, and one has an affine, stationary
benchmark realization F (t, T, r) = a(t, T ) + 〈b̃(T − t), r〉. For the sake of simplicity,
we assume that the support supp(rt−) does not depend on t ∈ (0,∞). Denoting these
supports by S, we assume that, for each x ∈ R+, the mapping σ̃(x, •) is constant on
S. We also presume that β(t, •), c(t, •) and K(t, •) are constant on S.

Arguing similarly as in the proof of Proposition 4.3.1, we find out the following.
The mapping γ is constant on (0,∞)× S, namely it holds

γ(t, r) =

 σ̃1(x1, r) · · · σ̃n(x1, r)
...

...
σ̃1(xd, r) · · · σ̃n(xd, r)

 .

The mappings α(t, T, •) are constant on S. If, moreover, the process X has stationary
increments in the sense that Ψt,r does not depend on t, then there is a function
α̃ : R+ → R such that α(t, T, r) = α̃(T − t) for all (t, r) ∈ (0,∞)×S and T ≥ t. There
are µ1 : (0,∞) → Rd and µ2 ∈ Rd×d such that

µ(t, r) = µ1(t) + µ2r, for all (t, r) ∈ (0,∞)× S,

namely, letting r ∈ S be an arbitrary point from the support, choose µ1 as

µi
1(t) :=

∂

∂T
a(t, T )

∣∣
T=t+xi

+ α(t, t+ xi, r), i = 1, . . . , d,

and the d× d matrix µ2 as

µ2 :=

 b̃′1(x1) · · · b̃′d(x1)
...

...

b̃′1(xd) · · · b̃′d(xd)

 .

The analogous result to Proposition 4.3.2 is the differential equation

b̃′(x) = µ∗2b̃(x), x ∈ R+.

Using the identity σ̃(x) = b̃(x)γ, it is immediately seen from solving this differential
equation that σ̃ is quasi-exponential Björk and Svensson [13, Sec. 5], since it is of the
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form σ̃(x) = AeBxC with A ∈ R1×d, B ∈ Rd×d and C ∈ Rd×n. For short rate realiza-
tions (i.e. d = 1), we obtain in particular σ̃i(x) = ηie

λx with constants η1, . . . , ηn ∈ R
and λ ∈ R, which is a version of Corollary 4.3.3 for stationary volatilities. For a single
driving process, i.e. n = 1, this is a coincidence with Eberlein and Raible [29, Thm.
4.4]. If λ 6= 0, one has the Hull-White extension Hull and White [39] of the Vasiček
model Vasiček [61], and the Ho-Lee model Ho and Lee [38] for λ = 0.

The reformulation of Proposition 4.3.5 for stationary volatilities is that the deriva-
tives σ̃

(j)
i , j = 0, 1, . . . ,m, where m ∈ N0∪{∞} depends on the degrees of smoothness

of σ̃ and b̃, belong to the linear space span{b̃1, . . . , b̃d}. In particular, if σ̃ and b̃ are of
class C∞, it follows that

dim span
{
σ̃

(j)
i | i = 1, . . . , n, j ∈ N0

}
≤ d,

implying that for every i ∈ {1, . . . , n} there exists an integer mi ∈ {0, . . . , d− 1} and
a non-trivial vector (η(i,0), η(i,1), . . . , η(i,mi+1)) such that

mi+1∑
j=0

η(i,j)σ̃
(j)
i (x) = 0 for all x ∈ R+.

Now, we deal with short rate realizations, that is term structure models of the type
(4.1.1) with d = 1 and x1 = 0, which are driven by a one-dimensional process, i.e.
n = 1. We assume that the one-dimensional X is a linearly non-degenerate Grigelionis
process with derivative (β, c,K; r)D.

4.3.6 Theorem. Assume the term structure model (4.1.1) has an affine short rate
realization F (t, T, r) = a(t, T ) + b(t, T )r. Let t ∈ (0,∞) such that the following
conditions are satisfied.

• a(t, •), b(t, •) ∈ C∞([t,∞));

• For each T ≥ t, the mapping σ(t, T, •) is constant on supp(rt−);

• σ(t, t, r) 6= 0 for all r ∈ supp(rt−);

• There are β1(t), β2(t), c1(t), c2(t) ∈ R such that β(t, r) = β1(t) + β2(t)r and
c(t, r) = c1(t) + c2(t)r for all r ∈ supp(rt−);

• int supp(rt−) 6= ∅.

Then, the mapping γ(t, •) is constant on supp(rt−), and there are α1(t, •), α2(t, •) :
[t,∞) → R, µ1(t), µ2(t) ∈ R and signed measures K1(t), K2(t) on (R,B(R)) such
that, for all r ∈ supp(rt−)

α(t, T, r) = α1(t, T ) + α2(t, T )r, T ≥ t

µ(t, r) = µ1(t) + µ2(t)r,

K(t, r) = K1(t) +K2(t)r.
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Proof. By Lemma 4.1.3, it holds γ(t, r) = σ(t, t, r) for r ∈ R, showing that γ(t, •)
is constant on supp(rt−). Since all forthcoming equations in this proof are valid for
r ∈ supp(rt−), we denote it by γ(t). Note that by hypothesis it holds γ(t) 6= 0. By
Proposition 4.2.8, the equation

∂

∂t
a(t, T ) +

∂

∂t
b(t, T )r + b(t, T )µ(t, r)

+ b(t, T )γ(t)Ψ′
t,r

(
−γ(t)

∫ T

t

b(t, s)ds

)
= 0 (4.3.3)

is valid for all r ∈ supp(rt−) and T ≥ t. By the boundary condition (4.1.9) of Lemma
4.1.7, it holds b(t, t) = 1, and, by hypothesis, b(t, •) is continuous (in fact, even of class
C∞). Thus, there is a neighborhood Ut ⊂ (0,∞) of t such that

b(t, T ) 6= 0 for all T ∈ Ut.

Hence, the following sequence Γi
k(t, T ) is well defined for T ∈ [t,∞) ∩ Ut. For i = 1, 2

and k ∈ N set

Γi
k(t, T ) :=


− 1

b(t,T )
∂
∂t
a(t, T ), i = 1 and k = 1

− 1
b(t,T )

∂
∂t
b(t, T ), i = 2 and k = 1

− 1
b(t,T )

∂
∂T

Γi
k−1(t, T ), k 6= 1

.

Since a(t, •), b(t, •) ∈ C∞([t,∞)) by assumption, it holds Γi
k(t, •) ∈ C∞([t,∞)∩Ut) for

i = 1, 2 and k ∈ N. Dividing (4.3.3) by b(t, T ) for T ∈ [t,∞) ∩ Ut, we get

µ(t, r) + γ(t)Ψ′
t,r

(
−γ(t)

∫ T

t

b(t, s)ds

)
= Γ1

1(t, T ) + Γ2
1(t, T )r (4.3.4)

for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Ut. Taking T = t in (4.3.4) yields, since
Ψ′

t,r(0) = β(t, r) by equation (2.2.13)

µ(t, r) + γ(t)(β1(t) + β2(t)r) = Γ1
1(t, t) + Γ2

1(t, t)r, r ∈ supp(rt−).

Setting µi(t) := Γi
1(t, t)− γ(t)βi(t), i = 1, 2, we obtain

µ(t, r) = µ1(t) + µ2(t)r, r ∈ supp(rt−).

Since the driving process X is linearly non-degenerate, we may apply Lemma 4.1.8,
and obtain from equation (4.1.12) for all T ≥ t and r ∈ supp(rt−)

α(t, T, r) =
∂

∂t
a(t, T ) +

∂

∂t
b(t, T )r + b(t, T )µ(t, r).
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Defining α1(t, T ) := ∂
∂t
a(t, T ) + b(t, T )µ1(t) and α2(t, T ) := ∂

∂t
b(t, T ) + b(t, T )µ2(t) for

T ∈ [t,∞) yields

α(t, T, r) = α1(t, T ) + α2(t, T )r, r ∈ supp(rt−), T ≥ t.

Differentiating (4.3.4) with respect to T and dividing by b(t, T ), T ∈ [t,∞) ∩ Ut, we
obtain

γ(t)2Ψ′′
t,r

(
−γ(t)

∫ T

t

b(t, s)ds

)
= Γ1

2(t, T ) + Γ2
2(t, T )r (4.3.5)

for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Ut. Taking T = t in (4.3.5) yields, since
Ψ′′

t,r(0) = c(t, r) +
∫

R x
2Kt,r(dx) by equation (2.2.14)∫

R
x2Kt,r(dx) =

Γ1
2(t, t)

γ(t)2
− c1(t) +

(
Γ2

2(t, t)

γ(t)2
− c2(t)

)
r, r ∈ supp(rt−), (4.3.6)

Differentiating (4.3.5) several times with respect to T and dividing by b(t, T ), T ∈
[t,∞) ∩ Ut, we get

γ(t)kΨ
(k)
t,r

(
−γ(t)

∫ T

t

b(t, s)ds

)
= Γ1

k(t, T ) + Γ2
k(t, T )r, k ≥ 3 (4.3.7)

for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Ut. Taking T = t in (4.3.7) yields, since

Ψ
(k)
t,r (0) =

∫
R x

kKt,r(dx), k ≥ 3 by equation (2.2.15)∫
R
xkKt,r(dx) =

Γ1
k(t, t)

γ(t)k
+

Γ2
k(t, t)

γ(t)k
r, k ≥ 3 (4.3.8)

for all r ∈ supp(rt−). Let

r−(t) := inf supp(rt−) and r+(t) := sup supp(rt−).

It holds r−(t) < r+(t), because int supp(rt−) 6= ∅ by hypothesis. Define the sequences
r−n (t), r+

n (t) for n ∈ N as

r−n (t) :=

{
r−(t), r−(t) > −∞
inf (supp(rt−) ∩ [−n,∞)), r−(t) = −∞

,

and

r+
n (t) :=

{
r+(t), r+(t) <∞
sup (supp(rt−) ∩ (−∞, n]), r+(t) = ∞

.
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Note that r−n (t), r+
n (t) ∈ supp(rt−) for all n ∈ N, because the support of rt− is a closed

set. For i = 1, 2 and n ∈ N define the signed measures

Ki
n(t) :=

−
r−n (t)

r+
n (t)−r−n (t)

K(t, r+
n (t)) + r+

n (t)

r+
n (t)−r−n (t)

K(t, r−n (t)), i = 1

1
r+
n (t)−r−n (t)

K(t, r+
n (t))− 1

r+
n (t)−r−n (t)

K(t, r−n (t)), i = 2
. (4.3.9)

For arbitrary n ∈ N and r ∈ R it holds

K1
n(t) +K2

n(t)r =
r − r−n (t)

r+
n (t)− r−n (t)

K(t, r+
n (t)) +

r+
n (t)− r

r+
n (t)− r−n (t)

K(t, r−n (t)), (4.3.10)

which shows that, for each r ∈ [r−n (t), r+
n (t)], the measures K1

n(t) + K2
n(t)r are true

(not just signed) measures. It is also clear that they satisfy the condition (2.2.11)
concerning finite exponential moments, because they are defined by means of the
measures Kt,r, which have this property. By relations (4.3.6), (4.3.8) and (4.3.10) we
obtain for all n ∈ N and r ∈ supp(rt−)∫

R
xkKt,r(dx) =

∫
R
xk(K1

n(t) +K2
n(t)r)(dx), k ≥ 2.

Applying Corollary 2.2.8, it holds for every n ∈ N

K(t, r) = K1
n(t) +K2

n(t)r, r ∈ supp(rt−) ∩ [r−n (t), r+
n (t)]. (4.3.11)

As, we have mentioned above, it holds r−n (t), r+
n (t) ∈ supp(rt−), n ∈ N. Inserting

K(t, r+
n (t)) = K1

n+1(t) + K2
n+1(t)r

+
n (t) and K(t, r−n (t)) = K1

n+1(t) + K2
n+1(t)r

−
n (t) in

(4.3.10), we obtain for every n ∈ N

K1
n(t) +K2

n(t)r = K1
n+1(t) +K2

n+1(t)r, r ∈ supp(rt−) ∩ [r−n+1(t), r
+
n+1(t)]. (4.3.12)

Since int supp(rt−) 6= ∅, and r−n (t) ↓ r−(t), r+
n (t) ↑ r+(t), there is an index n0 ∈ N

such that

K1
n0

(t) = K1
n(t) and K2

n0
(t) = K2

n(t), n ≥ n0. (4.3.13)

This follows by inserting any arbitrary Borel set in (4.3.12), and differentiating with
respect to r (if n is large enough, the interval [r−n (t), r+

n (t)] contains a point from the
interior of supp(rt−), which is non-empty by assumption). We conclude from (4.3.11)
and (4.3.13) that for all n ≥ n0

K(t, r) = K1
n0

(t) +K2
n0

(t)r, r ∈ supp(rt−) ∩ [r−n (t), r+
n (t)]. (4.3.14)

Since r−n (t) ↓ r−(t) and r+
n (t) ↑ r+(t), equation (4.3.14) actually holds for all r ∈

supp(rt−).
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The assumptions of Theorem 4.3.6 concerning the derivative (β, c,K; r)D are in
particular satisfied if X is the sum of a Brownian motion and a purely discontinuous
local martingale, that is X =

√
cW + x ∗ (µX − ν), where c ≥ 0 is a constant, and W

is a standard Wiener process. The derivative of X is then given by (0, c,K; r)D, and
applying Theorem 4.3.6 yields that K(t, r) = K1(t) +K2(t)r.

As an example, let N be a point process with compensator
∫ t

0
λ(s, rs−)ds, i.e. the

intensities are given by a deterministic function λ : R+ × R → (0,∞). Define the
driving process as Xt :=

√
cWt + Nt −

∫ t

0
λ(s, rs−)ds, where c ≥ 0 is a constant, and

W is a standard Wiener process. Then, the intensities have the affine structure

λ(t, r) = λ1(t) + λ2(t)r.

This is a coincidence with equation (29) in Hyll [40, Thm. 1], where, in a similar
context, an affine structure of the intensities of driving counting processes is shown.
The marked point process, considered in Björk, Kabanov, and Runggaldier [15, Prop.
6.5], also has an absolutely continuous compensator, which depends on the short rate
in an affine manner.

4.4 Deterministic direction volatility

The results of Section 3.5 have suggested that for deterministic direction volatility
models, with driving processes that make jumps, there exists no finite dimensional
realization. Within the present framework, we provide a rigorous proof. The following
result concerns any fixed time point t ∈ (0,∞). It can as well be applied for intervals
I ⊂ R+, and this should be viewed in connection with Lemma 2.2.7.

We assume that the driving process in (4.1.1) is a one-dimensional linearly non-
degenerate Grigelionis process with derivative (β, c,K; r)D. An inherent class of pro-
cesses which satisfy the assumptions of the following theorem are Lévy processes with
non-trivial Lévy measure.

4.4.1 Theorem. Assume x1 = 0 and that the term structure model (4.1.1) has an
affine d + 1-dimensional benchmark realization F (t, T, r) = a(t, T ) + 〈b(t, T ), r〉. Let
t ∈ (0,∞) be such that

• a(t, •), b1(t, •), . . . , bd(t, •) ∈ C∞([t,∞));

• int supp(rt−) = supp(rt−);

• The mapping K(t, •) is non-zero and constant on supp(rt−);

• There are λ(t, •) : [t,∞) → R with λ(t, t) 6= 0, and ϕ(t, •) : Rd → R of class
C∞(int supp(rt−)), such that

σ(t, T, r) = ϕ(t, r)λ(t, T ), r ∈ supp(rt−), T ≥ t.
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Then, ϕ(t, •) is constant on supp(rt−).

Proof. Our goal is to establish that for all i = 1, . . . , d

∂

∂ri

ϕ(t, r) = 0, r ∈ int supp(rt−) (4.4.1)

which, due to the assumption int supp(rt−) = supp(rt−), then proves that ϕ(t, •) is
constant on supp(rt−). By Proposition 4.2.8 the following equation is satisfied for all
r ∈ supp(rt−) and T ≥ t.

∂

∂t
a(t, T ) +

〈 ∂
∂t
b(t, T ), r

〉
+ 〈b(t, T ), µ(t, r)〉

+ 〈γ(t, r), b(t, T )〉Ψ′
t,r

(
−
〈
γ(t, r),

∫ T

t

b(t, s)ds
〉)

= 0. (4.4.2)

Set λ(t) := (λ(t, t+ x1), . . . , λ(t, t+ xd)) ∈ Rd. By Lemma 4.1.3 it holds

γ(t, r) = (σ(t, t+ x1, r), . . . , σ(t, t+ xd, r)) = ϕ(t, r)λ(t), r ∈ supp(rt−).

Together with the smoothness assumptions on a(t, •) and b(t, •) we can rewrite equation
(4.4.2) as

2d+1∑
i=1

ψi(t, r)ηi(t, T ) + ϕ(t, r)〈λ(t), b(t, T )〉Ψ′
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

= 0,

(4.4.3)

valid for all r ∈ supp(rt−) and T ≥ t, with functions ψi(t, •) : Rd → R and η(t, •) ∈
C∞([t,∞)) for i = 1, . . . , 2d + 1. Noting that x1 = 0, it follows from the hypothesis
λ(t, t) 6= 0 and the boundary condition (4.1.9) from Lemma 4.1.7 that 〈λ(t), b(t, t)〉 =
λ(t, t) 6= 0. By the continuity of b(t, •) there is a neighborhood Ut ⊂ (0,∞) of t, such
that

〈λ(t), b(t, T )〉 6= 0 for all T ∈ Ut.

Dividing (4.4.3) by 〈λ(t), b(t, T )〉 for T ∈ [t,∞) ∩ Ut, we get

2d+1∑
i=1

ψi(t, r)κi(t, T ) + ϕ(t, r)Ψ′
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

= 0 (4.4.4)

for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Ut, where κi(t, •) ∈ C∞([t,∞) ∩ Ut), i =
1, . . . , 2d+ 1. Differentiating (4.4.4) with respect to T and dividing by 〈λ(t), b(t, T )〉,
and repeating this procedure two times, we arrive at an equation of the form

2d+1∑
i=1

ψi(t, r)τi(t, T ) + ϕ(t, r)4Ψ
(4)
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

= 0, (4.4.5)
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valid for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Ut, with τi(t, •) ∈ C∞([t,∞) ∩ Ut),
i = 1, . . . , 2d+ 1. Observe that equation (4.4.5) is of the form

∑
i∈I

ψi(t, r)ζi(t, T ) +
n∑

k=4

ϕ(t, r)kΓk(t, T )Ψ
(k)
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

= 0,

(4.4.6)

fulfilled for all r ∈ supp(rt−) and T ∈ [t,∞) ∩ Vt, where the following boundary
conditions are satisfied.

I ⊂ N is a finite (possibly empty) set

n ≥ 4 is an even integer

Vt ⊂ (0,∞) is a neighborhood of t

ζi(t, •),Γk(t, •) ∈ C∞([t,∞) ∩ Vt) for each i ∈ I and each k = 4, . . . , n

Γn(t, t) 6= 0

. (4.4.7)

Suppose in equation (4.4.6) there is an index j ∈ I such that ζj(t, t) 6= 0. Then, there
is a neighborhood Wt ⊂ Vt of t such that ζj(t, T ) 6= 0 for all T ∈ [t,∞)∩Wt. Dividing
(4.4.6) by ζj(t, T ), T ∈ [t,∞) ∩Wt gives an equation of the form

ψj(t, r) +
∑

i∈I\{j}

ψi(t, r)ζ̃i(t, T )

+
n∑

k=4

ϕ(t, r)kΓ̃k(t, T )Ψ
(k)
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

= 0, (4.4.8)

valid for all r ∈ supp(rt−) and T ∈ [t,∞)∩Wt, with functions ζ̃i(t, •) ∈ C∞([t,∞)∩Wt),
i ∈ I \ {j} and Γ̃k(t, •) ∈ C∞([t,∞) ∩Wt), k = 4, . . . , n. Differentiating (4.4.8) with
respect to T we obtain∑

i∈I\{j}

ψi(t, r)
∂

∂T
ζ̃i(t, T )

+
n∑

k=4

[
ϕ(t, r)k ∂

∂T
Γ̃k(t, T )Ψ

(k)
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)

(4.4.9)

− ϕ(t, r)k+1Γ̃k(t, T )〈λ(t), b(t, T )〉Ψ(k+1)
t,r

(
−ϕ(t, r)

〈
λ(t),

∫ T

t

b(t, s)ds
〉)]

= 0

for all r ∈ supp(rt−) and T ∈ [t,∞) ∩Wt. We recognize (4.4.9) as an equation of the
form (4.4.6). Concerning (4.4.7), we note that the term Γ̃n(t, t)〈λ(t), b(t, t)〉, which is
obtained for k = n + 1, is unequal to zero, and that all other boundary conditions
from (4.4.7) are fulfilled with the exception that n + 1 is an odd number. Therefore,
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we differentiate (4.4.9) with respect to T . Arguing as above, this yields an equation
of the form (4.4.6) satisfying all boundary conditions from (4.4.7).

Repeating the described procedure, dividing by some ζj(t, T ) with ζj(t, t) 6= 0 and
differentiating two times with respect to T , sufficiently often, we arrive at an equation
of the form (4.4.6), satisfying the boundary conditions (4.4.7), and the additional
condition

ζi(t, t) = 0 for all i ∈ I. (4.4.10)

Recall that K(t, •) is assumed to be constant on supp(rt−). Since the equations in this
proof are valid for r ∈ supp(rt−), we denote it by Kt. Taking T = t in (4.4.6), we

obtain, due to (4.4.10), and since Ψ
(k)
t,r (0) =

∫
R x

kKt(dx), k ≥ 4 for r ∈ supp(rt−) by
equation (2.2.15),

n∑
k=4

ϕ(t, r)kΓk(t, t)

∫
R
xkKt(dx) = 0, r ∈ supp(rt−). (4.4.11)

Now fix an arbitrary r0 ∈ int supp(rt−). In order to establish (4.4.1), assume, on
the contrary, that ∂

∂ri
ϕ(t, r0) 6= 0 for some index i ∈ {1, . . . , d}. Then, there is a

neighborhood U(r0) ⊂ int supp(rt−) of r0 such that ∂
∂ri
ϕ(t, r) 6= 0 for all r ∈ U(r0).

Differentiating (4.4.11) with respect to ri gives

∂

∂ri

ϕ(t, r)
n∑

k=4

kϕ(t, r)k−1Γk(t, t)

∫
R
xkKt(dx) = 0, r ∈ U(r0). (4.4.12)

We can divide (4.4.12) by ∂
∂ri
ϕ(t, r), r ∈ U(r0), and then differentiate once more with

respect to ri. Repeating the procedure of dividing by ∂
∂ri
ϕ(t, r) and then differentiating

with respect to ri sufficiently many times, we arrive at

∂

∂ri

ϕ(t, r)n!Γn(t, t)

∫
R
xnKt(dx) = 0, r ∈ U(r0). (4.4.13)

Since
∫

R x
nKt(dx) > 0 (the measure Kt is non-trivial by assumption, and n is an even

integer) and Γn(t, t) 6= 0 according to (4.4.7), equation (4.4.13) yields the contradiction
that ∂

∂ri
ϕ(t, r0) = 0. This completes the proof.

4.4.2 Remark. As it is seen from the proof, the intrinsic reason, which causes the
non-existence of a finite dimensional realization, is the fact that the Ψt,r are no polyno-
mials. The argumentation of the proof fails if, for instance, X is a Brownian motion.

At this juncture, we shall take a look at the results of Gapeev and Küchler [35,
Sec. 4], where finite dimensional realizations for term structure models with non-
deterministic volatilities, driven by jump-diffusions, are studied. Let a HJM forward
rate model with two driving processes{

df(t, T ) = α(t, T, rt−)dt+ σ1(t, T, rt−)dWt + σ2(t, T, rt−)dLt

f(0, T ) = f ∗(0, T )
(4.4.14)
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be given, where r denotes the short rate, W denotes a standard Wiener process, and
L a compound Poisson process. Gapeev and Küchler [35, Thm. 4.1] provides a finite
dimensional realization, which is affine, for forward rate models of the type{

df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dWt + δ(t, x, T, rt−)µ(dt, dx)

f(0, T ) = f ∗(0, T )
,

where µ denotes a homogeneous Poisson random measure, and the volatilities are of
the form σ(t, T, r) = ϕ(t, r)λ(T ) and δ(t, x, T, r) = ζ(T ). Under further conditions,
the short rate is one component of a finite dimensional Markov process. As a matter
of fact, this result cannot be applied to term structure models of the type (4.4.14),
because δ is not of the form δ(t, x, T, r) = xη(t, T, r).

If the volatilities in (4.4.14) are of the form σi(t, T, r) = ϕi(t, r)λi(T ) for i =
1, 2, then, according to Gapeev and Küchler [35, Remark 4.3], the short rate process
does not need to be a component of a finite dimensional Markov process, but it is a
component of an infinite dimensional one. This infinite dimensional process consists,
besides finitely many other components, of the sequence of processes (see equation
(4.34) in Gapeev and Küchler [35])

ξn(t) = λ2(t)

∫ t

0

ϕ2(s, rs)
n

∫
R
xnexϕ2(s,rs)

R t
s λ2(v)dvK(dx)ds, n ∈ N

where K denotes the Lévy measure of the compound Poisson process. Presuming that
λ2 and ϕ2 are non-trivial, we see that the sequence (ξn)n∈N can only have finitely many
non-zero components if the Lévy measure K is trivial, and in this case all ξn are zero.
As in the proof of Theorem 4.4.1, the crucial point is whether the Lévy measure K is
zero, or equivalently, if the cumulant generating function Ψ is a polynomial.

Another reference that deals with volatility structures depending on the short rate
is Ritchken and Sankarasubramanian [58]. Consider term structure models{

df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f ∗(0, T )
,

where r denotes the short rate, X denotes a one-dimensional Brownian motion, and the
volatility is of the form σ(t, T, r) = ϕ(t, r)λ(t, T ). Ritchken and Sankarasubramanian
[58] show that for some models of this type there exists a three-dimensional (one
dimension is for the time t) affine realization

F (t, T, r, z) = a(t, T ) + b1(t, T )r + b2(t, T )z,

namely if σ(t, T, r) = ϕ(t, r)λ(T ), see condition (2.11) in Ritchken and Sankarasubra-
manian [58]. In this case, the two-dimensional state process (r, Z) is a Markov process,
and one component is the short rate. Without stressing the technical details, we shall
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now see that this is, in principle, impossible for non-deterministic volatilities if the
driving process X admits jumps (for instance if it is a Lévy process with non-trivial
Lévy measure). Assume there exists x ∈ R+ such that b2(t, t+x) 6= 0 for each t ∈ R+.
Then we conclude from

rt(x) = a(t, t+ x) + b1(t, t+ x)rt + b2(t, t+ x)Zt, t ∈ R+

that the process Z can be expressed as

Zt =
1

b2(t, t+ x)

(
rt(x)− a(t, t+ x)− b1(t, t+ x)rt

)
, t ∈ R+.

Inserting this identity into

f(t, T ) = a(t, T ) + b1(t, T )rt + b2(t, T )Zt, t ∈ R+

we see that the term structure model has an affine benchmark realization. Applying
Theorem 4.4.1 yields that σ(t, T, r) does not depend on r.

Theorem 4.4.1 has further consequences for short rate realizations. We assume
that the driving process X is one-dimensional, that is we consider forward rate models
of the form (4.1.1) with d = n = 1 and x1 = 0.

4.4.3 Corollary. Let X be linearly non-degenerate. Assume the term structure model
(4.1.1) has an affine short rate realization F (t, T, r) = a(t, T ) + b(t, T )r with a, b ∈
C2,∞(R+ × R+). Suppose, for all t ∈ (0,∞), the following conditions are satisfied.

• The mappings β(t, •), c(t, •), K(t, •) are constant on supp(rt−);

• Kt 6= 0

• int supp(rt−) = supp(rt−);

• σ(t, t, •) ∈ C∞(int supp(rt−)).

Then, γ(t, •) is constant on supp(rt−) for every t ∈ (0,∞), and there are τ : (0,∞) →
R and ζ ∈ C1(0,∞) with ζ(T ) > 0, T ∈ (0,∞), such that

σ(t, T, r) = τ(t)ζ(T ), t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t.

Proof. First, we observe that γ(t, r) = σ(t, t, r) for all (t, r) ∈ (0,∞) × R by Lemma
4.1.3. According to equation (4.1.13) of Lemma 4.1.8 it holds

σ(t, T, r) = γ(t, r)b(t, T )

for all t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t. Note that all required conditions of
Theorem 4.4.1 are fulfilled, in particular, it holds b(t, t) = 1 by the boundary condition
(4.1.9) of Lemma 4.1.7, and γ(t, •) ∈ C∞(int supp(rt−)) by hypothesis. Applying
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Theorem 4.4.1 yields that, for each t ∈ (0,∞), the mapping γ(t, •) is constant on
supp(rt−). Consequently, for all t ∈ (0,∞) and T ≥ t, the mapping σ(t, T, •) is
constant on supp(rt−). We conclude from Corollary 4.3.3 the factorization

σ(t, T, r) = τ(t)ζ(T ), t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t,

with functions τ : (0,∞) → R and ζ ∈ C1(0,∞) such that ζ(T ) > 0, T ∈ (0,∞).

We remark another coincidence with Hyll [40, Thm. 1]. Equation (28) of the
cited theorem shows that, for short rate realizations driven by finitely many Wiener
processes and finitely many point processes, the short rate volatilities of the point
processes do necessarily not depend on the short rate.

Corollary 4.4.3 can be improved if we demand that the driving process makes
arbitrary small jumps. The idea is to show that the given short rate realization must,
because of the small jumps, necessarily be affine. Thinking of the geometry, described
at the beginning of Chapter 3, this is plausible, because otherwise, the process jumps
out of a non-affine manifold. While Corollary 4.4.3 can be applied to Poisson or
compound Poisson processes for instance, the next result can, for example, be used if
the driving process is a bilateral Gamma process or a generalized hyperbolic process.

4.4.4 Theorem. Let X be non-degenerate. Assume the term structure model (4.1.1)
has a short rate realization F ∈ C2,∞,2(R+×R+×R). Suppose, for all t ∈ (0,∞), the
following conditions are satisfied.

• The mappings β(t, •), c(t, •), K(t, •) are constant on supp(rt−);

• 0 ∈ int supp(Kt);

• The support supp(rt−) is a bounded or unbounded interval, and inf supp(rt−) <
sup supp(rt−);

• σ(t, t, •) ∈ C∞(int supp(rt−)) and σ(t, t, r) 6= 0 for all r ∈ supp(rt−).

Then, γ(t, •) is constant on supp(rt−) for every t ∈ (0,∞), and there are τ : (0,∞) →
R and ζ ∈ C1(0,∞) with τ(t) 6= 0, t ∈ (0,∞) and ζ(T ) > 0, T ∈ (0,∞), such that

σ(t, T, r) = τ(t)ζ(T ), t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t.

Proof. First, we observe that γ(t, r) = σ(t, t, r) for all (t, r) ∈ (0,∞) × R by Lemma
4.1.3. Fix t ∈ (0,∞) and T ≥ t. Equations (3.1.12) and (3.1.14) of Theorem 3.1.17
yield that for all r ∈ supp(rt−) and all x ∈ supp(Kt)

γ(t, r)x
∂

∂r
F (t, T, r) = F (t, T, r + γ(t, r)x)− F (t, T, r). (4.4.15)

Let I ⊂ supp(rt−) be an arbitrary, non-empty, compact interval. By the assumptions
on σ(t, t, •), it holds infr∈I |γ(t, r)| ∈ (0,∞), and since 0 ∈ int supp(Kt), there is
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an ε > 0 such that one of the intervals [0, ε], [−ε, 0] is contained in supp(Kt). Let
M := ε infr∈I |γ(t, r)|. Then, by equation (4.4.15), there exists, for each r0 ∈ I, a
compact interval J(r0) ⊂ R of length M , with r0 ∈ {inf J(r0), sup J(r0)}, such that

(r − r0)
∂

∂r
F (t, T, r0) = F (t, T, r)− F (t, T, r0) for all r ∈ J(r0).

Consequently, r 7→ ∂
∂r
F (t, T, r) is constant on J(r0). Since each interval J(r0) is of

constant, positive length, the continuity of the mapping r 7→ ∂
∂r
F (t, T, r) implies that

it is constant on I. The compact interval I ⊂ supp(rt−) was allowed to be arbitrary.
Hence, it follows that r 7→ ∂

∂r
F (t, T, r) is constant on supp(rt−), say

∂

∂r
F (t, T, r) = b(t, T ) for all r ∈ supp(rt−). (4.4.16)

Consequently, there are mappings a, b : R+ × R+ → R such that for all t ∈ (0,∞),
r ∈ supp(rt−) and T ≥ t

F (t, T, r) = a(t, T ) + b(t, T )r. (4.4.17)

Differentiating (4.4.17) with respect to r shows, by the assumption F ∈ C2,∞,2(R+ ×
R+ × R), that a, b ∈ C2,∞(R+ × R+). Inserting (4.4.16) and (4.4.17) in (4.4.15), we
obtain for all t ∈ (0,∞), r ∈ supp(rt−), x ∈ supp(Kt) and T ≥ t

F (t, T, r + γ(t, r)x) = a(t, T ) + b(t, T )(r + γ(t, r)x). (4.4.18)

Taking together (4.4.16), (4.4.17) and (4.4.18), we conclude that F is an affine short
rate realization in the sense of Definition 4.1.4. Therefore, Corollary 4.4.3 yields the
factorization

σ(t, T, r) = τ(t)ζ(T ), t ∈ (0,∞), r ∈ supp(rt−) and T ≥ t,

with functions τ : (0,∞) → R and ζ ∈ C1(0,∞) such that ζ(T ) > 0, T ∈ (0,∞).
Since, by hypothesis, σ(t, t, r) = τ(t)ζ(t) 6= 0 for every t ∈ (0,∞) and r ∈ supp(rt−),
we infer that τ(t) 6= 0 for all t ∈ (0,∞).

4.4.5 Remark. Assuming that the support S of rt− does not depend on t ∈ (0,∞), an
analogous argumentation reveals that for short rate models with an, a priori arbitrary,
stationary volatility σ(t, T, r) = σ̃(T − t, r), it follows that γ is constant on (0,∞)×S,
and that there are constants c, λ ∈ R such that σ̃(x, r) = ceλx, (x, r) ∈ R+ × S.

The result that the short rate volatility γ(t, •) is constant on supp(rt−) differs
notably from what is known for short rate models driven by a Brownian motion.
We briefly sketch this setup. Presuming, there exists an affine short rate realization
F (t, T, r) = a(t, T ) + b(t, T )r, Proposition 4.2.8 yields an equation of the form

b(t, T )µ(t, r)− γ(t, r)2b(t, T )

∫ T

t

b(t, s)ds = η1(t, T ) + κ1(t, T )r.
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Dividing this equation by b(t, T ) and differentiating with respect to T , we get an
equation of the type

γ(t, r)2b(t, T ) = η2(t, T ) + κ2(t, T )r.

Taking T = t we obtain that the short rate volatility must be of the form

γ(t, r)2 = γ1(t) + γ2(t)r.

This condition is well known in the literature that deals with mathematical finance,
see, e.g., Björk [7]. An example is the model in Cox, Ingersoll, and Ross [24], where
one has a short rate volatility of the form γ(t, r) = c

√
r. We refer to Jeffrey [44] for

further details.
We will now discuss a converse of Theorem 4.4.4, which gives us the opportunity

to show connections to some results in the literature. Assume that the derivative of
the driving process X is deterministic, and that the volatility σ : R+ × R+ → R is
deterministic and factorizes, more precisely σ(t, T ) = τ(t)ζ(T ) with τ, ζ : R+ → R
such that τ(t) 6= 0, t ∈ R+ and ζ(T ) 6= 0, T ∈ R+. We moreover assume that
τ ∈ C1(R+) and ζ ∈ (R+). Then, the volatility satisfies the differential equation

∂

∂t
σ(t, T )− τ ′(t)

τ(t)
σ(t, T ) = 0.

According to Proposition 3.4.6, there exists a two-dimensional realization (G,Z),
which is (see the proof of Proposition 3.4.6) given by the mappingG : R+×R+×R → R,
defined as

G(t, T, z) := f ∗(0, T ) +

∫ t

0

α(s, T )ds+ σ(t, T )z,

and the one-dimensional state process Z, which is the unique solution of the stochastic
differential equation {

dZt = − τ ′(t)
τ(t)

Ztdt+ dXt

Z0 = 0.
.

Since σ(t, t) 6= 0 for all t ∈ R+, we may apply Proposition 4.1.5, which yields the
existence of a short rate realization (F, r) for the term structure model. For further
computations, we assume that the driving process X is a Lévy process with cumulant
generating function Ψ. Applying Proposition 4.1.5 again, the short rate realization
(F, r) is given by the mapping

F (t, T, r) = f ∗(0, T )−
∫ t

0

[
Ψ′
(
−
∫ T

s

σ(s, v)dv

)
−Ψ′

(
−
∫ t

s

σ(s, v)dv

)]
σ(s, T )ds

+
ζ(T )

ζ(t)

(
r − f ∗(0, t)

)
,
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which corresponds to equation (4.12) in Eberlein and Raible [29]. Using Lemma 4.1.3,
it turns out that the dynamics of the short rate are

drt =

[
∂

∂t
f ∗(0, t)−Ψ′(0)σ(t, t) +

∫ t

0

∂2

∂t2
Ψ

(
−
∫ t

s

σ(s, v)dv

)
ds (4.4.19)

− ζ ′(t)

ζ(t)

(∫ t

0

∂

∂t
Ψ

(
−
∫ t

s

σ(s, v)dv

)
ds+ f ∗(0, t)− rt

)]
dt+ σ(t, t)dXt.

This expression is in accordance with equation (4.7) in Eberlein and Raible [29]. If the

function ζ′(t)
ζ(t)

, t ∈ R+ is bounded (which is for instance satisfied for stationary forward

rate volatilities, because then ζ(t) = eλt for some λ ∈ R), the coefficients of (4.4.19)
are Lipschitz in the sense of Protter [55, p. 236]. Then, by Protter [55, Thm. V.32],
the short rate r is a Markov process, i.e. for u ≥ t and any bounded, Borel measurable
function f

E[f(ru) |Gt] = E[f(ru) |σ(rt)],

where (Gt) denotes the natural filtration Gt = σ(rs, s ≤ t), generated by the short
rate process. This is a certain coincidence with the results of Eberlein and Raible
[29] and Küchler and Naumann [46], where the Markov property of the short rate was
investigated with respect to the filtration generated by the Lévy process X.

4.5 Generic benchmark realizations

Assume there is a benchmark realization F for the interest rate model (4.1.1). It arises
the question whether a slightly different model f̃(t, T ), namely one with the same drift
α and volatility σ, but with another initial forward rate curve, say{

df̃(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f̃(0, T ) = f̃ ∗(0, T )
,

still admits a benchmark realization. In other words, we are looking for generic bench-
mark realizations.

For technical reasons, we assume d ≤ n, i.e. the number of benchmark forward
rates is less than or equal to the number of driving processes, which essentially means
that we deal with minimal realizations, as it is the case for short rate realizations.
We moreover presume x1 = 0, i.e. the first benchmark forward rate is the short rate,
and we assume that there exists a convex neighborhood U(r∗) ⊂ Rd of r∗ (the initial
condition of the benchmark forward rates r), such that

U(r∗) ⊂ supp(rt−) for all t ∈ (0,∞). (4.5.1)
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Furthermore, we assume the existence of a subset I = {i1 < . . . < id} ⊂ {1, . . . , n}
such that the mapping σ̂ : R+ × Rd → Rd×d, defined as

σ̂(t, r) :=

 σi1(t, t+ x1, r) · · · σid(t, t+ x1, r)
...

...
σi1(t, t+ xd, r) · · · σid(t, t+ xd, r)

 ,

satisfies

det σ̂(t, r) 6= 0 for all (t, r) ∈ (0,∞)× U(r∗). (4.5.2)

We introduce the d-dimensional vector σ̂ := (σi)i∈I . As we have argued in Section 3.2,
if one considers more than one initial forward rate curve, it does not make sense to
allow the derivative of the driving process to depend on the state process. Therefore,
we assume that the driving process X is a n-dimensional non-degenerate Grigelionis
process with deterministic derivative (β, c,K)D. We define the set S of allowable
realizations as follows.

4.5.1 Definition. Denote by S the set of all mappings F̃ ∈ C2,1,2(R+×R+×Rd) such
that

1. F̃ is a benchmark realization for an interest rate model of the form{
df̃(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f̃(0, T ) = f̃ ∗(0, T )
,

where f̃ ∗(0, •) ∈ C1(R+) is chosen such that r∗ = (f̃ ∗(0, x1), . . . , f̃
∗(0, xd)).

2. It holds U(r∗) ⊂ supp(r̃t−) for all t ∈ (0,∞) and (D(X), r̃) has regular supports,
where r̃ denotes the benchmark forward rates r̃t = (f̃(t, t+ x1), . . . , f̃(t, t+ xd)).

4.5.2 Lemma. The following statements are valid.

1. It holds F ∈ S.

2. For each F̃ ∈ S, the identity

∇rF̃ (t, T, r) = σ̂(t, T, r)σ̂−1(t, r)

is valid for all (t, r) ∈ (0,∞)× U(r∗) and T ≥ t.

3. For all F̃ ∈ S, the associated benchmark forward rates r̃ satisfy the stochastic
differential equation {

dr̃t = µ̃(t, r̃t−)dt+ γ(t, r̃t−)dXt

r̃0 = r∗
,
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where µ̃ : R+ × Rd → Rd has the components

µ̃i(t, r) =
∂

∂T
F̃ (t, T, r)

∣∣∣∣
T=t+xi

+ α(t, t+ xi, r), i = 1, . . . , d.

Proof. The first statement is obvious, the second follows from equation (4.1.11) of
Lemma 4.1.8 and Lemma 4.1.3, and the third is a consequence of Lemma 4.1.3.

In the sequel, Jf and Hf denote the Jacobian and the Hessian matrix of a function
f . The proof of the upcoming result is based on methods used in Jeffrey [44].

4.5.3 Theorem. Assume for every t ∈ (0,∞) there are r ∈ U(r∗) and T ≥ t such
that det HrF (t, T, r) 6= 0, or, equivalently, det Jrσ̂(t, T, r)σ̂−1(t, r) 6= 0. Then, it holds
f ∗(0, •) = f̃ ∗(0, •) for every F̃ ∈ S.

Proof. First of all, det HrF (t, T, r) 6= 0 is equivalent to det Jrσ̂(t, T, r)σ̂−1(t, r) 6= 0 by
the second statement of Lemma 4.5.2.

Let t ∈ (0,∞) be arbitrary, and choose an arbitrary F̃ ∈ S. According to Lemma
4.5.2 and equation (4.1.10) of Lemma 4.1.8, it holds for all r ∈ U(r∗) and T ≥ t

α(t, T, r) =
∂

∂t
F̃ (t, T, r) + 〈∇rF (t, T, r), µ̃(t, r)〉

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

F (t, T, r)〈γi•(t, r)
∗, c(t)γj•(t, r)

∗〉.

Integrating
∫ T

t
α(s, T, r)ds, we obtain, since F̃ (T, T, r) = r1, r ∈ U(r∗) by the bound-

ary condition (4.1.8) of Lemma 4.1.7,

F̃ (t, T, r) =

∫ T

t

〈∇rF (s, T, r), µ̃(s, r)〉ds−
∫ T

t

α(s, T, r)ds+ r1

+
1

2

d∑
i,j=1

∫ T

t

∂2

∂ri∂rj

F (s, T, r)〈γi•(s, r)
∗, c(s)γj•(s, r)

∗〉ds (4.5.3)

for r ∈ U(r∗) and T ≥ t. For fixed T ≥ t and r ∈ U(r∗) define h̃T,r : [0, 1] → R by

h̃T,r(x) := F̃ (t, T, r∗ + x(r − r∗)), x ∈ [0, 1].

Note that r∗ + x(r − r∗) ∈ U(r∗) for each x ∈ [0, 1], because U(r∗) is a convex
neighborhood of r∗ by assumption. Therefore, it holds for r ∈ U(r∗) and T ≥ t

F̃ (t, T, r)− F̃ (t, T, r∗) = h̃T,r(1)− h̃T,r(0) =

∫ 1

0

h̃′T,r(x)dx

=

∫ 1

0

d∑
i=1

(ri − r∗i )
∂

∂ri

F̃ (t, T, r∗ + x(r − r∗))dx

=
〈
r − r∗,

∫ 1

0

∇rF (t, T, r∗ + x(r − r∗))dx
〉
. (4.5.4)
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For i = 1, . . . , d we define the vectors

ṽi(t) := − ∂

∂t
F̃ (t, T, r∗)

∣∣∣∣
T=t+xi

,

wi(t, r) := α(t, t+ xi, r)−
〈
r − r∗,

∂

∂t

∫ 1

0

∇rF (t, T, r∗ + x(r − r∗))dx
〉∣∣∣∣

T=t+xi

.

Using Corollary 4.1.9, we infer from equation (4.5.4)

µ̃(t, r) = ṽ(t) + w(t, r), r ∈ U(r∗).

Inserting this identity into equation (4.5.3) yields for r ∈ U(r∗) and T ≥ t

F̃ (t, T, r) =

∫ T

t

〈∇rF (s, T, r), ṽ(s) + w(s, r)〉ds−
∫ T

t

α(s, T, r)ds+ r1

+
1

2

d∑
i,j=1

∫ T

t

∂2

∂ri∂rj

F (s, T, r)〈γi•(s, r)
∗, c(s)γj•(s, r)

∗〉ds. (4.5.5)

Incorporating formula (4.5.4), and differentiating with respect to t, we obtain

∂

∂t
F̃ (t, T, r∗) +

〈
r − r∗,

∂

∂t

∫ 1

0

∇rF (t, T, r∗ + x(r − r∗))dx
〉

+ 〈∇rF (t, T, r), ṽ(t) + w(t, r)〉 − α(t, T, r)

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

F (t, T, r)〈γi•(t, r)
∗, c(t)γj•(t, r)

∗〉 = 0 (4.5.6)

for r ∈ U(r∗) and T ≥ t. Equation (4.5.6) is valid for every F̃ ∈ S, in particular for F
itself. We deduce that

∂

∂t
F (t, T, r∗)− ∂

∂t
F̃ (t, T, r∗) = 〈∇rF (t, T, r), ṽ(t)− v(t)〉

for r ∈ U(r∗) and T ≥ t. Differentiating with respect to r1, . . . , rd we obtain

HrF (t, T, r)(ṽ(t)− v(t)) = 0 for all r ∈ U(r∗) and T ≥ t.

Since t ∈ (0,∞) was allowed to be arbitrary, and, by hypothesis, there are r ∈ U(r∗)
and T ≥ t such that det HrF (t, T, r) 6= 0, we conclude that

ṽ(t)− v(t) = 0, t ∈ (0,∞).

Equation (4.5.5) is valid for every F̃ ∈ S, in particular for F itself. So, we deduce that
for all (t, r) ∈ (0,∞)× U(r∗) and T ≥ t

F (t, T, r)− F̃ (t, T, r) = 0.
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By the continuity of F and F̃ it follows that for all T ∈ (0,∞)

F (0, T, r∗)− F̃ (0, T, r∗) = lim
t↓0

(
F (t, T, r∗)− F̃ (t, T, r∗)

)
= 0.

By the boundary condition (4.1.7) of Lemma 4.1.7 it follows that f ∗(0, •) = f̃ ∗(0, •).

Theorem 4.5.3 generalizes Jeffrey [44] concerning the driving processes, and in the
direction that we deal with benchmark realizations, instead of short rate realizations.
In the case of short rate realizations, i.e. d = 1 and x1 = 0, hypothesis (4.5.2)
means that there has to exist an index i ∈ {1, . . . , n} such that σi(t, t, r) 6= 0 for all
(t, r) ∈ (0,∞)× U(r∗). Then, we obtain:

4.5.4 Corollary. Assume for every t ∈ (0,∞) there are r ∈ U(r∗) and T ≥ t such that
∂2

∂r2F (t, T, r) 6= 0, or, equivalently, ∂
∂r

[
σi(t,T,r)
σi(t,t,r)

]
6= 0. Then, it holds f ∗(0, •) = f̃ ∗(0, •)

for every F̃ ∈ S.

Proof. The assertion follows directly from Theorem 4.5.3.

4.5.5 Remark. The relation ∂2

∂r2F (t, T, r) 6= 0 means that the realization is not

affine, and ∂
∂r

[
σi(t,T,r)
σi(t,t,r)

]
6= 0 means that the volatility is not of the form σi(t, T, r) =

ϕ(t, T )σi(t, t, r) for some function ϕ(t, T ) which is independent of r.

The statement of Corollary 4.5.4 is found in Jeffrey [44] for a single standard Wiener
process, and in Hyll [40] for finitely many standard Wiener and finitely many counting
processes, all mutually independent.

4.5.6 Remarks.

• Theorem 4.5.3 yields a necessary criterion, in terms of the volatilities, for the
existence of a generic benchmark realization, namely det Jrσ̂(t, T, r)σ̂−1(t, r) =
0. This criterion is by no means sufficient. As we have seen in the previous
sections, it is in general not even enough for a non-generic realization. For
instance, all deterministic direction volatilities σ(r, T, r) = ϕ(t, r)λ(t, T ) satisfy
∂
∂r

[
σ(t,T,r)
σ(t,t,r)

]
= 0. For details on this topic in the case of one driving Wiener

process, we refer to Jeffrey [44].

• As mentioned at the end of Section 3.3, we conjecture that every term structure
model admitting a finite dimensional realization must have an affine term struc-
ture. With regard to this conjecture it would be desirable to show that Theorem
4.5.3 also holds with HrF (t, T, r) 6= 0 instead of det HrF (t, T, r) 6= 0 (this is
only equivalent in the one-dimensional case). It would also be nice to relax the
assumption d ≤ n, i.e. that the number of benchmark forward rates is less than
or equal to the number of driving processes.
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To understand the geometric picture one can think of the following hypothetical
program:

1. Assume we have a model for the benchmark forward rates

drt = µ(t, rt−)dt+ γ(t, rt−)dXt,

and we observe the initial forward rate curve f̃ ∗(0, •) at the market. Choose
r∗ := (f̃ ∗(0, x1), . . . , f̃

∗(0, xd)) ∈ Rd as initial condition, that is the benchmark
forward rates are specified by{

drt = µ(t, rt−)dt+ γ(t, rt−)dXt

r0 = r∗
.

2. Solve the integro-differential equation of Proposition 4.2.4 in order to com-
pute forward rates F (t, T, r). This will give us a new initial curve f ∗(0, T ) :=
F (0, T, r∗).

3. Derive volatilities σ(t, T, r) from the forward rates.

4. Now take the HJM forward rate model{
df(t, T ) = α(t, T, rt−)dt+ σ(t, T, rt−)dXt

f(0, T ) = f̃ ∗(0, T )
,

where α is determined by the HJM drift condition (4.1.15) of Lemma 4.1.10.

The question is now whether the thus constructed forward rate model will have a
benchmark realization. Obviously, if the initial forward rate curve is f̃ ∗(0, •) = f ∗(0, •),
then a benchmark realization is given by the mapping F . If, however, the initial
forward rate curve f̃ ∗(0, •) differs from f ∗(0, •), then it is no longer clear that there
exists a realization. What Theorem 4.5.3 says is that we can only fit one initial forward
rate curve, if the Hessian matrix HrF (t, T, r) is non-singular.



Chapter 5

Conclusion

We have studied the existence of finite dimensional realizations for term structure
models driven by processes, which are allowed to make jumps, by approaching the
problem from two directions. We have used the Lie algebraic methodology from Björk
and Svensson [13], and adapted this framework to our setting, taking into account
the possible occurrence of jumps. The other way was to consider the problem within
the framework of benchmark realization, which enabled us to derive useful integro-
differential equations.

The main insight of these investigations is the following. As for term structure
models driven by Wiener processes, everything works fine provided the volatility is
deterministic. If, however, the volatility is non-deterministic, new phenomena emerge,
as soon as the driving processes have jumps. In particular, the occurrence of jumps
severely limits the range of forward rate models having finite dimensional realizations.
The intrinsic reason, and this comes out from both approaches, is that the cumulant
generating functions of the driving processes are no polynomials, as soon as discontinu-
ities appear, thus having an infinite dimensional structure. For deterministic direction
volatility models, which are frequently considered in the literature, we have, for this
reason, shown the existence of finite dimensional systems converging locally to the
forward rate model.

In Chapter 3, we have started with the investigation of Banach space valued equa-
tions, and later applied the results to term structure models. We have shown that for
Banach space valued equations the existence of finite dimensional realizations implies
that the Lie algebra generated by the vector fields appearing in the equation is finite
dimensional (Theorem 3.2.4). This may be regarded as one implication of the main
theorem in Björk and Svensson [13] for our setting. It is clear, from a geometric point
of view, that the converse is not valid as soon as the driving processes admit jumps.

A principal observation is that all known realizations for term structure models,
this concerns those constructed in the literature (see, e.g., Björk and Landén [12]) as
well as those appearing in this text, are affine. Indeed, it is known from works of
Filipović and Teichmann that Wiener driven models that admit a finite dimensional
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realization, must necessarily have an affine term structure. This gives rise to the
conjecture that for term structure models the converse of Theorem 3.2.4 is true, that
is there exists a realization if and only if the relevant Lie algebra is finite dimensional.
This conjecture, whose prove would require to go into the theory of convenient analysis
(Filipović and Teichmann [33]), is left open in the text.

However, our necessary criterion has served reasonably well in order to exclude the
existence of finite dimensional realizations, when the driving processes admit jumps.
A technical detail that has not been settled is the exact determination of the relevant
Lie algebra (or at least its dimension) for deterministic direction volatility models.
Nevertheless, Lemma 3.5.1, which deals with closely related Lie algebras, suggested
that the Lie algebra is, in general, infinite dimensional. This was supported by the
later result Theorem 4.4.1. Moreover, Lemma 3.5.1 suggested that there exists, at
least, a sequence of finite dimensional systems converging to the forward rate model.
This was proven in Theorem 3.5.18, where the convergence was established in a local
sense. We have assumed for this result that the driving processes have finite variation
paths on compact intervals. Although this is a reasonable class of processes, it is of
course desirable to extend Theorem 3.5.18 to a more general class of driving processes.

The benchmark realization approach in Chapter 4 has proven to be quite effi-
cient, see Theorem 4.4.1 and Theorem 4.4.4. We have shown for certain a priori
non-deterministic volatility structures that the existence of a finite dimensional real-
ization implies that the volatility must be deterministic. In other words, the existence
of a finite dimensional realization is excluded for those non-deterministic models as
soon as the driving process admits jumps. Both results exhibit the restrictive nature
of term structure models, which are driven by processes with jumps, concerning finite
dimensional realizations.

We have also derived a structural result concerning the driving process, namely
in Theorem 4.3.6 we have proven that for short rate realizations with determinis-
tic volatility, the compensator of the jump measure must necessarily have an affine
structure. For term structure models with deterministic volatility we have discovered
connections to Küchler and Naumann [46], Gapeev and Küchler [35], and other papers
that deal with the question when the short rate is a Markov process.

Finally, we have generalized the result of Jeffrey [44] that every generic short
rate realization is affine. Admitting that the driving processes make jumps, we have
proven that any generic benchmark realization must have a singular Hessian matrix.
Nevertheless, it arises the question whether this result can be improved by stating
that the Hessian matrix is zero rather than only being non-singular. This would give
evidence that the conjecture formulated at the end of Section 3.3, namely that every
term structure model, admitting a finite dimensional realization, must have an affine
term structure, is true.
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[5] J. Bertoin. Lévy processes. Cambridge University Press, Cambridge, 1996.

[6] R. Bhar and C. Chiarella. Transformation of Heath-Jarrow-Morton models to
Markovian systems. The European Journal of Finance, 3:1–26, 1997.

[7] T. Björk. Arbitrage theory in continuous time. Oxford University Press, New
York, 2004.

[8] T. Björk. On the geometry of interest rate models. In W. Runggaldier, editor,
Financial Mathematics. Springer Lecture Notes in Mathematics, Springer Verlag,
2003.

[9] T. Björk. Interest rate theory. In W. Runggaldier, editor, Financial Mathematics.
Springer Lecture Notes in Mathematics, Vol. 1656, Springer Verlag, 1997.

[10] T. Björk and B. Christensen. Interest rate dynamics and consistent forward rate
curves. Mathematical Finance, 9(4):323–348, 1999.

[11] T. Björk and A. Gombani. Minimal realizations of interest rate models. Finance
and Stochastics, 3(4):413–432, 1999.

[12] T. Björk and C. Landén. On the construction of finite dimensional realizations
for nonlinear forward rate models. Finance and Stochastics, 6(3):303–331, 2002.

117



118 Bibliography

[13] T. Björk and L. Svensson. On the existence of finite dimensional realizations for
nonlinear forward rate models. Mathematical Finance, 11(2):205–243, 2001.

[14] T. Björk, G. Di Masi, Y. Kabanov, and W. Runggaldier. Towards a general theory
of bond markets. Finance and Stochastics, 1(2):141–174, 1997.

[15] T. Björk, Y. Kabanov, and W. Runggaldier. Bond market structure in the pres-
ence of marked point processes. Mathematical Finance, 7(2):211–239, 1997.

[16] T. Björk, C. Landén, and L. Svensson. Finite dimensional Markovian realizations
for stochastic volatility forward rate models. Proceedings of the Royal Society
London, Series A, Vol. 460:53–83, 2004.

[17] A. Brace and M. Musiela. A multifactor Gauss Markov implementation of Heath,
Jarrow, and Morton. Mathematical Finance, 4:259–283, 1994.

[18] P. Carr, E. Chang, and D. Madan. The variance gamma process and option
pricing. European Finance Review, 2(1):79–105, 1998.

[19] P. Carr, H. Geman, D. Madan, and M. Yor. The fine structure of asset returns:
an empirical investigation. Journal of Business, 75(2):305–332, 2002.

[20] A. Carverhill. When is the spot rate Markovian? Mathematical Finance, 4(4):
305–312, 1994.

[21] O. Cheyette. Markov representation of the Heath-Jarrow-Morton model. Preprint,
BARRA Inc., 1996.

[22] C. Chiarella and O. K. Kwon. Forward rate dependent Markovian transformations
of the Heath-Jarrow-Morton term structure model. Finance and Stochastics, 5
(2):237–257, 2001.

[23] R. Cont and P. Tankov. Financial modelling with jump processes. Chapman and
Hall / CRC Press, London, 2003.

[24] J. Cox, J. Ingersoll, and S. Ross. A theory of the term structure of interest rates.
Econometrica, 53(2):385–408, 1985.

[25] D. Duffie and R. Kan. A yield-factor model of interest rates. Mathematical
Finance, 6(4):379–406, 1996.

[26] E. Eberlein and U. Keller. Hyperbolic distributions in finance. Bernoulli, 1:
281–299, 1995.

[27] E. Eberlein and W. Kluge. Exact pricing formulae for caps and swaptions in a
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[46] U. Küchler and E. Naumann. Markovian short rates in a forward rate model with
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Appendix A

Attached proofs

There are some results in this text, whose proofs are established by
using standard techniques or making somewhat tedious computations. In
fact, a few among these results are known in the literature in a slightly
different context. The proofs, which we have omitted for this reason, are
gathered in this appendix.

A.1 Proofs of Chapter 2

Some of the results of Section 2.2 still need to be proven. The proof of the bond price
equation in Proposition 2.2.4 is similar to that of the third part of Björk, Kabanov,
and Runggaldier [15, Prop. 2.4]. The main ingredients are the stochastic Fubini the-
orems, Itô’s formula and the fact that a Grigelionis process has absolutely continuous
characteristics.

Proof. (of Proposition 2.2.4) Define

F (t, T ) := −
∫ T

t

f(t, s)ds.

From the forward rate equation (2.2.1) we obtain

F (t, T ) = −
∫ T

t

f ∗(0, s)ds−
∫ T

t

∫ t

0

α(v, s)dvds−
∫ T

t

∫ t

0

σ(v, s)dXvds. (A.1.1)

Note that

rs = f ∗(0, s) +

∫ s

0

α(v, s)dv +

∫ s

0

σ(v, s)dXv. (A.1.2)

The following changes of the order of integration are justified by virtue of Assumptions
2.2.1 and the stochastic Fubini theorems in the appendix of Björk, Di Masi, Kabanov,

123



124 Attached proofs

and Runggaldier [14]. We proceed as follows. We change the order of integration∫ T

t

∫ t

0
dvds =

∫ t

0

∫ T

t
dsdv in (A.1.1), afterwards we split the integrals

∫ T

t
=
∫ T

v
−
∫ t

v
,

and then change the order of integration
∫ t

0

∫ t

v
dsdv =

∫ t

0

∫ s

0
dvds. Incorporating the

short rate equation (A.1.2) in the then derived identity yields

F (t, T ) = F (0, T ) +

∫ t

0

rsds−
∫ t

0

∫ T

v

α(v, s)dsdv −
∫ t

0

∫ T

v

σ(v, s)dsdXv.

Using the canonical decomposition Xt = X0 +Xc
t + x ∗ (µX − ν)t +

∫ t

0
βsds, we obtain

the dynamics

dF (t, T ) = (rt + A(t, T ) + 〈βt,Σ(t, T )〉) dt

+ Σ(t, T )dXc
t +

∫
Rn

〈x,Σ(t, T )〉(µX − ν)(dt, dx). (A.1.3)

Now we apply Itô’s formula Jacod and Shiryaev [42, Thm. I.4.57] on p(t, T ) = eF (t,T )

for fixed T ∈ R+, and obtain

p(t, T ) = p(0, T ) +

∫ t

0

p(s−, T )dF (s, T ) +
1

2

∫ t

0

p(s−, T )d〈F (•, T )c, F (•, T )c〉t

+
∑

0<s≤t

[
eF (s,T ) − eF (s−,T ) − eF (s−,T )∆F (s, T )

]
. (A.1.4)

Inserting the dynamics (A.1.3) for F (t, T ) as well as

d〈F (•, T )c, F (•, T )c〉t = 〈Σ(t, T ), ctΣ(t, T )〉dt,
∆F (t, T ) = 〈∆Xt,Σ(t, T )〉

into (A.1.4), we obtain the claimed dynamics (2.2.6) for the bond prices.

The equation for the discounted bond prices is an immediate consequence.

Proof. (of Corollary 2.2.5) The discounted bond prices are given by z(t, T ) = Btp(t, T ),
where Bt := exp(−

∫ t

0
rsds). Since B has continuous paths, the quadratic co-variation

of Bt and p(t, T ) vanishes Jacod and Shiryaev [42, Prop. I.4.49.d], and we get

dz(t, T ) = Bt−dp(t, T ) + p(t−, T )dBt

Incorporating dBt = −rtBtdt and the bond price dynamics from Proposition 2.2.4
yields the asserted equation (2.2.7) for the discounted bond prices.

Proof. (of Lemma 2.2.10) The left-continuity of t 7→ f(t)g(t) yields that f(t)g(t) = 0
for all t ∈ (0,∞), because, assuming f(t)g(t) 6= 0 for some t ∈ (0,∞) leads to the
contradiction

∫ t

u
f(s)g(s)ds 6= 0 for some u ∈ (0, t). The assertion follows by virtue of

the assumption g > 0.
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Now, we prove the Musiela parametrization. Our proof is essentially a copy of the
proof of the second part of Björk, Kabanov, and Runggaldier [15, Prop. 2.4], where
an analogous equation for the short rate is derived, see also Appendix 1 in Jeffrey [44].

Proof. (of Proposition 2.2.12) All changes of order of integration, and the interchang-
ings of differentiation and integration, performed in this proof, are valid due to As-
sumptions 2.2.1 and the stochastic Fubini theorems in the appendix of Björk, Di Masi,
Kabanov, and Runggaldier [14]. Fix x ∈ R+. From the forward rate dynamics (2.2.1)
we obtain

rt(x)− r0(x) = r0(t+ x)− r0(x) +

∫ t

0

α(s, t+ x)ds+
n∑

i=1

∫ t

0

σi(s, t+ x)dX i
s.

(A.1.5)

Let us consider the terms in (A.1.5) in detail. First, we observe that

r0(t+ x)− r0(x) =

∫ t

0

∂

∂x
r0(s+ x)dx.

For the stochastic integral term, we get

n∑
i=1

∫ t

0

σi(s, t+ x)dX i
s =

n∑
i=1

∫ t

0

(∫ t

s

∂

∂v
σi(s, v + x)dv + σi(s, s+ x)

)
dX i

s

=

∫ t

0

(
n∑

i=1

∫ t

0

∂

∂x
σi(s, v + x)dX i

s

)
dv +

n∑
i=1

∫ t

0

σi(s, s+ x)dX i
s.

Analogously, the identity∫ t

0

α(s, t+ x)ds =

∫ t

0

(∫ t

0

∂

∂x
α(s, v + x)ds

)
dv +

∫ t

0

α(s, s+ x)ds

is valid. Inserting the three previous equations into (A.1.5), we obtain

drt(x) =

[
∂

∂x

(
r0(t+ x) +

∫ t

0

α(s, t+ x)ds+

∫ t

0

σ(s, t+ x)dXs

)]
dt

+ α(t, t+ x)dt+ σ(t, t+ x)dXt

=

[
∂

∂x
rt(x) + α(t, t+ x)

]
dt+ σ(t, t+ x)dXt,

as we have stated. The initial condition r0(x) = f ∗(0, x) follows from the definition of
the rt(x).
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A.2 Proofs of Chapter 3

In Section 3.1, we have formulated a few auxiliary results about supports.

Proof. (of Lemma 3.1.4)

1. Assume, it holds P(A) = 1, where A ∈ F is the event A = {f ◦X = g ◦X}. By
hypothesis f(x) = g(x) for all x ∈ X(A), and therefore, due to the continuity
of f and g, the identity f(x) = g(x) is valid for all x ∈ X(A). The support
supp(X) is the smallest closed set F ⊂ Rn satisfying P(X ∈ F ) = 1. Thus,
the relation P(X ∈ X(A)) ≥ P(A) = 1 implies that supp(X) ⊂ X(A), whence
f(x) = g(x) for all x ∈ supp(X).

2. Assume f(x) = g(x) for all x ∈ supp(X). Then we obtain P(f ◦X = g ◦X) ≥
P(X ∈ supp(X)) = 1, i.e. f ◦X = g ◦X (P− a.s.)

Proof. (of Lemma 3.1.5) Assuming f(x) 6= 0 for some x ∈ supp(µ) implies, by the
continuity of f , that f(y) 6= 0 for all y from a neighborhood U(x) ⊂ Rn of x. The
support of µ is the set of all x ∈ Rn such that µ(U) > 0 for all open sets U ⊂ Rn with
x ∈ U . Consequently, it holds µ(U(x)) > 0, which contradicts f = 0 (µ− a.s.).

Proof. (of Lemma 3.1.6) Set W := W1 − W2, which is again of class C(R+ × Rd).
By hypothesis, there exists a P-null set A such that the paths t 7→ Zt−(ω) are left-
continuous for each ω ∈ Ω \ A and∫ t

0

W (s, Zs−(ω))ds = 0, (ω, t) ∈ Ω \ A× R+.

For each ω ∈ Ω \ A, the left-continuity of the trajectory t 7→ W (t, Zt−(ω)) yields, by
virtue of Lemma 2.2.10, that W (t, Zt−(ω)) = 0 for all t ∈ (0,∞). Applying, for each
t ∈ (0,∞), Lemma 3.1.4 on the mapping ω 7→ W (t, Zt−(ω)), the proof is done.

Next, we give the omitted proofs of the results that deal with Fisk-Stratonovich
integration.

Proof. (of Lemma 3.1.20) For each i, j = 1, . . . , n the continuous martingale part of
γij(t, Zt) is, by Itô’s formula Jacod and Shiryaev [42, Thm. I.4.57], given by

γij(t, Zt)
c =

d∑
l=1

∫ t

0

∂

∂zl

γij(s, Zs−)dZ l,c
s .
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Since Zc
t =

∫ t

0
γ(s, Zs−)dXc

s , which follows from the dynamics (3.1.27), we deduce from
the associativity of the Itô integral Jacod and Shiryaev [42, I.4.37]

γij(t, Zt)
c =

d∑
l=1

∫ t

0

[
∂

∂zl

γij(s, Zs−)

]
γl•(s, Zs−)dXc

s .

Thus, we can compute 〈γi•(Ẑ)c, Xc〉t by using Jacod and Shiryaev [42, Thm. I.4.40.d],
and obtain the asserted identity.

For the proof of Theorem 3.1.21, we need the associativity of Fisk-Stratonovich
integrals. Since this result was not readily available in the literature Protter [55], we
first derive this fact before proving the theorem.

A.2.1 Lemma. For one-dimensional semimartingales X, Y, Z it holds

X− ◦ (Y− ◦ Z) = (XY )− ◦ Z.

Proof. By the definition of the Fisk-Stratonovich integral it holds

X− ◦ (Y− ◦ Z) = X− ◦ (Y−•Z + 1
2
〈Y c, Zc〉)

= X−•(Y−•Z + 1
2
〈Y c, Zc〉) + 1

2
〈Xc, (Y−•Z + 1

2
〈Y c, Zc〉)c〉

= X−•(Y−•Z) + 1
2
X−•〈Y c, Zc〉+ 1

2
〈Xc, Y−•Z

c〉. (A.2.1)

By the associativity of the Itô integral (see I.4.37 in Jacod and Shiryaev [42]) we obtain

X−•(Y−•Z) = (XY )−•Z. (A.2.2)

Moreover, according to Jacod and Shiryaev [42, Thm. I.4.40.d] it holds

X−•〈Y c, Zc〉+ 〈Xc, Y−•Z
c〉 = 〈(X−•Y + Y−•X)c, Zc〉. (A.2.3)

Since [X, Y ] ∈ V Jacod and Shiryaev [42, Thm. I.4.47.b], where [X, Y ] denotes the
quadratic co-variation

[X, Y ] := XY −X0Y0 −X−•Y − Y−•X,

we can write equation (A.2.3) as

X−•〈Y c, Zc〉+ 〈Xc, Y−•Z
c〉 = 〈(XY )c, Zc〉. (A.2.4)

The asserted identity follows by inserting (A.2.2) and (A.2.4) into (A.2.1).
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Proof. (of Theorem 3.1.21) By Itô’s formula for Fisk-Stratonovich integrals Protter
[55, Thm. V.21] we obtain

f(t, Zt) = f(0, Z0) +

∫ t

0

∂

∂s
f(s, Zs−)ds+

d∑
i=1

∫ t

0

∂

∂zi

f(s, Zs−) ◦ dZ i
s

+
∑

0<s≤t

[
f(s, Zs)− f(s, Zs−)−

d∑
i=1

∂

∂zi

f(s, Zs−)∆Zi
s

]
, (A.2.5)

where the last term is in V. Taking into account the jumps ∆Zt = γ(t, Zt−)∆Xt, the
dynamics (3.1.28) of Z and the associativity of the Fisk-Stratonovich integral (Lemma
A.2.1), we write equation (A.2.5) as

df(t, Zt) =
∂

∂t
f(t, Zt−)dt+ 〈∇zf(t, Zt−), µ(t, Zt−)〉dt+∇zf(t, Zt−)γ(t, Zt−) ◦ dXt

+

∫
Rn

(
f(t, Zt− + γ(t, Zt−)x)− f(t, Zt−)

− 〈∇zf(t, Zt−), γ(t, Zt−)x〉
)
µX(dt, dx), (A.2.6)

where the µX(dt, dx)-integral is in V. Recall that Ẑ is defined by Ẑt(ω) := (t, Zt(ω)).
The process 〈σ(Ẑ)c, Xc〉 belongs to V and is predictable (in fact, even continuous).
Thus, (3.1.29) provides a decomposition of the semimartingale f(t, Zt) where the
finite variation part is predictable. Consequently, f(t, Zt) is a special semimartin-
gale. According to Prop. I.4.23 and Lemma I.3.10 in Jacod and Shiryaev [42], the
µX(dt, dx)-integral in (A.2.6) belongs to Aloc. Therefore, we may integrate with re-
spect to (µX − ν)(dt, dx) plus ν(dt, dx) Jacod and Shiryaev [42, Prop. II.1.28], and
obtain

df(t, Zt) =

[
∂

∂t
f(t, Zt−) + 〈∇zf(t, Zt−), µ(t, Zt−) + γ(t, Zt−)β(t, Zt−)〉

+

∫ (
f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−)

− 〈∇zf(t, Zt−), γd(t, Zt−)x〉
)
Kd

t,Zt−(dx)

]
dt

+∇zf(t, Zt−)γc(t, Zt−) ◦ dC(X)t

+
(
f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−)

)
(µD(X) − νD(X))(dt, dx). (A.2.7)

According to Jacod and Shiryaev [42, Cor. II.2.38] the functions Wi(ω, t, x) = xi

belong to Gloc(µ
X). Applying Jacod and Shiryaev [42, Prop. II.1.30.b] the dynamics

(3.1.29) of f(t, Zt) can be expressed as

df(t, Zt) = (α(t, Zt−) + 〈β(t, Zt−), σ(t, Zt−)〉)dt+ σc(t, Zt−) ◦ dC(X)t

+ 〈x, σd(t, Zt−)〉(µD(X) − νD(X))(dt, dx). (A.2.8)
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Since the continuous local martingale part, the purely discontinuous local martingale
part and the finite variation part of a special semimartingale are unique (which fol-
lows from Cor. I.3.16 and Thm. I.4.18 in Jacod and Shiryaev [42]), we obtain from
equations (A.2.7) and (A.2.8)∫ t

0

α(s, Zs−)ds+

∫ t

0

〈β(s, Zs−), σ(s, Zs−)−∇zf(s, Zs−)γ(s, Zs−)〉ds (A.2.9)

+
1

2
〈σ(Ẑ)c, Xc〉t =

∫ t

0

(
∂

∂s
f(s, Zs−) + 〈∇zf(s, Zs−), µ(s, Zs−)〉

)
ds

+

∫ t

0

∫ (
f(s, Zs− + γd(s, Zs−)x)− f(s, Zs−)

− 〈∇zf(s, Zs−), γd(s, Zs−)x〉
)
Kd

s,Zs−(dx)ds+
1

2
〈(∇zf(Ẑ)γ(Ẑ))c, Xc〉t,

as well as∫ t

0

σc(s, Zs−)dC(X)s =

∫ t

0

∇zf(s, Zs−)γc(s, Zs−)dC(X)s, (A.2.10)∫ t

0

∫
〈x, σd(s, Zs−)〉(µD(X) − νD(X))(ds, dx)

=

∫ t

0

∫ (
f(s, Zs− + γd(s, Zs−)x)− f(s, Zs−)

)
(µD(X) − νD(X))(ds, dx). (A.2.11)

Applying Lemma 3.1.11 on equation (A.2.10) we obtain

σc(t, z) = ∇zf(t, z)γc(t, z), t ∈ (0,∞), z ∈ supp(Zt−), (A.2.12)

and an application of Lemma 3.1.13 on equation (A.2.11) yields the identity (3.1.30).
Provided, X is non-degenerate, we obtain, arguing exactly as in the proof of The-

orem 3.1.17,

σd(t, z) = ∇zf(t, z)γd(t, z), t ∈ (0,∞), z ∈ supp(Zt−)

from which, together with equation (A.2.12), we conclude the identity (3.1.32) for
σ(t, z). Applying Lemma 3.1.4 on equations (3.1.30) and (3.1.32) we obtain that, for
all t ∈ (0,∞) and x ∈ supp(Kd

t ), it holds

〈σd(t, Zt−), x〉 = f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−) P− a.s.

σ(t, Zt−) = ∇zf(t, Zt−)γ(t, Zt−) P− a.s.

By the continuity assumptions on f and the coefficients, and the right-continuity of Z
(notice also the second point in Definition 3.1.10), we obtain, up to a P-null set,

〈σd(t, Zt−), x〉 = f(t, Zt− + γd(t, Zt−)x)− f(t, Zt−), t ∈ (0,∞), x ∈ supp(Kd
t )

σ(t, Zt−) = ∇zf(t, Zt−)γ(t, Zt−), t ∈ (0,∞)

〈σ(Ẑ)c, Xc〉t = 〈(∇zf(Ẑ)γ(Ẑ))c, Xc〉t, t ∈ (0,∞).
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Hence, equation (A.2.9) simplifies to∫ t

0

α(s, Zs−)ds =

∫ t

0

(
∂

∂s
f(s, Zs−) + 〈∇zf(s, Zs−), µ(s, Zs−)〉

)
ds.

Applying Lemma 3.1.6, we obtain the stated formula (3.1.31) for α(t, z).
If the assumptions from the third part of the theorem hold, we obtain equations

(3.1.33) and (3.1.34) by an argumentation analogous to that of the proof of Theorem
3.1.17.

Proof. (of Lemma 3.2.3) By assumption, there is a d+1-dimensional realization (G,Z).
For each x ∈ R+ and j = 1, . . . , n, the continuous martingale part of the process
σj(t, rt)(x) is, according to Itô’s formula Jacod and Shiryaev [42, Thm. I.4.57], given
by

σj(t, rt)(x)
c = σj(t, G(t, Zt))(x)

c

=
d∑

i=1

∫ t

0

∂

∂zi

(
σj(s,G(s, Zs−))(x)

)
dZ i,c

s .

Because of the dynamics of Z

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt,

and the associativity of the Itô integral Jacod and Shiryaev [42, I.4.37], we obtain

σj(t, rt)(x)
c =

d∑
i=1

n∑
l=1

∫ t

0

∂

∂zi

(
σj(s,G(s, Zs−))(x)

)
γil(s, Zs−)dX l,c

s (A.2.13)

Define the mappings Ĝ : R+ × Rd → R+ × X by Ĝ(t, z) := (t, G(t, z)), and σx
j :

R+ × X → R by σx
j (t, r) := σj(t, r)(x). Observe that for all (t, z) ∈ R+ × Rd and

l = 1, . . . , n

d∑
i=1

∂

∂zi

(
σj(t, G(t, z))(x)

)
γil(t, z) = F(σx

j ◦ Ĝ)(t, z)[0, γ•l(t, z)]

= Fσx
j (Ĝ(t, z)) ◦ FĜ(t, z)[0, γ•l(t, z)]. (A.2.14)

Let us determine the Fréchet derivative FĜ(t, z)[0, γ•l(t, z)]. It holds for each x ∈ R+

FĜ(t, z)[0, γ•l(t, z)](x) =

(
0, lim

h→0

G(t, z + hγ•l(t, z))(x)−G(t, z)(x)

h

)
= (0, 〈γ•l(t, z),∇zG(t, z)(x)〉).
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Applying Theorem 3.1.17 on the dynamics (note that the coefficients are continuous
and G(•)(x) of class C2, because convergence in the Banach space X implies pointwise
convergence)

dZt = µ(t, Zt−)dt+ γ(t, Zt−)dXt,

dG(t, Zt)(x) = α(t, G(t, Zt−))(x)dt+ σ(t, G(t, Zt−))(x)dXt,

we obtain for all t ∈ (0,∞) and z ∈ supp(Zt−)

σl(Ĝ(t, z))(x) = 〈γ•l(t, z),∇zG(t, z)(x)〉.

Applying Lemma 3.1.4 on this equation we obtain that, for all t ∈ (0,∞), it holds
σl(Ĝ(t, Zt))(x) = 〈γ•l(t, Zt),∇zG(t, Zt)(x)〉 (P − a.s.) Since the trajectories of Z are
right-continuous, we obtain, up to an evanescent set,

FĜ(t, Zt)[0, γ•l(t, Zt)](x) = (0, σl(Ĝ(t, Zt))(x)). (A.2.15)

Taking together (A.2.13), (A.2.14) and (A.2.15), we get that the continuous martingale
part of σj(t, rt)(x) equals

σj(t, rt)(x)
c =

n∑
l=1

∫ t

0

Frσj(s, rs−)[σl(s, rs−)](x)dX l,c
s .

This identity and Jacod and Shiryaev [42, Thm. I.4.40] imply the stated equation.

In the text, we have omitted the proofs of those results, where Lie algebras are
computed.

Proof. (of Lemma 3.4.1) The vector fields α̂ and σ̂1, . . . , σ̂n have the Fréchet derivatives

Fα̂(t0, r0)[t, r] = Frα̂(t0, r0)[r] + Ftα̂(t0, r0)[t]

=

(
0,

∂

∂x
r + t

∂

∂t
D(t0)

)
, (A.2.16)

Fσ̂i(t0, r0)[t, r] = Frσ̂i(t0, r0)[r] + Ftσ̂i(t0, r0)[t]

=

(
0, t

∂

∂t
σi(t0)

)
for i = 1, . . . , n. (A.2.17)

According to (A.2.17) all Lie brackets [σ̂i, σ̂j] are zero, and by (A.2.16) the brackets
[σ̂i, α̂] are given by

[σ̂i, α̂](t, r) =

(
0,

(
∂

∂t
− ∂

∂x

)
σi(t)

)
, i = 1, . . . , n.

Their Fréchet derivatives are

F[σ̂i, α̂](t0, r0)[t, r] =

(
0, t

∂

∂t

(
∂

∂t
− ∂

∂x

)
σi(t0)

)
, i = 1, . . . , n.



132 Attached proofs

Thus, we obtain the Lie brackets

[[σ̂i, α̂], α̂](t, r) =

(
0,

(
∂

∂t
− ∂

∂x

)2

σi(t)

)
, i = 1, . . . , n.

Proceeding in this fashion, we see that all relevant brackets are either zero or of the
form (0, ( ∂

∂t
− ∂

∂x
)jσi) with i ∈ {1, . . . , n} and j ∈ N0.

In order to establish the next results that deal with the computation of Lie algebras,
we cite an auxiliary result from Björk and Svensson [13].

A.2.2 Lemma. Take the vector fields f1, . . . , fk as given. The Lie algebra {f1, . . . , fk}LA

remains unchanged under the following operations.

• The vector field fi may be replaced by αfi, where α is any smooth non-zero scalar
field.

• The vector field fi may be replaced by

fi +
∑
j 6=i

αjfj,

where α1, . . . , αk are any smooth scalar fields.

Proof. This is Björk and Svensson [13, Lemma 3.1].

Now, we can continue our Lie algebraic computations.

Proof. (of Lemma 3.5.1) Defining the vector field λ̂ on (0,∞)×H as λ̂(t, r) := (0, λ̃(t)),
we can express the fields α̂m and σ̂ as

α̂m(t, r) =

(
1,

∂

∂x
r − ϕ(t, r)λ̃(t)

∂

∂z
Ψm(t,−ϕ(t, r)D̃(t))

)
− 1

2
c(t)ϕ(t, r)Frϕ(t, r)[λ̃(t)]λ̂(t), m ∈ N,

σ̂(t, r) = ϕ(t, r)λ̂(t).

Fix m ∈ N and set n := |Jm|. Since it is assumed ϕ(t, r) 6= 0 for all (t, r) ∈ (0,∞)×H,
we may apply Lemma A.2.2 on the vector fields α̂m, σ̂, and obtain

{α̂m, σ̂}LA = {f̂ , λ̂}LA, (A.2.18)

where f̂ is the vector field on (0,∞)×H defined as

f̂(t, r) :=

(
1,

∂

∂x
r − ϕ(t, r)λ̃(t)

∂

∂z
Ψm(t,−ϕ(t, r)D̃(t))

)
=

(
1,

∂

∂x
r

)
+

(
0,
∑
j∈Jm

(−1)j+1aj(t)ϕ
j+1(t, r)(λ̃D̃j)(t)

)
. (A.2.19)
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Define inductively the brackets ĝi, i ∈ N by

ĝi :=

{
[λ̂, [λ̂, f̂ ]], i = 1

[λ̂, ĝi−1], i ≥ 2
.

We see from (A.2.18) that the relevant Lie algebra equals

{α̂m, σ̂}LA = {f̂ , λ̂, [λ̂, f̂ ], ĝ1, . . . , ĝn}LA. (A.2.20)

We go on to compute the brackets appearing in (A.2.20). We only need the Fréchet
derivative of f̂ with respect to r for the computation of the Lie bracket [λ̂, f̂ ], because
λ̂ has t-component zero. It is given by

Frf̂(t0, r0)[r] =

(
0,

∂

∂x
r +

∑
j∈Jm

(−1)j+1aj(t0)Fr(ϕ
j+1(t0, r0))[r](λ̃D̃

j)(t0)

)
.

The derivative of λ̂ is Fλ̂(t0, r0)[t, r] = (0, t ∂
∂t
λ̃(t0)). We obtain the Lie bracket

[λ̂, f̂ ](t, r) =

(
0,

(
∂

∂t
− ∂

∂x

)
λ̃(t)−

∑
j∈Jm

(−1)j+1aj(t)Fr(ϕ
j+1(t, r))[λ̃(t)](λ̃D̃j)(t)

)
.

(A.2.21)

Similarly, we find out that for each i ∈ N

ĝi(t, r) =

(
0, (−1)i+1

∑
j∈Jm

(−1)j+1aj(t)Fi+1
r (ϕj+1(t, r))[λ̃(t); . . . ; λ̃(t)](λ̃D̃j)(t)

)
.

Recall that n = |Jm|. For each (t, r) ∈ (0,∞)×H define the n× n matrix A(t, r) by

Aij(t, r) := (−1)i+jaj(t)Fi+1
r (ϕj+1(t, r))[λ̃(t); . . . ; λ̃(t)], i = 1, . . . , n, j ∈ Jm.

Denoting by ĥ the column vector with entries (0, λ̃D̃j), j ∈ Jm, and by ĝ the column
vector consisting of ĝ1, . . . , ĝn, the relation

Aĥ = ĝ (A.2.22)

is valid. We proceed with the Gaussian algorithm in equation (A.2.22), which replaces
A by the n × n-unit matrix, because A is non-singular by hypothesis. The mutual
exchange of two rows in A changes the order of ĝ, multiplication of a row in A with
a non-zero real number leads to a multiplication of one of the vector fields ĝi with
a smooth non-zero scalar field, and adding the multiple of a row to another row in
A implies that one vector field ĝi is replaced by ĝi + ρĝj, where ρ is a smooth scalar
field. Consequently, each step of the Gaussian algorithm leads to a replacement of the
vector fields of ĝ1, . . . , ĝn, which is valid by Lemma A.2.2. So, we get from (A.2.20)

{α̂m, σ̂}LA = {f̂ , λ̂, [λ̂, f̂ ], λ̂D̃j | j ∈ Jm}LA.
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A further application of Lemma A.2.2, where we notice the representations (A.2.19)
of f̂ and (A.2.21) of [λ̂, f̂ ], simplifies the Lie algebra to

{α̂m, σ̂}LA = {(1, ∂
∂x
r), (0, λ̃), (0, ( ∂

∂t
− ∂

∂x
)λ̃), (0, λ̃D̃j) | j ∈ Jm}LA.

Now, applying Lemma 3.4.1 yields the desired identity for the Lie algebra generated
by α̂m and σ̂.

Proof. (of Lemma 3.5.4) Inserting the definitions of σ̃ and Ψ∗ we obtain

−
〈
σ̃(t, x, r),∇zΨ

∗
(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
= −

n∑
v=1

[
mv∑
w=1

ϕ(v,w)(t, r)λ̃(v,w)(t, x)

]
[

e∑
u=1

kv
u 6=0

kv
uaku(t)

n∏
i=1
i6=v

(
−

mi∑
j=1

ϕ(i,j)(t, r)D̃(i,j)(t, x)

)ki
u

(
−

mv∑
j=1

ϕ(v,j)(t, r)D̃(v,j)(t, x)

)kv
u−1 ]

.

Since, in general, one has for integers k,m ∈ N and real numbers a1, . . . , am ∈ R

(a1 + . . .+ am)k =
∑

l1,...,lm∈N0
l1+...+lm=k

k!

l1! · · · lm!
al1

1 · · · alm
m ,

we get the equation

−
〈
σ̃(t, x, r),∇zΨ

∗
(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
=

n∑
v=1

[
mv∑
w=1

−ϕ(v,w)(t, r)λ̃(v,w)(t, x)

]
[

e∑
u=1

kv
u 6=0

kv
uaku(t)

n∏
i=1
i6=v

( ∑
l(i,1),...,l(i,mi)

∈N0

l(i,1)
+...+l(i,mi)

=ki
u

ki
u!

l(i,1)! · · · l(i,mi)!

( mi∏
j=1

(−ϕ(i,j)(t, r))
l(i,j)

)( mi∏
j=1

D̃(i,j)(t, x)
l(i,j)

))
( ∑

l(v,1),...,l(v,mv)∈N0
l(v,1)

+...+l(v,mv)=kv
u−1

(kv
u − 1)!

l(v,1)! · · · l(v,mv)!
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( mv∏
j=1

(−ϕ(v,j)(t, x))
l(v,j)

)( mv∏
j=1

D̃(v,j)(t, x)
l(v,j)

))]
.

It holds, in general, for real numbers a(i,j) ∈ R, i = 1, . . . , n, j = 1, . . . ,mi

n∏
i=1

(
mi∑
j=1

a(i,j)

)
=

m1∑
j1=1

· · ·
mn∑

jn=1

(
n∏

i=1

a(i,ji)

)
.

Denoting by L(u,v) the set of all l(i,j) ∈ N0, i = 1, . . . , n, j = 1, . . . ,mi such that

mi∑
j=1

l(i,j) =

{
ki

u, i 6= v

ki
u − 1, i = v

,

we obtain the identity

−
〈
σ̃(t, x, r),∇zΨ

∗
(
t,−

∫ x

0

σ̃(t, y, r)dy

)〉
=

n∑
v=1

[
mv∑
w=1

−ϕ(v,w)(t, r)λ̃(v,w)(t, x)

]
[

e∑
u=1

kv
u 6=0

kv
uaku(t)

∑
l∈L(u,v)

( n∏
i=1
i6=v

ki
u!

l(i,1)! · · · l(i,mi)!

)
(kv

u − 1)!

l(v,1)! · · · l(v,mv)!( n∏
i=1

mi∏
j=1

(−ϕ(i,j)(t, r))
l(i,j)

)( n∏
i=1

mi∏
j=1

D̃(i,j)(t, x)
l(i,j)

)]
.

Expanding this identity, the stated equation follows.

Proof. (of Lemma 3.5.5) The drift and the volatility vector fields are given by

α̂∗(t, r) =

(
1,

∂

∂x
r

)
+
∑
u∈U

bu(t)ϕu(t, r)
(
0, λ̃u(t)

)
− 1

2

n∑
i=1

n∑
j=1

mi∑
k=1

mj∑
l=1

cij(t)ϕ(j,l)(t, r)Frϕ(i,k)(t, r)[λ̃(j,l)(t)]
(
0, λ̃(i,k)(t)

)
,

σ̂i(t, r) =

mi∑
j=1

ϕ(i,j)(t, r)
(
0, λ̃(i,j)(t)

)
, i = 1, . . . , n.

Taking into account the assumptions on the ϕ(i,j)(t, r), the inclusion

{α̂∗, σ̂1, . . . , σ̂n}LA ⊂ {α̂∗, σ̂1, . . . , σ̂n,
(
1, ∂

∂x
r
)
, (0, λ̃v) | v ∈ V ∪ U}LA

= {
(
1, ∂

∂x
r
)
, (0, λ̃v) | v ∈ V ∪ U}LA

is valid by an application of Lemma A.2.2. Using Lemma 3.4.1 yields the assertion.
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Proof. (of Lemma 3.5.9) Since supt∈[0,T ] |L(t)| < ∞ for every function L ∈ L, the
assertion of the lemma follows immediately.

The next proof is an exercise in multidimensional analysis.

Proof. (of Lemma 3.5.10) Assume it holds |f(x)− f(y)| ≤ L‖x− y‖1 for all x, y ∈ G.
Let x ∈ G and i ∈ {1, . . . , n} be arbitrary. Since G is open, there exists ε > 0 such
that {x+ hei |h ∈ [0, ε]} ⊂ G, where the ei denote the unit vectors in Rn. We obtain∣∣∣∣ ∂∂xi

f(x)

∣∣∣∣ = lim
h→0

|f(x+ hei)− f(x)|
|h|

≤ L.

Conversely, assume the relation supx∈G | ∂
∂xi
f(x)| ≤ L is valid for each i = 1, . . . , n.

For fixed x, y ∈ G define the function g : [0, 1] → R as g(t) := f(y+ t(x− y)). It holds
{y + t(x− y) | t ∈ [0, 1]} ⊂ G, because G is convex. Thus, we get

|f(x)− f(y)| = |g(1)− g(0)| =
∣∣∣∣∫ 1

0

g′(t)dt

∣∣∣∣
=

∣∣∣∣∣
n∑

i=1

(∫ 1

0

∂

∂zi

f(y + t(x− y))dt

)
(xi − yi)

∣∣∣∣∣ ≤ L‖x− y‖1.

A.3 Proofs of Chapter 4

The only proof, left open in Chapter 4, is that of Proposition 4.2.1. It is similar to
the proof of Raible [56, Prop. 4.12].

Proof. (of Proposition 4.2.1) Let T ∈ (0,∞) be arbitrary. Itô’s formula Jacod and
Shiryaev [42, Thm. I.4.57] yields

P (t, T, rt) = P (0, T, r0) +

∫ t

0

∂

∂s
P (s, T, rs−)ds+

d∑
i=1

∫ t

0

∂

∂ri

P (s, T, rs−)dri
s

+
1

2

d∑
i,j=1

∫ t

0

∂2

∂ri∂rj

P (s, T, rs−)d〈rc
i , r

c
j〉s

+
∑

0<s≤t

[
P (s, T, rs)− P (s, T, rs−)−

d∑
i=1

∂

∂ri

P (s, T, rs−)∆ri
s

]
, (A.3.1)

where the last term is in V. Taking into account ∆rt = γ(t, rt−)∆Xt and the differen-
tials

drt = µ(t, rt−)dt+ γ(t, rt−)dXt,

d〈rc
i , r

c
j〉t = 〈γi•(t, rt−)∗, c(t, rt−)γj•(t, rt−)∗〉dt, i, j = 1, . . . , d,
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and the associativity of the Itô integral Jacod and Shiryaev [42, I.4.37], we write
equation (A.3.1) as

dP (t, T, rt) =
∂

∂t
P (t, T, rt−)dt+ 〈∇rP (t, T, rt−), µ(t, rt−)〉dt

+∇rP (t, T, rt−)γ(t, rt−)dXt

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

P (t, T, rt−)〈γi•(t, rt−)∗, c(t, rt−)γi•(t, rt−)∗〉dt

+

∫
Rn

(
P (t, T, rt− + γ(t, rt−)x)− P (t, T, rt−)

− 〈∇rP (t, T, rt−), γ(t, rt−)x〉
)
µX(dt, dx), (A.3.2)

where the µX(dt, dx)-integral is in V. The process P (t, T, rt) is a special semimartin-
gale, because the dynamics (2.2.16) from Proposition 2.2.9 provide a decomposition
where the finite variation part is predictable. According to Prop. I.4.23 and Lemma
I.3.10 in Jacod and Shiryaev [42], the µX(dt, dx)-integral in (A.3.2) belongs to Aloc.
Therefore, we may integrate with respect to (µX − ν)(dt, dx) plus ν(dt, dx) Jacod and
Shiryaev [42, Prop. II.1.28], and write equation (A.3.2) as

P (t, T, rt) = P (0, T, r0) +Mt +

∫ t

0

Ys−ds, (A.3.3)

where M is the local martingale

Mt =

∫ t

0

∇rP (s, T, rs−)γ(s, rs−)dXc
s

+

∫ t

0

∫
Rn

(
P (s, T, rs− + γ(s, rs−)x)− P (s, T, rs−)

)
(µX − ν)(ds, dx),

and Y is the process given by

Yt =
∂

∂t
P (t, T, rt) + 〈∇rP (t, T, rt), µ(t, rt) + γ(t, rt)β(t, rt)〉

+
1

2

d∑
i,j=1

∂2

∂ri∂rj

P (t, T, rt)〈γi•(t, rt)
∗, c(t, rt)γj•(t, rt)

∗〉

+

∫
Rn

(
P (t, T, rt + γ(t, rt)x)− P (t, T, rt)

− 〈∇rP (t, T, rt), γ(t, T, rt)x〉
)
Kt,rt(dx).

Let Bt := exp(−
∫ t

0
r1
sds). Since B has continuous paths, the quadratic co-variation of

Bt and p(t, T ) vanishes Jacod and Shiryaev [42, Prop. I.4.49.d], and we get

BtP (t, T, rt) = P (0, T, r0) +

∫ t

0

Bs−dP (s, T, rs) +

∫ t

0

P (s, T, rs−)dBs.
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Inserting (A.3.3) and dBt = −r1
tBtdt, we obtain

BtP (t, T, rt) = P (0, T, r0) +

∫ t

0

Bs−dMs +

∫ t

0

Bs−(Ys− − P (s, T, rs−)r1
s−)ds.

This is the canonical decomposition of the special semimartingale BtP (t, T, rt). How-
ever, since x1 = 0 by assumption, the process r1

t is just the short rate. Due to the fact
that P is a martingale measure, the discounted bond price process BtP (t, T, rt) is a lo-
cal martingale. We deduce that the finite variation part

∫ t

0
Bs−(Ys−−P (s, T, rs−)r1

s−)ds
vanishes. By Lemma 2.2.10 we conclude that for each t ∈ (0,∞) it holds

Yt− − P (t, T, rt−)r1
t− = 0 (P− a.s.)

Applying Lemma 3.1.4, for any fixed t ∈ (0,∞), yields the desired integro-differential
equation.



Appendix B

Notation

The notation follows the usual conventions, nevertheless the general mathematical
symbols that will be used are gathered in the first table. The second table contains
standard terminology from probability theory. This is followed by a list of notation
concerning stochastic processes. We mainly use the notation of Jacod and Shiryaev
[42], and sometimes that of Protter [55]. Afterwards, we collect the relevant notation
from interest rate theory. Finally, other quantities, used in the text, are summarized
in the last table.

General symbols

A := B A is defined by B
[a, b], (a, b) closed, open interval from a to b
N, N0, Z {1, 2, . . .}, {0, 1, . . .}, {0,+1,−1,+2,−2, . . .}
R, R+, R−, C (−∞,∞), [0,∞), (−∞, 0], complex numbers
Re z, Im z, z̄ real part, imaginary part, complex conjugate of z ∈ C
a ∨ b, a ∧ b maximum, minimum of a and b

‖x‖p (1 ≤ p <∞) (
∑n

i=1 |xi|p)1/p

‖x‖∞ supi=1,...,n |xi|
〈x, y〉 inner product 〈x, y〉 =

∑n
i=1 xiyi for x, y ∈ Rn

|x| modulus of x ∈ R or Euclidean norm ‖x‖2 =
√
〈x, x〉 of x ∈ Rn

Ai•, A•j i-th row or j-th column of a matrix A
A∗ transpose of A
detA determinant of A
|S|, S a set cardinality of S
A ⊂ B A is contained in B or A = B
inf A, supB infimum and supremum of sets A,B ⊂ R
intX, X ⊂ Rn interior of X in Rn

X, X ⊂ Rn closure of X in Rn

span{f1, . . . , fn} the subspace spanned by f1, . . . , fn

dimV linear dimension of V
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f(•), g(•, x2) the functions x 7→ f(x), x1 7→ g(x1, x2)
f ′, f ′′, f (m) first, second, m-fold derivative of f
∇f , Jf , Hf gradient of f , Jacobian matrix of f , Hessian matrix of f
ln natural logarithm
C(I) = C0(I) {f : I → R | f is continuous}
Cm(I) {f : I → R | f (m) exists and is continuous}
C∞(I) {f : I → R | f ∈ Cm(I) for each m ∈ N}
Cm,n(I × J) {f : I × J → R | ∂m+n

∂xm∂ynf exists and is continuous}
Cm,n(I × J,Rd) {f : I × J → Rd | f1, . . . , fd ∈ Cm,n(I × J)}

Terminology from probability theory

(Ω,F,P) probability space
E[X] expected value of a random variable X
E[X |G] conditional expectation of X given the sub σ-algebra G ⊂ F

P � Q, P ∼ Q absolute continuity and equivalence between measures
µ̂ characteristic function µ̂(z) =

∫
Rn e

i〈z,x〉µ(dx)
Ψ cumulant generating function Ψ(z) = ln

(∫
Rn e

〈z,x〉µ(dx)
)

µ|G the measure µ restricted to the sub σ-algebra G

µ1 ⊗ µ2 product measure from µ1 and µ2

supp(X), supp(µ) support of the random variable X or of the measure µ
Leb Lebesgue measure
1A indicator function of the set A
E⊗ F the σ-algebra σ(E× F)
σ(Zi, i ∈ I) σ-algebra generated by (Zi)i∈I

B(I) Borel σ-algebra of I ⊂ Rn

Notation concerning stochastic processes

(Ω,F, (Ft)t∈R+ ,P) stochastic basis
D, L càdlàg and càglàd adapted processes
Aloc, A+

loc locally integrable, and locally integrable increasing processes
V processes of finite variation on compact intervals
O, P optional σ-algebra, predictable σ-algebra
X−, ∆X càglàd modification of X, jumps of X
Var(A) variation process of A ∈ V

Xc, Md continuous and purely discontinuous martingale parts
C(X), D(X) continuous and purely discontinuous parts, excluding zeros
Xτ , Xτ− process X stopped at times τ and τ−
‖X‖Sp Sp-norm of a process X ∈ D
Xm

Sp

→ X Sp-convergence limm→∞ ‖Xm −X‖Sp = 0
〈M,N〉, [X, Y ] predictable quadratic covariation, quadratic co-variation
X•Y , X− ◦ Y stochastic integral, Fisk-Stratonovich integral
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µX , ν jump measure of X and its compensator
W ∗ µX integral process W ∗ µX

t =
∑

s≤tW (s,∆Xs)1{∆Xs 6=0}
Gloc(µ

X) (µX − ν)-integrable functions
W ∗ (µX − ν) stochastic integral of W ∈ Gloc(µ

X) with respect to µX − ν
(B,C, ν)I integral characteristics of a special semimartingale
(β, c,K)D derivative of a Grigelionis process
(β, c,K;Z)D Z-derivative of a Grigelionis process

Quantities from interest rate theory

f(t, T ), f ∗(0, •) forward rates, initial forward rate curve
rt, rt(x) short rate rt = f(t, t), forward rates rt(x) = f(t, t+ x)
p(t, T ), z(t, T ) bond prices, discounted bond prices
α(t, T ), σ(t, T ) drift and volatilities of an interest rate model

A(t, T ) integrated drift term A(t, T ) = −
∫ T

t
α(t, s)ds

Σ(t, T ) integrated volatilities Σ(t, T ) = −
∫ T

t
σ(t, s)ds

(F,Z) realization with state process Z

Other symbols

M+(Rn×n) symmetric, non-negative definite n× n-matrices
M++(Rn×n) symmetric, positive definite n× n-matrices
MD(Rn×n) n× n-diagonal matrices
K+(Rn), K++(Rn) Lévy measures on (Rn,B(Rn)), non-zero Lévy measures
D, L {f : R+ → R | f is càdlàg}, {f : R+ → R | f is càglàd}
CL

b (R+ × Rd) {f ∈ C0,1(R+ × Rd) | f, ∂
∂x1
f, . . . , ∂

∂xd
f are bounded by a L ∈ L}

∆n, n ∈ N {x ∈ Rn : x1 ≤ . . . ≤ xn}
L(X,Y) space of continuous linear operators from X to Y

L(n)(X,Y) space of continuous multilinear operators from Xn to Y

Ff Fréchet derivative of f
[f, g] Lie bracket [f, g](x) = Ff(x)[g(x)]− Fg(x)[f(x)]
{f1, . . . , fn}LA Lie algebra generated by smooth vector fields
TG(x0) tangent space of a manifold G at point x0 ∈ G

〈f, g〉β,γ

∑∞
n=0 β

−n
∫∞

0

(
∂n

∂xnf(x)
) (

∂n

∂xn g(x)
)
e−γxdx for β > 1, γ > 0

Hβ,γ {f ∈ C∞(R+) : 〈f, f〉β,γ <∞}
Θtr right-shift Θtr(x) = r(t+ x)
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