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Abstract

In this paper we determine the lowest cost strategy for a given
payoff in Lévy markets where the pricing is based on the Esscher mar-
tingale measure. In particular, we consider Lévy models where the
price process is driven by an NIG- and a VG-process. Explicit so-
lutions for cost-efficient strategies are derived for a variety of vanilla
options, spreads, and forwards. Determination of efficient put prices
based on estimated parameters from German stock prices reveals that
the potential savings that optimal payoffs provide can be quite sub-
stantial. The empirical findings are supplemented by a result that
relates the magnitude of these savings to the strength of the market
trend. Moreover, we consider the problem of hedging efficient claims,
derive explicit formulas for the deltas of efficient calls and puts and ap-
ply the results to German stock market data. As a main result we find
that cost-efficient options also show an improved behaviour concerning
delta hedging compared to their classical counterparts.

AMS subject : 60G51; 60E15

Keywords: cost-efficient strategies, optimal payoffs, Lévy model, Esscher transform,

delta hedging

1 Introduction

In this paper we study optimal investment decisions in incomplete markets
where the prices of risky assets are driven by Lévy processes. In particular,
we solve for the investment strategy with minimal costs that achieves a given
payoff distribution. This strategy is called cost-efficient with respect to the
given distribution.
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The problem to determine efficient strategies for a given payoff distribu-
tion was introduced by Dybvig (1988a,b) in the case of a discrete binomial
model. Here the aim is to determine an investment C which minimizes the
price but has the same payoff distribution F as a given claim X. In a series
of papers Bernard and Boyle (2010), Bernard et al. (2012) and Vanduffel
et al. (2009, 2012) give a solution of the efficient claim problem. They cal-
culate in explicit form efficient strategies for several options in Black–Scholes
markets. Jouini and Kallal (2001), Dana (2005), Föllmer and Schied (2004)
and Rüschendorf (2012) consider the extended problem to optimize the price
under the condition that C ≤cx X, i.e. C is smaller in convex order than X.
The solution of this extended problem turns out to be identical to the solu-
tion of the efficient claim problem as formulated above, where FC = F = FX
is the condition imposed on the class of admissible claims.

Vanduffel et al. (2009) establish in general Lévy markets, where the
arbitrage-free pricing is based on the Esscher transform, that path-dependent
payoffs are inefficient with respect to the convex order ≤cx and can be im-
proved by conditioning on the price density process. The enhanced payoffs
then are path-independent.

In our paper we apply these results on efficient payoffs to some classes of
exponential Lévy models and consider in particular Variance Gamma (VG)
and Normal Inverse Gaussian (NIG) processes and contrast them with the
classical Black–Scholes model. We hypothesize that agents in the market
agree on the Esscher martingale measure for pricing and suppose there exists
a constant risk free interest rate. For a variety of relevant financial deriva-
tives we explicitly derive cost-efficient strategies. Based on the inefficiency
results for path dependent options, as mentioned before, we concentrate in
this paper on path-independent payoffs.

We also investigate the impact of the market behaviour on the cost re-
duction that can be achieved by investing in the efficient strategies. Roughly
speaking, the overall behaviour (bullish or bearish) is characterized by the
sign of the risk-neutral Esscher parameter, and the size of its absolute value
determines the strength of the market trend. We show that the more pro-
nounced the trend, the higher are the price differences between inefficient
and optimal strategies. We give a cost-efficient version of the put-call parity
exists stating that the cost-efficient strategy corresponding to a portfolio of
a long call and a short put agrees with the cost-efficient strategy for a long
forward.

We explicitly determine hedging strategies for cost-efficient payoffs. Spe-
cifically, we provide formulas to compute the Greek delta, that is, the deriva-
tive of the cost of a strategy with respect to the underlying, for cost-efficient
strategies corresponding to European call and put options. This is of rel-
evance for practical applications as the pricing formulas for cost-efficient
strategies themselves are still unsatisfying if no hedging strategies exist.
Moreover, we prove that the magnitude of the deltas of efficient calls and
puts in almost all cases is smaller than that of the deltas of the correspond-
ing vanilla options. This suggests that also the hedging errors arising in
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discrete delta hedging strategies should be smaller for cost-efficient options
than for standard options. In a practical application using German stock
price data we demonstrate that this is indeed the case: The accumulated
absolute hedge errors obtained from delta hedging of vanilla puts on two
German stocks are always higher than those of efficient puts. This shows
that cost-efficient options not only provide a cheaper way of realizing a cer-
tain payoff, but can also be hedged more accurately.

The paper is structured as follows: In Section 2, we restate the basic
result on price bounds and efficient claims and reformulate it for the case
of Lévy models when pricing is based on the Esscher martingale measure,
explain how the magnitude of the price difference between standard and
efficient options is influenced by the risk-neutral Esscher parameter, and also
describe the Lévy market models. Section 3 contains the derivations of cost-
efficient strategies for European puts and calls, spreads, and forwards as well
as a comparison of efficient and vanilla put prices which are calculated using
estimated parameters from German stock prices. Moreover, we discuss the
put-call parity and the relation between cost-efficient and most-expensive
strategies here. In Section 4, we present formulas for the Greek delta of
cost-efficient call and put options, show that they have a smaller size than
the delta of a vanilla call resp. put, and apply the theoretical results to
explicitly compute and visualize the hedge errors arising in delta hedging
of efficient and vanilla puts on two German stocks. In Section 5 we state
some conclusions. The appendix contains some proofs as well as detailed
derivations of the risk-neutral Esscher parameters for the different Lévy
models considered in the paper.

2 Cost-efficient strategies

2.1 Cost-efficiency

Consider a financial market on a filtered probability space (Ω,F , (Ft)t≥0, P )
satisfying the usual conditions. We assume that the financial market is in-
complete, but free of arbitrage, perfectly liquid and frictionless. Let (St)t≥0

denote the price process of a risky asset and let r be the constant deter-
ministic risk-free interest rate. Further, we assume that all agents in the
market agree on the same state-price density (Zt)t≥0 for pricing, where the
process (Zt)t≥0 is chosen such that the discounted process (e−rtZtSt)t≥0 is
a P -martingale. In other words, Zt equals the Radon–Nikodým derivative
dQ
dP

∣∣
Ft of the risk-neutral measure Q with respect to the real-world measure

P . We assume this general setup throughout the whole paper and indicate
whenever we concretize it.

In this paper we are interested in strategies of European type yielding a
given terminal payoff distribution, and among those, especially in the ones
with minimal and maximal costs. Here the cost of a strategy with a given
terminal payoff is defined as the discounted expected payoff w.r.t. the state-
price density ZT . The cost of a strategy with terminal payoff XT , T > 0, is
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given by
c(XT ) = E

[
e−rTZTXT

]
, (2.1)

provided that the expectation exists. Note that here and in the following the
expectation E[·] = EP [·] is always calculated with respect to the real-world
measure P if not stated otherwise.

Definition 2.1 (Cost-efficient and most-expensive strategies)

(a) A strategy (or payoff) XT ∼ G is called cost-efficient w.r.t. the payoff-
distribution G if any other strategy XT that generates the same payoff-
distribution G costs at least as much, that is,

c(XT ) = E[e−rTZTXT ] = min
{XT∼G}

E[e−rTZTXT ]. (2.2)

(b) A strategy (or payoff) XT ∼ G is called most-expensive w.r.t. the
payoff-distribution G if any other strategy XT that generates the same
payoff-distribution G costs at most as much, that is,

c(XT ) = E[e−rTZTXT ] = max
{XT∼G}

E[e−rTZTXT ]. (2.3)

(c) The efficiency loss of a strategy with payoff XT ∼ G at maturity T is
defined as

c(XT )− c(XT ).

As consequence of the definition one obtains (see Bernard et al. (2012))
that the net profit from investing into the cost-efficient strategyXT is greater
than that of XT in the stochastic order ≤st, i.e.

XT − c(XT )erT ≤st XT − c(XT )erT . (2.4)

Thus, as intuitively expected, speculators will always prefer the cost-efficient
strategies.

It follows from the Hoeffding–Fréchet bounds that cost-efficient and most
expensive payoffs are obtained by payoffs which are countermonotonic resp.
comonotonic with the price density ZT . More precisely the following result
holds (see Bernard et al. (2012, Proposition 3) and the further literature
mentioned in the introduction):

Theorem 2.2 (Cost-efficient claims and price bounds) For a given
payoff distribution G holds:

a) inf
XT∼G

c(XT ) = e−rT
1∫

0

F−1
ZT

(y)G−1(1− y)dy

sup
XT∼G

c(XT ) = e−rT
1∫

0

F−1
ZT

(y)G−1(y)dy

(2.5)
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b) A random payoff Xt ∼ G is cost-efficient if and only if XT and ZT
are countermonotonic. XT ∼ G is most expensive iff XT and ZT are
comonotonic.

c) If FZT is continuous, then

XT = G−1(1− FZT (ZT )) is cost efficient

and XT = G−1(FZT (ZT )) is most expensive

Explicit formulas for cost-efficient and for most expensive payoffs can
also be given in explicit form without assuming continuity of FZT by means
of the distributional transform (see Rüschendorf (2012, 2013)).

2.2 Cost-efficiency in Lévy markets

Suppose now that the asset price process (St)t≥0 = (S0e
Lt)t≥0 is driven by a

Lévy process (Lt)t≥0. Apart from the cases where (Lt)t≥0 either is a Brow-
nian motion or a Poisson process, such a Lévy market setting is incomplete.
This means that the set of possible risk-neutral martingale measures is not
a singleton, but typically has uncountably many elements. Thus, one has to
rely on additional optimality criteria, preference assumptions, or calibration
results to real data from options markets to choose a specific martingale
measure for pricing.

Throughout the paper we will use the Esscher martingale measure for
this purpose which was introduced to option pricing by Gerber and Shiu
(1994). Apart from the fact that the Esscher transform provides a trans-
parent, unambigious, and numerically very tractable way to obtain a risk-
neutral measure, this choice can also be motivated from a theoretical point
of view. The Esscher approach can be obtained in a natural way from
the assumption of the existence of a competitive equilibrium with respect
to a power utility function (see e.g. Keller (1997, Chapter 1.4.3)). More-
over, there is a close relationship between Esscher transforms and minimal
entropy: Chan (1999), Miyahara (1999), Goll and Rüschendorf (2002), and
Esche and Schweizer (2005) prove that the Esscher martingale measure of the
exponential transform of (Lt)t≥0 coincides with the minimal entropy mar-
tingale measure, that is, this Esscher measure is the uniquely determined
measure that minimizes the relative entropy with respect to the real-world
measure P among all possible risk- neutral measures Q. An extension of this
result and a precise discussion on Esscher transforms of exponential Lévy
models can be found in Hubalek and Sgarra (2006). Another useful fea-
ture of Esscher transforms is the preservation of the Lévy property: (Lt)t≥0

remains a Lévy process under any Esscher measure Qθ to be defined below.
To properly define the Esscher martingale measure, the following basic

assumption on the driving Lévy process (Lt)t≥0 is made for the remainder
of this paper.

Assumption (M) The random variable L1 is nondegenerate and possesses
a moment generating function ML1(u) := E[euL1 ] on some open interval
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(a, b) with a < 0 < b and b− a > 1.

This condition turns out to be necessary (but not always sufficient) for
the existence of the risk-neutral Esscher measure.

Definition 2.3 Let (Lt)t≥0 be a Lévy process on some filtered probability
space (Ω,F , (Ft)t≥0, P ). We call an Esscher transform any change of P to

a locally equivalent measure Qθ with a density process Zθt = dQθ

dP |Ft of the
form

Zθt =
eθLt

MLt(θ)
, (2.6)

where MLt is the moment generating function of Lt as before, and θ ∈ (a, b).

To emphasize the dependence of the Esscher measure Qθ and its den-
sity process (Zθt )t≥0 on the parameter θ, we shall always add the latter as
superscript. Similarly, we will indicate by Eθ[·] that the expectation is cal-
culated with respect to Qθ. Using the stationarity and independence of the
increments of every Lévy process (Lt)t≥0, which also imply the relation

MLt(u) = ML1(u)t for all u ∈ R and t ≥ 0,

it is not hard to show that (Zθt )t≥0 indeed is a density process for all θ ∈ (a, b)
and, (Lt)t≥0 also is a Lévy process under Qθ for all these θ. θ̄ has to solve
the equation

er =
ML1(θ̄ + 1)

ML1(θ̄)
. (2.7)

This also explains why it is necessary to require ML1 to be defined on an
interval with length greater than one. But, as mentioned before, Assump-
tion (M) alone does not guarantee the existence of a solution θ̄. The next
lemma, taken from Raible (2000, Proposition 2.8), provides a sufficient con-
dition for this and further shows that the solution, if existent, is unique.

Lemma 2.4 If Assumption (M) is in force, we have:

a) For each c > 0, there is at most one θ ∈ R such that

ML1(θ + 1)

ML1(θ)
= c.

b) If limu↓aML1(u) = limu↑bML1(u) = ∞, then the previous equation has
exactly one solution θ ∈ (a, b− 1) for each c > 0.

With this uniqueness result we are allowed to define the risk-neutral
Esscher measure without any ambiguity. The unique θ̄ ∈ R such that the
process (e−rtSt)t≥0 is a martingale under the Esscher measure Qθ̄ is called
risk-neutral Esscher parameter and the corresponding Esscher measure is
called Esscher martingale measure or risk-neutral Esscher measure.
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Remark 2.5 Note that within this framework one cannot assume the state-
price density to be square integrable in general. The interval (a, b) on which
the moment generating function ML1 is defined and finite can be fairly
small, so it might happen that a solution θ̄ ∈ (a, b − 1) of (2.7) exists, but
2θ̄ 6∈ (a, b), implying that E[e2θ̄Lt ] is infinite and hence Z θ̄t is not square
integrable for any t > 0.

The following result states that a negative solution θ̄ < 0 of (2.7)
corresponds to a bullish market scenario , whereas in bearish markets we
have θ̄ > 0. Note that a bullish market means that the expected return
E[ StS0

] = E[eLt ] is greater than ert, whereas in bearish markets the expected

return E[eLt ] is smaller than ert for all t > 0.

Proposition 2.6 (Bullish and bearish markets) Let Assumption (M)
hold and let θ̄ ∈ R be the risk-neutral Esscher parameter. The market is
bullish if and only if θ̄ < 0, and bearish if and only if θ̄ > 0.

Proof: First, let θ̄ < 0 be a negative risk-neutral Esscher parameter, thus
f(x) := eθ̄x and g(x) := ex are decreasing respectively increasing functions
on R. Applying the well-known fact that Cov(f(X), g(X)) ≤ 0, (see Lehman
(1966, Lemma 3)) for the random variable X = L1, we obtain

0 ≥ Cov(f(L1), g(L1))

= Cov(eθ̄L1 , eL1)

= mL1(θ̄ + 1)−mL1(θ̄)mL1(1),

with equality in the first line holds true if and only if f(L1) = eθ̄L1 and
g(L1) = eL1 are independent, which is not true here, unless L1 is degenerate.
With Assumption (M) the latter inequality implies

E[eLt ] = (mL1(1))t >
(mL1(θ̄ + 1)

mL1(θ̄)

)t
= ert,

for all t > 0 which corresponds to a bullish market.
Assume now a bullish market scenario, that is, the expected return E[eLt ]

is greater than ert for all t > 0, or equivalently,

mL1(1) > er =
mL1(θ̄ + 1)

mL1(θ̄)

since θ̄ is the unique solution of equation (2.7). The latter inequality im-
plies mL1(θ̄ + 1) < mL1(θ̄)mL1(1), that is, Cov(eθ̄L1 , eL1) < 0. If the
risk-neutral Esscher parameter θ̄ ≥ 0 is non-negative, then the fact that
Cov(f(X), g(X)) ≥ 0, where X = L1 is a real-valued random variable,
f(x) = eθ̄x, and g(x) = ex are both increasing functions on R, lead us to
a contradiction. Hence, the risk-neutral Esscher parameter must be strictly
negative. The statement for the bearish market can be shown analogously. 2
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The stated characterization result clearifies the role of the risk-neutral
Esscher parameter θ̄ in Lévy markets. In bullish Lévy market scenario θ̄
must be negative to shrink the rate of return to the risk-fee rate r. Similarly,
in bearish markets we have θ̄ > 0 to adjust the rate of return accordingly.

After these preliminaries, we can reformulate Theorem 2.2 in terms of
the driving Lévy process instead of the state-price process. Observe that
here and in the following we assume the present time t to equal zero. If
t > 0, then in all formulas T has to be replaced by T − t.

Proposition 2.7 (Cost-efficient payoffs in Lévy models) Let (Lt)t≥0

be a Lévy process with continuous distribution function FLT at maturity
T > 0, and assume that a solution θ̄ of (2.7) exists.

a) If θ̄ < 0, then the cost-efficient payoff XT and the most-expensive payoff
XT with distribution function G are a.s. unique and are given by

XT = G−1(FLT (LT )) and XT = G−1(1− FLT (LT )). (2.8)

Further the following bounds for the costs of any strategy with terminal
payoff XT ∼ G hold:

E
[
e−rTZ θ̄TXT

]
≥ E

[
e−rTZ θ̄TXT

]
=

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(1−y)−rT
G−1(1− y) dy,

E
[
e−rTZ θ̄TXT

]
≤ E

[
e−rTZ θ̄TXT

]
=

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(1−y)−rT
G−1(y) dy.

b) If θ̄ > 0, then the cost-efficient and the most-expensive payoffs are a.s.
unique and are given by

XT = G−1(1− FLT (LT )) and XT = G−1(FLT (LT )). (2.9)

The bounds in a) hold true with F−1
LT

(1− y) replaced by F−1
LT

(y).

In Proposition 2.6 we already saw that the sign of the risk-neutral Esscher
parameter θ̄ characterizes the market behaviour (bullish or bearish). The
size of |θ̄| reflects the magnitude of the drift of the price process and thus can
be regarded as a measure for the strength of the market trend. A natural
question then is to ask what impact the parameters say η = (η1, . . . , ηk) of
the Lévy process have on the efficiency loss c(XT ) − c(XT ). Note that the
Esscher parameter θ = θ(η) is by (2.7) a function of η. Let

l(θ) = l(θ(η), η) = e−rTEθ[XT −XT ]

denote the efficiency loss. To see the influence of parameter ηi we note that

∂

∂ηi
l(θ) =

∂

∂θ
l(θ(η), η)

∂θ(η)

∂ηi
+

∂l

∂ηi
(θ(η), η). (2.10)
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The derivative ∂θ(η)
∂ηi

is typically simple to describe. The following proposi-

tion confirms that the l(θ) is increasing in the absolute value |θ| of the risk
neutral Esscher parameter. As consequence we obtain, that for θ > 0 the

conditions ∂l
∂ηi

(θ(η), η) > 0 and ∂θ(η)
∂ηi

> 0 imply that the efficiency loss l(θ)
is increasing in ηi.

Proposition 2.8 (Influence of θ̄ on the efficiency loss) Let (Lt)t≥0 be
a Lévy process with continuous distribution FLT at maturity T > 0, and
assume that a solution θ̄ of (2.7) exists. Suppose that XT is the cost-effi-
cient strategy associated to the payoff XT with distribution function G. If
Eθ̄
[
(XT −XT )2

]
<∞, then the efficiency loss

l(θ̄) = c(XT )− c(XT ) = e−rTEθ̄[XT −XT ]

is increasing in |θ̄|, that is, l(θ̄) is decreasing on R− and increasing on R+.

The proof of Proposition 2.8 is given in Appendix A.2.

From Theorem 2.2 results the following simple but useful characteri-
zation of cost-efficiency in Lévy models which is essentially known from
previous work.

Corollary 2.9 (Characterization of cost-efficiency in Lévy models)
Let (Lt)t≥0 be a Lévy process with continuous distribution FLT at maturity
T > 0, and assume that a solution θ̄ of (2.7) exists.

i) If θ̄ < 0, then a payoff XT ∼ G is cost-efficient if and only if it is
increasing in LT .

ii) If θ̄ > 0, a payoff XT ∼ G is cost-efficient if and only if it is decreasing
in LT .

For the most-expensive strategy, the reverse holds true.

In Corollary 2.9 the notions increasing and decreasing are understood in
the weak sense. The continuity assumption is only needed for the converse
direction.

Example 2.10

i) Applying Corollary 2.9 to the special payoff XT = ST = S0e
LT one

obtains that buying one stock for S0 at time t = 0 is a cost-efficient way
to achieve a payoff with distribution G = FST at time T if and only if
θ̄ < 0.

ii) Assume again the setting of Corollary 2.9 and consider the payoff of a
put option at time T > 0 with strike K > 0, i.e., XP

T = (K − ST )+ =
(K − S0e

LT )+. XP
T is a decreasing function of LT and hence is cost-

efficient if and only if θ̄ > 0. For θ̄ < 0, however, the classical put is
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the most-expensive way to realize a payoff with distribution G = FXP
T

.

Similarly, the payoff XC
T = (S0e

LT −K)+ of a call option with strike K
and maturity T is cost-efficient if θ̄ < 0 and most-expensive if θ̄ > 0.

The latter corollary also implies the inefficieny of path-dependent payoffs.
Here we call a payoff XT path-dependent if XT does not solely depend on
the asset price ST at maturity time T (or equivalently on LT ), but at least
on one more values St, resp. Lt, with 0 < t < T . Consequently, a path-
dependent payoff never is an increasing or decreasing function of LT alone,
and therefore, cannot be cost-efficient either. The only exception is the case
θ̄ = 0 which implies Z θ̄t ≡ 1 for all 0 ≤ t ≤ T , thus P = Q0 already is a
risk-neutral measure itself. As is immediately obvious from the definition,
the possible price range [c(XT ), c(Xt)] of any payoff XT ∼ G then shrinks
to a singleton or, in other words, for θ̄ = 0 every payoff XT already is
cost-efficient and cannot be improved further. This yields the following
generalized formulation of Bernard et al. (2012, Corollary 3) in the Lévy
market setting. For a related result see also Cox and Leland (2000).

Corollary 2.11 (Inefficiency of path-dependent payoffs) Suppose that
(Lt)t≥0 is a Lévy process with continuous distribution FLT at maturity T > 0
and that a solution θ̄ of (2.7) exists, then path-dependent payoffs are not
cost-efficient unless θ̄ = 0.

Remark 2.12 In some settings, path-dependent payoffs XT can be im-
proved by conditioning on ST resp. LT . Vanduffel et al. (2009) proved that
risk-averse investors with fixed investment horizon will always prefer the
payoff X ′T = E[XT |ST ] to XT in a Lévy market model where the real-world
and risk-neutral measures P and Q are related by an Esscher transforma-
tion. More generally, path-dependent payoffs are suboptimal for risk-averse
investors in any setting where the state-price density is a function of ST ,
see Kassberger and Liebmann (2011). Observe that the improved payoff
X ′T is no longer path-dependent due to the conditioning on ST , hence it
fits into the present framework and may be enhanced further by applying
Proposition 2.7. In Vanduffel et al. (2012), this approach is applied to Dol-
lar cost averaging which is shown to be outperformed by a static strategy
of investing in a suitable portfolio of path-independent options. Some gen-
eral comparison results for prices of path-dependent options like Asian or
lookback options are given in Bergenthum and Rüschendorf (2008).

2.3 Models for the Lévy process

In the last two decades more and more researchers started to use jump-
diffusions and, more generally, Lévy processes as a valuable and flexible tool
to model asset price processes as well as the term structure of interest rates.
These typically provide a much better fit to real market data because the
inherent jumps allow for a more realistic modeling and quantification of the
risk of large price movements within short time intervals which are often
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severly underestimated in a pure diffusion framework. A comprehensive
overview on the most prominent Lévy processes that already have been
applied to financial modeling can be found in the books of Schoutens (2003)
and Cont and Tankov (2004), for jump-diffusion models we also refer to Kou
(2002).

From the wide range of potential models mentioned there, we concentrate
on the normal inverse Gaussian (NIG) and Variance Gamma (VG) Lévy
processes in the following. We include the Brownian motion as a benchmark
model here which allows us to compare the prices of cost-efficient strategies
within the NIG and VG models with those that can be achieved in the
classical Black–Scholes framework. Next we recall the definition of these
processes and determine the corresponding Esscher parameters.

Normal inverse Gaussian model. The normal inverse Gaussian pro-
cess was first applied to finance in Barndorff-Nielsen (1995, 1998). Its
generating distributions can be obtained as a normal mean-variance mix-
ture with an inverse Gaussian mixing distribution. More specifically, if
X ∼ NIG(α, β, δ, µ), then the random variable X can be represented as
follows:

X
d
= µ+ βZ +

√
ZW, (2.11)

where µ ∈ R, W ∼ N(0, 1), and Z ∼ IG
(
δ,
√
α2 − β2

)
is an inverse Gaussian

distributed random variable with δ > 0 and 0 ≤ |β| < α that is independent
of W . This representation also entails that the infinite divisibility of the
mixing inverse Gaussian distribution transfers to the NIG mixture distribu-
tion, thus there exists a Lévy process (Lt)t≥0 with L(L1) = NIG(α, β, δ, µ).

The parameter θ of the risk-neutral Esscher martingale measure Qθ, i.e. the
solution of (2.7) if it exists is given by

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (2.12)

(Lt) remains a NIG Lévy process under every Esscher measure but with
parameter β replaced by β + θ.

Further properties and derivation of these results are given in Appendix
A.1.

Variance Gamma model. The class of Variance Gamma distributions
was introduced in Madan and Senata (1990) as a more realistic model for
stock return distributions. In this and the following paper, Madan and Milne
(1991), where an option pricing formula for this model was derived, only
symmetric VG distributions were considered. The general case including
skewness was studied in Madan et al. (1998). Similar to NIG distributions,
a Variance Gamma distributed random variable X ∼ V G(λ, α, β, µ) can be
represented as a normal mean-variance mixture as in equation (2.11), but

in this case the mixing variable Z ∼ G
(
λ, α

2−β2

2

)
is Gamma distributed
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with shape parameter λ > 0 and scale parameter α2−β2

2 where 0 ≤ |β| < α.

Again, the infinite divisibility of G
(
λ, α

2−β2

2

)
transfers to V G(λ, α, β, µ).

The condition 2α > 1 is sufficient to guarantee a unique solution θ of
equation (2.7) in the VG case. it is given by

θ̄V G =


−1

2 − β, r = µ,

− 1

1−e−
r−µ
λ

− β + sign(r − µ)

√
e−

r−µ
λ(

1−e−
r−µ
λ

)2 + α2, r 6= µ.

(2.13)

Under Qθ the process (Lt) remains a VG Lévy process with parameters
β + θ instead of β. For details see Appendix A.1.

Remark 2.13 In many papers dealing with Variance Gamma distributions,
especially the ones of Madan and coauthors, a different parametrization
V G(σ, ν, θ, µ̃) is used (the VG parameter θ here should not be confused
with the Esscher parameter). This is related to ours as follows:

σ2 =
2λ

α2 − β2
, ν =

1

λ
, θ = βσ2 =

2βλ

α2 − β2
, µ̃ = µ.

Samuelson model. The classical benchmark model which also is at the
basis of the Black–Scholes theory is to assume that the stock price process
(S0e

Lt)t≥0 follows a geometric Brownian motion. In this case, the driving
Lévy process is given by

Lt =

(
µ− σ2

2

)
t+ σBt, t > 0,

where (Bt)t≥0 is a standard Brownian motion under the physical measure
P, µ is the drift and σ the volatility parameter. Here we have L(Lt) =

N
(
(µ− σ2

2 )t, σ2t
)
, and the moment generating function of L1 is well-known

to equal

M
N(µ−σ2

2
,σ2)

(u) = eu(µ−σ
2

2
)+u2σ2

2 .

Apparently, it is defined for all u ∈ R and tends to infinity if u → ±∞, so
Lemma 2.4 b) assures that a unique solution θ̄ of equation (2.7) exists. The
latter here becomes

er =
ML1(θ̄N + 1)

ML1(θ̄N )
=
e(µ−σ

2

2
)(θ̄N+1)+(θ̄N+1)2 σ2

2

e(µ−σ2

2
)θ̄N+θ̄2

N
σ2

2

= eµ+θ̄Nσ
2

from which it is immediately seen that θ̄N = r−µ
σ2 .

Remark 2.14 Since this model is complete and thus the risk-neutral mea-

sure Q is unique, the Esscher density process (Z θ̄Nt )t≥0 here must coincide

12



with the state-price density process (Zt)t≥0 obtained from Girsanov’s theo-
rem. This indeed is the case, as the following equation shows:

Zt =
e
r−µ
σ
Bt

e
(r−µ)2

2σ2 t
=

e
r−µ
σ
Bt

E[e
r−µ
σ
Bt ]

=
e
r−µ
σ2 (Lt−t(µ−σ

2

2
))

E
[
e
r−µ
σ2 (Lt−t(µ−σ

2

2
))] =

eθ̄NLt

MLt(θ̄N )
= Z θ̄Nt .

3 Applications

In this section we apply the results obtained so far to some common payoff
distributions. More specifically, we consider European put and call options,
forwards as well as bull and bear spreads. Moreover, we provide some nu-
merical results for the Lévy market settings discussed in Section 2.3. These
calculations are based on estimated parameters from German stock price
data for Allianz and Volkswagen from May 28, 2010, to September 28, 2012,
which are shown in Figure 3.1. The estimated parameters from the daily
log-returns of Allianz and Volkswagen are given in Table 3.1 below. The
interest rate used to calculate θ̄ is r = 4.2027 · 10−6 which corresponds to
the continuously compounded 1-Month-Euribor rate of October 1, 2012.
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Allianz and VW stock prices 28.05.2010 − 28.09.2012
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10.06.2010 23.11.2010 12.05.2011 25.10.2011 11.04.2011 24.09.2012

Allianz
VW

Figure 3.1: Daily closing prices of Allianz and Volkswagen used for parameter
estimation.

3.1 Put options (θ̄ < 0)

Consider a long put option with strike K > 0 and maturity T > 0 whose
payoff is XP

T = (K − ST )+ = (K − S0e
LT )+. As already remarked in

Example 2.10 ii), XP
T is monotonically decreasing in LT , therefore the put

option is inefficient if θ̄ < 0 due to Corollary 2.9. The distribution function

13



Allianz λ α β δ µ θ̄

NIG −0.5 35.020 −0.369 0.015 0.000376 −1.0127

VG 1.031 72.011 0.552 0.0 1.941 · 10−8 −1.0412

Normal µ = 4.2757 · 10−4, σ = 0.0203 −1.0314

Volkswagen λ α β δ µ θ̄

NIG −0.5 48.859 −0.842 0.0231 0.001451 −2.7087

VG 1.602 82.948 −2.165 0.0 0.00206 −2.7395

Normal µ = 0.00129, σ = 0.0216 −2.7447

Table 3.1: Estimated parameters from daily log-returns of Allianz and Volkswa-
gen for the NIG-, the VG-, and the Samuelson model. The interest
rate used to calculate the Esscher parameter θ̄ in the last column
is the continuously compounded 1-Month-Euribor rate of October
1, 2012, which is r = 4.2027 · 10−6.

GP = FXP
T

of the put payoff can easily be shown to equal

GP (x) = P
(
XP
T ≤ x

)
=


1, if x ≥ K,
1− FLT

(
ln
(
K−x
S0

))
, if 0 ≤ x < K,

0, if x < 0.

Its inverse is given by

G−1
P (y) =

(
K − S0e

F−1
LT

(1−y))
+
, y ∈ (0, 1), (3.1)

which follows from solving the equation

1− FLT
(

ln

(
K − x
S0

))
= y

for x and noting that x must be non-negative since the range of XP
T is [0,K].

Applying Proposition 2.7, for θ̄ < 0 the cost-efficient payoff that generates
the same distribution GP as the long put is

XP
T = G−1

P (FLT (LT )) =
(
K − S0e

F−1
LT

(1−FLT (LT )))
+
. (3.2)

Figure 3.2 displays the payoff XP
T of a long put option on one Allianz stock

with strike K = 98 and maturity T = 23 days, and its cost-efficient coun-
terparts XP

T for the three Lévy models under consideration. Although the
latter payoff profiles look quite similar, a closer look reveals that the optimal
payoff is model-dependent and slightly varies between the different models.

Remark 3.1 Observe that the distribution function GP and its inverse G−1
P

depend on the time to maturity. As already remarked, if the present time t
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is greater than zero, one has to replace T by T − t. This also implies that
the efficient put payoff is not static, but a time-varying function. This is
an essential and quite natural feature: Suppose a trader has bought a cost-
efficient put with maturity T at time t0 = 0 and wants to sell it again at
some later point in time. Then a second trader who buys this efficient put
from the first one at time t1 > t0 wants it, of course, to guarantee him the
same payoff distribution that a vanilla put with maturity T would provide at
time t1 which is possible if and only if the payoff of the efficient put at time

t1 is given by XP
T−t1 =

(
K − St1e

F−1
LT−t1

(1−FLT−t1 (LT−t1 )))
+

= gt1(LT−t1),
and not by g0(Lt−T1) where XT = go(LT ) from (3.2). The variation of the
cost-efficient put payoff subject to different times to maturity is illustrated
in Figure 3.3 below.

Recall that Figures 3.2 and 3.3 correspond to a bullish market situation
where θ̄ < 0 (see Table 3.1) such that the classical put with payoff XP

T is the
most-expensive way to realize the payoff distribution GP . However, if the
market behaviour should suddenly switch at time ts from bullish to bearish,
that is, if the risk-neutral Esscher parameter θ̄ derived from market data
should change its sign during the lifetime of the contract, then the roles of the
payoffs are reversed: XP

T−ts becomes cost-efficient, and the formerly efficient

payoff XP
T−ts is most-expensive from that “switching time” ts onwards. In

other words, an initially optimal strategy may turn into the worst case if
the market scenario significantly changes in between. This suggests that
the present definition and construction of cost-efficient strategies might be
extended to a more dynamic version that allows to accordingly react to
reverse market movements. We do not exploit this idea further here, but
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Standard and optimal put payoffs for Allianz ( T = 23, K = 98 )
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standard put
cost−eff. put (NIG)
cost−eff. put (VG)
cost−eff. put (Normal)

Figure 3.2: Payoff functions of a classical put and its cost-efficient counterparts
for Allianz. The initial stock price is S0 = 93.42, the closing price of
Allianz at October 1, 2012. The other parameters used to calculate
the cost-efficient payoffs can be found in Table 3.1.
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Figure 3.3: Cost-efficient put payoffs for different times to maturity within the
VG model for Volkswagen. The initial stock price is always assumed
to be St = 130.55, and the VG parameters of Volkswagen used to
calculate the efficient payoffs can be found in Table 3.1.

leave it to future research.

Since the payoff function X−PT = −(K − S0e
LT )+ of a short put with

strike K and maturity T is monotonically increasing in LT , a short put
is cost-efficient if θ̄ < 0 and most-expensive if θ̄ > 0. Analogously to the
calculations for the long put, the inverse of the distribution G−P of a short
put is given by

G−1
−P (y) =

(
S0e

F−1
LT

(y) −K
)
−, y ∈ (0, 1), (3.3)

where (x − y)− := −(y − x)+. Applying Proposition 2.7, the cost-efficient
payoff that generates the same distribution G−P as the short put option for
θ̄ > 0 thus is

X−PT = G−1
−P (1− FLT (LT )) =

(
S0e

F−1
LT

(1−FLT (LT )) −K
)
−. (3.4)

Intuitively, the cost-efficient strategy corresponding to a long put should
coincide with a short position in the most-expensive strategy for a short put
as investors simply take opposite positions. The one who is long has to pay
for entering the put while the one who is short receives an upfront payment.
Thus, for the long position it is optimal to minimize the costs of the put
while the investor who is short wants to maximize the initial cash inflow.
We formalize this observation in the following corollary.

Corollary 3.2 Let XP
T = (K − ST )+ be the payoff of a long put with dis-

tribution GP and X−PT = −(K − ST )+ be the payoff of the corresponding
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short position with distribution G−P . If the assumptions of Proposition 2.7
are in force and θ̄ < 0, it holds that

XP
T = −X −PT and c

(
XP
T

)
= −c

(
X
−P
T

)
.

Similarly, if θ̄ > 0 we have X−PT = −XP
T as well as c

(
X−PT

)
= −c

(
X
P
T

)
.

For the proof we refer to the Appendix A.2.

In Table 3.2 below we compare the costs of a long put option on Allianz
and Volkswagen with their cost-efficient counterparts for the Lévy models
discussed in Section 2.3. All computations are based on the estimated pa-
rameters given in Table 3.1 above. The initial stock prices S0 of Allianz
resp. Volkswagen are the closing prices at October 1, 2012, and the time
to maturity is chosen to be T = 23 trading days, meaning that the put
options mature on November 1, 2012. According to Proposition 2.7 and
equation (3.1), the costs of the efficient put can be calculated by

c
(
XP
T

)
= E

[
e−rTZ θ̄TX

P
T

]
=

1

Mdist(θ̄)

1∫
0

eθ̄F
−1
dist (1−y)

(
K − S0e

F−1
dist (y)

)
+
dy

where dist is either NIG(α, β, δT, µT ), V G(λT, α, β, µT ), orN((µ−σ2

2 )T, σ2T ).
Using equations (2.7) and (A.5), the costs c(XP

T ) of the vanilla put in
the NIG model are given by

c(XP
T ) = E θ̄

[
e−rT (K − ST )+

]
= e−rT

ln(K/S0)∫
−∞

(K − S0e
x)Z θ̄T dNIG(α,β,δT,µT )(x) dx (3.5)

= Ke−rTFNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
− S0FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
,

and for the VG model one analogously obtains

c(XP
T ) = Ke−rTFV G(λT,α,β+θ̄,µT )

(
ln
(
K
S0

))
− S0FV G(λT,α,β+θ̄+1,µT )

(
ln
(
K
S0

))
.

In the Samuelson model, c(XP
T ) is given by the well-known Black–Scholes

put price formula.
The results show that the savings from choosing the cost-efficient strate-

gies can be quite large: For Allianz, the costs of the efficient put are less
than 83% of the price of the plain vanilla put, and in case of Volkswagen the
vanilla put is almost twice as expensive as the efficient put. The great differ-
ences in the efficiency losses of the Allianz and Volkswagen puts may seem
somewhat surprising at first glance because the stock price-strike-ratio S0

K is
roughly the same in both cases (0.953 for Allianz and 0.967 for Volkswagen),
but can be explained with help of Proposition 2.8: Since the payoffs XP

T and
XP
T are both bounded by the strike K (see equation (3.2)), the condition
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Allianz c(XP
T ) c(XP

T ) Efficiency loss in %

NIG 6.4495 5.2825 18.09

VG 6.3681 5.2270 17.92

Normal 6.4324 5.2683 18.10

Volkswagen c(XP
T ) c(XP

T ) Efficiency loss in %

NIG 8.0064 4.0871 48.95

VG 7.9765 4.0603 49.10

Normal 7.9909 4.0749 49.01

Table 3.2: Comparison of the cost of a long put option on Allianz and Volks-
wagen, resp., and the corresponding cost-efficient payoffs in differ-
ent Lévy models. Initial stock price, strike, and time to maturity
are S0 = 93.42, K = 98, T = 23 for Allianz and S0 = 130.55,
K = 135, T = 23 for Volkswagen. The other parameters needed
for the calculations are taken from Table 3.1.

Eθ̄
[
(XP

T − X
P
T )2
]
< ∞ here is trivially fulfilled, so Proposition 2.8 assures

that the efficiency loss is increasing in |θ̄|. As can be seen from Table 3.1,
the value of |θ̄| for Volkswagen is more than 2.5 times as large than that of
Allianz, and this is also reflected in the magnitude of the efficiency losses in
Table 3.2. However, for each stock itself the efficiency losses obtained under
the different Lévy models are of almost the same size and thus seem to be
widely model-independent.

3.2 Call options (θ̄ > 0)

Now let us take a closer look at a long call option with strike K > 0, maturity
T > 0, and payoff XC

T = (ST −K)+ = (S0e
LT −K)+. As already pointed

out before in Example 2.10 ii), XC
T is monotonically increasing in LT , hence

the long call option is not cost-efficient if θ̄ > 0. Its distribution function
GC = FXC

T
can easily be derived to be

GC(x) = P
(
XC
T ≤ x

)
=

{
0, if x < 0,

FLT
(
ln
(
K+x
S0

))
, if x ≥ 0.

(3.6)

The corresponding inverse is given by

G−1
C (y) =

(
S0e

F−1
LT

(y) −K
)

+
, y ∈ (0, 1). (3.7)

Applying Proposition 2.7 again, for θ̄ > 0 the cost-efficient payoff that gen-
erates the same distribution GC as the long call option is given by

XC
T = G−1

C (1− FLT (LT )) =
(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
. (3.8)
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Similarly, one can show that the short call is inefficient for θ̄ < 0 as its payoff
function X−CT = −(S0e

LT − K)+ is monotonically decreasing in LT . The
distribution function G−C of the short call payoff is

G−C(x) = P
(
X−CT ≤ x

)
=

{
1, if x ≥ 0,

1− FLT
(
ln
(
K−x
S0

))
, if x < 0,

and for its inverse one obtains

G−1
−C(y) = −

(
S0e

F−1
LT

(1−y) −K
)

+
, y ∈ (0, 1),

thus the cost-efficient strategy for a short call in the case θ̄ < 0 is

X−CT = G−1
−C(FLT (LT )) = −

(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+
. (3.9)

From the preceding equations we also see that the inverse distribution func-
tions of the long and short call fulfill the same equality as in the put case,
namely

G−1
C (y) = −G−1

−C(1− y).

Therefore, one obtains similarly as in Corollary 3.2 that for θ̄ > 0 we have,
under the general assumptions of Proposition 2.7,

XC
T = −X −CT and c

(
XC
T

)
= −c

(
X
−C
T

)
, (3.10)

that is, the payoff function of the cost-efficient long call exactly is the nega-
tive payoff of the most-expensive short call, and the same relationship holds

for the corresponding costs. If θ̄ < 0, one analogously obtains X−CT = −XC
T

and c
(
X−CT

)
= −c

(
X
C
T

)
. Table 3.3 summarizes the efficiency of long and

short put and call positions depending on the sign of the risk-neutral Esscher
parameter θ̄.

Esscher parameter θ̄ < 0 θ̄ > 0

long put most-expensive cost-efficient

short put cost-efficient most-expensive

long call cost-efficient most-expensive

short call most-expensive cost-efficient

Table 3.3: Efficiency of puts and calls depending on the Esscher parameter θ̄.

3.3 Forwards

The payoff function X−FT = K − ST = K − S0e
LT of a short forward with

delivery price K is strictly decreasing in LT and thus inefficient if θ̄ < 0.
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The corresponding distribution function G−F is given by

G−F (x) = P (K − S0e
LT ≤ x) = 1− FLT

(
ln

(
K − x
S0

))
and has the inverse

G−1
−F (y) = K − S0e

F−1
LT

(1−y)
, y ∈ (0, 1).

By Proposition 2.7, the cost-efficient strategy for a short forward in the case
θ̄ < 0 then is

X−FT = G−1
−F (FLT (LT )) = K − S0e

F−1
LT

(1−FLT (LT ))
. (3.11)

Remark 3.3 Observe that the payoff X−FT and hence the costs c
(
X−FT

)
of

the efficient short forward depend on the distribution of LT and hence on the
specific Lévy model one has chosen. In contrast to this, simple no-arbitrage
arguments show that the costs c

(
X−FT

)
of the standard short forward (if the

underlying provides no income during the lifetime of the contract) are given
by c

(
X−FT

)
= Ke−rT − S0, and thus, are obviously model-independent.

Recall that the payoff X−FT of a short forward is equal to the payoff of
the sum of a long put and a short call with the same strike K and maturity
T , that is,

X−FT = K − ST = (K − ST )+ − (ST −K)+.

This decomposition implies that the cost-efficient strategy of a short for-
ward may alternatively be derived as the combination of the cost-efficient
strategies for a long put and a short call which are both inefficient if θ̄ < 0.
Indeed, from equations (3.2) and (3.9) we have

X−FT = K − S0e
F−1
LT

(1−FLT (LT ))

=
(
K − S0e

F−1
LT

(1−FLT (LT )))
+
−
(
S0e

F−1
LT

(1−FLT (LT )) −K
)

+

= XP
T +X−CT . (3.12)

Analogously, a long forward is inefficient if θ̄ > 0. Its payoff XF
T corre-

sponds to the sum of the payoffs of a long call and a short put:

XF
T = ST −K = (ST −K)+ − (K − ST )+. (3.13)

Here, one also obtains that the payoff of a cost-efficient long forward

XF
T = G−1

F (1− FLT (LT )) = S0e
F−1
LT

(1−FLT (LT )) −K (3.14)

corresponds to the sum of a cost-efficient long call and a cost-efficient short
put.

The decomposition of the cost-efficient strategy of a forward into the
sum of cost-efficient strategies for a call and a put suggests that there exists
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some cost-efficient analogue to the put-call parity. As is known, the latter
uses the representation (3.13) to conclude that the difference c(XC

T )−c(XP
T )

of the long call and put prices must equal the long forward price c(XF
T ) =

S0−Ke−rT . Therefore, the prices of a long call and a long put can be derived
from each other by just adding resp. substracting the corresponding forward
price. As shown in equation (3.12), the relation (3.13) analogously also holds
for the cost-efficient strategies XC

T , X−PT , and XF
T , so one might conjecture

that, for example, the price of a cost-efficient long put can similarly be
obtained as the difference of the prices of an efficient long call and an efficient
long forward.

However, it can easily be seen that this cannot be true: This line of
argumentation essentially relies on the fact that the payoffs and costs of
short positions are just the negative payoffs resp. costs of the corresponding
long positions, but as we have seen in Corollary 3.2, this simple relationship
does not apply to cost-efficient payoffs anymore. Altering between long
and short positions here means to switch between cost-efficient and most-
expensive payoffs, so the correct put-call parity within this framework is
given by

Proposition 3.4 (Cost-efficient put-call parity) The cost-efficient long
forward payoff XF

T allows the decomposition XF
T = XC

T +X−PT which implies

XC
T = XF

T +X
P
T , and thus, c

(
XC
T

)
= c
(
XF
T

)
+ c
(
X
P
T

)
.

For the price of a cost-efficient long put one analogously obtains

c(XP
T ) = c(X−FT ) + c(X

C
T ). (3.15)

Remember that for θ̄ < 0 we have XC
T = XC

T , XF
T = XF

T , and XP
T = X

P
T ,

whereas for θ̄ > 0 the standard payoffs XP
T = XP

T , X−FT = X−FT , and

XC
T = X

C
T are already cost-efficient, resp. most-expensive.

3.4 Bull and bear spreads

A bull spread is a combination of a long call C1 with strike K1 > 0 and a
short call −C2 with strike K2 > K1. The payoff is given by

Xbull
T =

(
S0e

LT −K1

)
+
−
(
S0e

LT −K2

)
+
,

and thus is increasing in LT . Hence, the bull spread is not cost-efficient if
θ̄ > 0. Its distribution function is

Gbull(x) =


0, if x < 0,

FLT
(
ln
(
K1+x
S0

))
, if 0 ≤ x < K2 −K1,

1, if x ≥ K2 −K1,

and the corresponding inverse can be represented by

G−1
bull(y) =

(
S0e

F−1
LT

(y) −K1

)
+
−
(
S0e

F−1
LT

(y) −K2

)
+
.
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Note that for x < K2−K1, the distribution function Gbull(x) coincides with
that of the long call C1, therefore it is not surprising that the first summand
of the inverse G−1

bull(y) is equal to G−1
C1

(y). The second summand here is
necessary to ensure that the quantile function takes only values in the range
[0,K2 −K1] of Xbull

T . If θ̄ > 0, the cost-efficient strategy corresponding to
such a bull spread then is

Xbull
T = G−1

bull(1− FLT (LT ))

=
(
S0e

F−1
LT

(1−FLT (LT )) −K1

)
+
−
(
S0e

F−1
LT

(1−FLT (LT )) −K2

)
+

= XC1
T −X

C2
T = XC1

T +X
−C2

T (3.16)

where the last equalities follow from equations (3.8), (3.9), and (3.10).
Hence, the efficient bull spread payoff Xbull

T is equivalent to a long posi-
tion in an efficient call C1 and a short position in a most-expensive call
C2, which again is a very intuitive result (see also the discussion preceding
Corollary 3.2).

A bear spread is a combination of a short put with strike K1 > 0 and a
long put with strike K2 > K1. Its payoff thus is

Xbear
T =

(
K2 − S0e

LT
)

+
−
(
K1 − S0e

LT
)

+

which obviously is decreasing in LT and thus inefficient if θ̄ < 0. Similarly
to the bull spread, the inverse G−1

bear of the distribution function of Xbear
T

equals

G−1
bear(y) =

(
K2 − S0e

F−1
LT

(1−y))
+
−
(
K1 − S0e

F−1
LT

(1−y))
+

from which we derive the cost-efficient payoff of the bear spread for θ̄ < 0
as

Xbear
T =

(
K2 − S0e

F−1
LT

(1−FLT (LT )))
+
−
(
K1 − S0e

F−1
LT

(1−FLT (LT )))
+

= XP2
T −X

P1
T = XP2

T +X
−P1

T (3.17)

which corresponds to the sum of an efficient long put P2 with strike K2 and
a most-expensive short put −P1 with strike K1.

From the above examples, one may have the impression that the cost-
efficient strategy for any combination of long and short puts or calls can
easily be obtained by just replacing the long positions by their cost-efficient
and the short positions by their most-expensive counterparts. However, this
is not true in general as the following counterexample shows: Consider a
butterfly which is the combination of two long calls C3 and C1 with strikes
K3 > K1 > 0, and two short calls −C2 with strike K2 = K1+K3

2 . The payoff

Xbfly
T of a butterfly spread thus is given by

Xbfly
T =

(
S0e

LT −K1

)
+

+
(
S0e

LT −K3

)
+
− 2
(
S0e

LT −K2

)
+
,
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and the corresponding distribution function Gbfly can be shown to equal

Gbfly(x) =


0, if x < 0,

FLT
(
ln
(
K1+x
S0

))
+ 1− FLT

(
ln
(
K3−x
S0

))
, if 0 ≤ x < K3−K1

2 ,

1, if x ≥ K3−K1
2 .

Here the distribution function has a more complex form because the payoff
Xbfly
T is not monotonic in LT , and it can easily be checked that the inverse

G−1
bfly does not admit a representation in form of a sum of G−1

C1
, G−1

C3
, and

G−1
−C2

. Therefore, the relation Xbfly
T = XC1

T +XC3
T + 2X

−C2

T cannot be valid
either.

For several further options like self quanto calls and puts explicit or
semiexplicit formulas can be derived as in Sections 3.1–3.4.

4 Delta hedging of cost-efficient strategies in Lévy
models

In the previous section we provided a semi-explicit formula for the costs
of a cost-efficient strategy which is valuable for many financial applications
since it can be easily evaluated numerically. For practitioners, however, this
formula might still be unsatisfying unless an explicit hedging strategy for the
cost-efficient payoff exists. In this section we want to deal with the hedging
problem and first provide some formulas of possible hedging strategies for
efficient puts and calls which we then apply to hedge the efficient puts on
Allianz and Volkswagen discussed in Section 3.1. In the following we focus
on developing a formula for the delta hedge, i.e., the derivative of the cost
of a strategy with respect to the underlying, for the cost-efficient payoff of a
put resp. call option. If the underlying asset is traded sufficiently liquid in
the market, delta hedging probably is one of the simplest, but nevertheless
fairly effective ways to cover a risky position and is therefore widely used in
practice.

4.1 Delta hedging on puts and calls

Consider the payoffs XP
T = (K − ST )+ and XC

T = (ST −K)+ of a put resp.
call option with strike K > 0 and maturity T > 0. As proved in Section 3,
the payoff XP

T becomes inefficient for θ̄ < 0 while the payoff XC
T is inefficient

if θ̄ > 0. Inserting the inverse distribution functions G−1
P and G−1

C which
we derived in equations (3.1) and (3.7) into the corresponding formulas of
Proposition 2.7, we obtain the price of the cost-efficient put option as

c(XP
T ) =

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(1−y)−rT (
K − S0e

F−1
LT

(y))
+
dy, θ̄ < 0, (4.1)
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and the price of a cost-efficient call option is given by

c(XC
T ) =

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(y)−rT (
S0e

F−1
LT

(1−y) −K
)

+
dy, θ̄ > 0. (4.2)

The following theorem provides explicit formulas for the derivatives of c(XP
T )

and c(XC
T ) with respect to the underlying S0.

Theorem 4.1 (Deltas for cost-efficient puts and calls) Let (Lt)t≥0 be
a Lévy process with a continuous and strictly increasing distribution FLT at
maturity T > 0, and assume that a solution θ̄ of (2.7) exists.

i) If θ̄ < 0, the delta ∆P
T of the cost-efficient long put XP

T is given by

∆P
T = − 1

MLT (θ̄)

FLT

(
ln
(
K
S0

))∫
0

e
θ̄F−1
LT

(1−y)+F−1
LT

(y)−rT
dy. (4.3)

ii) If θ̄ > 0, the delta ∆C
T of the cost-efficient long call XC

T is given by

∆C
T =

1

MLT (θ̄)

1−FLT
(

ln
(
K
S0

))∫
0

e
θ̄F−1
LT

(y)+F−1
LT

(1−y)−rT
dy. (4.4)

For the proof see Appendix A.2.

Equations (4.3) and (4.4) of the previous theorem especially entail that
the deltas of efficient puts and calls are always negative resp. positive, that
is, analogous to its classical counterparts one has to go short in the under-
lying to hedge a cost-efficient put, and hedging of an efficient call requires a
long position in the underlying. This might be somewhat surprising at first
because Figure 3.2 has shown that the payoff of an efficient put is reversed
to that of a vanilla put and bears some similarities to the payoff of a vanilla
call, and a similar observation can be made when comparing the payoffs of
standard and efficient calls. Thus, one might expect that ∆P

T and ∆C
T just

have the opposite signs of the deltas ∆P
T and ∆C

T of the vanilla put resp.
call, but the following consideration shows that this line of argumentation
is misleading.

As already pointed out in Remark 3.1, a cost-efficient put must provide
the same payoff-distribution as a vanilla put at any time t within the lifetime
[0, T ] of the contract. But since the asset price ST is a known constant
at maturity, the payoff-distribution of the standard put at time T is the
degenerate distribution (unit mass) located at (K − ST )+, implying that
the terminal payoffs of both the standard and the cost-efficient put must
coincide. (Using the fact that L0 = 0 almost surely for every Lévy process
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L, one also easily obtains that XP
T−t =

(
K − Ste

F−1
LT−t

(1−FLT−t (LT−t)))
+
→

(K − ST )+ for t → T .) Hence, it is intuitively obvious that—at least close
to maturity—the hedging strategies of the standard and the efficient put
should be fairly similar and therefore ∆P

T−t and ∆P
T−t should have the same

sign. Theorem 4.1 assures that this holds true for all t ∈ [0, T ].
However, because the prices of the efficient calls and puts are smaller

than those of their standard counterparts, one then could at least expect
that the absolute values |∆P

T | and |∆C
T | are also smaller than |∆P

T | and |∆C
T |,

respectively. The next theorem shows that such a relation indeed is always
fulfilled for the call deltas and in most cases also for the put deltas.

Theorem 4.2 (Comparison of deltas) Let (Lt)t≥0 be a Lévy process with
a continuous and strictly increasing distribution FLT at maturity T > 0, and
assume that a solution θ̄ of (2.7) exists.

a) For cost-efficient and vanilla calls, we have the following relations:
If θ̄ > 0, then 0 ≤ ∆C

T ≤ ∆C
T . For θ̄ < 0 we have ∆C

T = ∆C
T .

b) In the put case, we have ∆P
T = ∆P

T for θ̄ > 0.
If θ̄ < 0 and FLT

(
ln
(
K
S0

))
≤ q∗ where q∗ ∈ (0.5, 1] is the unique positive

root of the function DP : [0, 1]→ R,

DP (q) =
1

MLT (θ̄)

q∫
0

e
θ̄F−1
LT

(y)+F−1
LT

(y) − eθ̄F
−1
LT

(1−y)+F−1
LT

(y)
dy,

then ∆P
T ≤ ∆P

T ≤ 0.

For the proof of Theorem 4.2 see Appendix A.2.

Remark 4.3 Observe again that the condition in Theorem 4.2 b) is time-
dependent, thus even if ∆P

T ≤ ∆P
T holds at the initial time t = 0, this does

not necessarily mean that ∆P
T−t ≤ ∆P

T−t for all t ∈ (0, T ]. However, in
practical examples this inequality typically holds throughout the lifetime of
the contract as the subsequent examples show. The fact that ∆P

T and ∆C
T

are smaller than their counterparts of the corresponding vanilla options also
implies that the prices of cost-efficient puts and calls react less sensitive to
changes in value of the underlying and thus may allow for more efficient
hedging strategies of such contracts. The results of the next subsection
indicate that this indeed is the case.

4.2 Application to real market data

In the following we illustrate the theoretical findings by some practical ex-
amples for the put case which continue the calculations in Section 3.1. More
specifically, we consider the evolution of vanilla and cost-efficient puts on
the Allianz and the Volkswagen stock which are assumed to be issued on
October 1, 2012, and to mature on November 1, 2012. Figures 4.1 and 4.2
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show the prices of the Allianz stock and the corresponding puts with strike
K = 98 within the aforementioned time period as well as the values of the
deltas associated to both puts. Here, all calculations are based on the NIG
model; the NIG parameters for Allianz can be found in Table 3.1. The deltas
∆P
T−t of the efficient put were calculated using equation (4.3) from Theo-

rem 4.1, and an explicit formula for their counterparts ∆P
T−t of the vanilla

put in the NIG model can be easily derived from equation (3.5): Observing
that

dNIG(α,β+θ̄+1,δT,µT )(x) =
(A.5)

e(θ̄+1)x

MLT (θ̄ + 1)
dNIG(α,β,δT,µT )(x)

=
(2.7)

ex

erT
eθ̄x

MLT (θ̄)
dNIG(α,β,δT,µT )(x)

=
(A.5)

ex

erT
dNIG(α,β+θ̄,δT,µT )(x),

we obtain that

∂c(XP
T )

∂S0
= −Ke

−rT

S0
dNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
− FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
+ dNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
= −Ke

−rT

S0
dNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
− FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
+
Ke−rT

S0
dNIG(α,β+θ̄,δT,µT )

(
ln
(
K
S0

))
= −FNIG(α,β+θ̄+1,δT,µT )

(
ln
(
K
S0

))
.

As is obvious from Figure 4.1, the price of the cost-efficient put converges
to that of the vanilla put when the time to maturity tends to zero. This
reflects the fact that the payoffs of both puts coincide at the end as pointed
out before.

The deltas associated to the Allianz puts fulfill the relation ∆P
T−t −

∆P
T−t ≥ 0 for all t ∈ [0, T ]. Because the values of the deltas at maturity are

always trivial (−1 if the put ends in the money, and 0 otherwise) and not
relevant for hedging purposes anymore, Figure 4.2 only shows the deltas up
to one day to maturity, that is, from October 1, 2012, to October 31, 2012.

The results obtained for the other two Lévy models (normal and VG)
look quite similar and therefore are not plotted here separately. This is
also in line with our previous estimations and calculations. Since the risk-
neutral Esscher parameter roughly was of the same size for all three models
(see Table 3.1) and also the put prices and efficiency losses in Table 3.2 were
almost identical, one should not expect greater differences here.

The next two pictures show the evolution of the prices of the Volkswagen
stock and the cost-efficient and vanilla puts on it with strike K = 135 as well
as the corresponding deltas. Again, the results do not differ much between
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Figure 4.1: Evolution of the stock price of Allianz from October 1, 2012, to
November 1, 2012, and the prices of the associated vanilla and
efficient puts in the NIG model with strike K = 98 and maturity
date November 1, 2012. The NIG parameters used to calculate
the put prices can be found in Table 3.1.

−
1.

0
−

0.
8

−
0.

6
−

0.
4

−
0.

2
0.

0

Comparison of put deltas for Allianz (NIG model)

va
lu

e 
of

 d
el

ta

03.10.2012 11.10.2012 19.10.2012 29.10.2012

efficient put
vanilla put

Figure 4.2: Comparison of the deltas corresponding to the vanilla and efficient
put on Allianz within the NIG model shown in Figure 4.1.

all three Lévy models under consideration, thus we only show the plots for
the VG case only. The delta of the vanilla put in this model can be derived
analogously as above to be

∆P
T =

∂c(XP
T )

∂S0
= −FVG(λT,α,β+θ̄+1,µT )

(
ln
(
K
S0

))
.

Note that in this example both puts expire worthless, therefore their prices
as well as the deltas both tend to zero at maturity.

However, computing the put deltas is only one side of the coin, market
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Figure 4.3: Evolution of the stock price of Volkswagen from October 1, 2012,
to November 1, 2012, and the prices of the associated vanilla and
efficient puts in the VG model with strike K = 135 and maturity
date November 1, 2012. The VG parameters used to calculate the
put prices can be found in Table 3.1.
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Figure 4.4: Comparison of the Deltas corresponding to the vanilla and efficient
put on Volkswagen within the VG model shown in Figure 4.3.
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participants will surely be more interested in how well the hedging strate-
gies based on them work in practice. The NIG and VG models are incom-
plete from the very beginning, so one cannot expect perfect hedging there,
but also the Samuelson model is only complete in theory. Since in reality
just discrete hedging is feasible, one will encounter hedge errors within this
framework, too. The magnitude of these errors is, of course, relevant for
practical applications. In particular, one may ask if the hedge errors of the
cost-efficient puts are comparable or even less than those of the standard
puts because otherwise the advantage of the lower initial costs might be
annihilated. Therefore, we finally calculate and compare the hedge errors
that occur in delta hedging of the vanilla and efficient puts on Allianz and
Volkswagen considered before.

We assume that the hedge portfolios are rebalanced daily, hence the
portfolio weights δt (amount of stock at time t) and bt (amount of money
on the savings account at t) just have to be calculated at the discrete times
t = 0, 1, . . . , T−1. For the vanilla puts δt = ∆P

T−t, and in case of the efficient

puts we have δt = ∆P
T−t. Depending on the put type under consideration,

we analogously set ct = c(XP
T−t) or ct = c(XP

T−t), respectively.
At the initial time t = 0, the hedge portfolio is set up with the weights

δ0 and b0 = −δ0S0 +c0 since the writer of the put obtains c0 from the buyer,
shorts |δ0| stocks and deposits all incomes on his savings account. At time
t > 0, the value of the portfolio before rebalancing is δt−1St + erbt−1, and
we define the corresponding hedge error by

et := ct − δt−1St − erbt−1,

so positive hedge errors mean losses and negative gains. At the end of the
trading day, the new weights δt and bt = ct − δtSt are chosen to ensure that
the value of the portfolio again exactly coincides with the present put price.
Using the above definition of et, we can alternatively represent bt in the form

bt = et + erbt−1 + St(δt−1 − δt).

This means that the hedge error is nothing but the amount of money one has
to additionally inject to or withdraw from the savings account after adapting
the stock position to make the value of the hedge portfolio congruent with
the current put price.

Remark 4.4 In general, the size of the hedge error also depends on the
rebalancing frequency and the continuity properties of the payoff function.
Our empirical results below show that for standard and efficient puts a
daily rebalancing of the portfolio already is sufficient to get a fairly precise
approximation to the current option prices. A thorough theoretical analysis
of the behaviour of hedge errors resulting from delta and quadratic hedging
strategies in exponential Lévy models can be found in Brodén and Tankov
(2011).
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Figure 4.5: Delta hedge errors of the efficient and vanilla puts on Allianz with
strike K = 98 maturing on November 1, 2012, in the NIG model.

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

0.
3

Hedging errors for Volkswagen (VG model)

he
dg

e 
er

ro
rs

03.10.2012 11.10.2012 19.10.2012 29.10.2012

efficient put
vanilla put

Figure 4.6: Delta hedge errors of the efficient and vanilla puts on Volkswagen
with strike K = 135 maturing on November 1, 2012, in the VG
model.
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Figures 4.5 and 4.6 display the hedge errors obtained from delta hedging
of the different puts on Allianz and Volkswagen. For Allianz, the absolute
hedge errors |et| of the efficient put are smaller than those of the vanilla put
for all but one trading day. In case of Volkswagen, there are five days at
which the absolute hedge errors of the efficient put are greater than those of
the vanilla put, but still the sum of all absolute hedge errors is smaller for
the efficient put. This indicates that delta hedging of cost-efficient options
yields at least comparable and often even more accurate results than the
corresponding hedging strategies for standard options as has already been
expected from the proportions of the deltas derived in Theorem 4.2 (see
also Remark 4.3). But since efficient puts are always cheaper than vanilla
ones, one should not only look at the absolute hedge errors to confirm this
assertion, but also take the relative or percentage hedge errors ẽt := et

ct
into account. The values of ẽt for the Allianz puts are shown in Figure 4.7
below. Analogous computations for the Volkswagen puts would not make
much sense here because they end up deep out of the money, therefore the
ẽt would tend to infinity as t→ T .
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Figure 4.7: Percentage hedge errors of the efficient and vanilla puts on Allianz
with strike K = 98 maturing on November 1, 2012, in the NIG
model.

Clearly, the delta hedge of the efficient Allianz put is more accurate than
that of the vanilla put. The latter tends to superhedge the option, that is,
the value of hedge portfolio is always greater than the option price. Recalling
that the payoffs of both puts must coincide at maturity, we see that cost-
efficient puts and the corresponding delta hedges may indeed provide a much
cheaper way to achieve and hedge a final payoff of the form (K−ST )+, and
thus, can be regarded as a low-cost insurance against falling prices of the
underlying. In view of Theorem 4.2, we suppose that analogous assertions
will also hold for calls and probably also for more complex options.
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5 Conclusion

We applied the concept of cost-efficiency to general Lévy market models
where the risk-neutral measure is obtained by an Esscher transform. Ex-
plicit criteria for cost-efficiency were derived and applied to various financial
derivatives. We have results indicating that the magnitude of the efficiency
loss increases if the market trend, resp. the drift of the underlying, becomes
more pronounced. Moreover, we established a cost-efficient version of the
put-call parity.

Numerical examples of cost-efficient puts were presented that evidenced
that the savings from choosing the cost-efficient strategies can be quite large.
We found that the efficiency losses obtained under different Lévy models
were of almost the same magnitude, and thus, seem to be widely model-
independent. Further, we derived explicit formulas for the Greek delta of
cost-efficient puts and calls and proved that their absolute values are smaller
than those of the corresponding vanilla option deltas. This suggests that
delta hedging of efficient options is more accurate and leads to smaller hedge
errors than that of standard options.

In a practical application using German stock price data we demon-
strated that the computation of the deltas is numerically tractable and that
the associated hedging strategies for efficient puts indeed have the potential
to outperform its counterparts for vanilla puts. This indicates that cost-
efficient strategies provide a more advantageous way to achieve and hedge
a final payoff, and thus, may be an appropriate tool to increase market
efficiency.

A Appendix

A.1 Derivation of the risk-neutral Esscher parameters

Normal inverse Gaussian model

This section provides some properties of NIG(α, β, δ, µ) distributions as
introduce in (2.11).

The Lebesgue density dNIG(α,β,δ,µ) can be obtained by calculating

dNIG(α,β,δ,µ)(x) =

∞∫
0

dN(µ+βy)(x) d
IG(δ,
√
α2−β2)

(y) dy

= n(α, β, δ)
K1

(
α
√
δ2 + (x− µ)2

)√
δ2 + (x− µ)2

eβ(x−µ),

where K1(x) is the modified Bessel function of third kind with index 1, and
the norming constant n(α, β, δ) is given by

n(α, β, δ) =
αδ

π
eδ
√
α2−β2

.
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The corresponding moment generating function MNIG(αβ,δ,µ) then can easily
be derived observing that

MNIG(α,β,δ,µ)(u) =

∞∫
−∞

euxdNIG(α,β,δ,µ)(x) dx

=

∞∫
−∞

euµ
n(α, β, δ)

n(α, β + u, δ)
dNIG(α,β+u,δ,µ)(x) dx

= euµ
n(α, β, δ)

n(α, β + u, δ)
= euµ+δ

√
α2−β2−δ

√
α2−(β+u)2

(A.1)

which obviously is defined for all u ∈ (−α−β, α−β). Hence, Assumption (M)
is fulfilled if α− β − (−α− β) = 2α > 1. However, we have

lim
u→±α−β

MNIG(α,β,δ,µ)(u) = e(±α−β)µ+δ
√
α2−β2

,

that is, the moment generating function tends to a finite limit at the bound-
aries of this interval. According to Lemma 2.4, it thus may not always be
possible to find a solution θ̄ of equation (2.7). If it exists, it is given by

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (A.2)

Recall that by equation (A.1) the moment generating function of an NIG
distribution is given by

MNIG(α,β,δ,µ)(u) = euµ+δ
√
α2−β2−δ

√
α2−(β+u)2

,

so the defining equation (2.7) for the risk-neutral Esscher parameter here
becomes

er =
MNIG(α,β,δ,µ)(θ̄NIG + 1)

MNIG(α,β,δ,µ)(θ̄NIG)
= eµ−δ

√
α2−(β+θ̄NIG+1)2+δ

√
α2−(β+θ̄NIG)2

or equivalently

r − µ
δ

=
√
α2 − (β + θ̄NIG)2 −

√
α2 − (β + θ̄NIG + 1)2. (A.3)

Under Assumption (M), which is equivalent to 2α > 1, Lemma 2.4 states
that there can exist at most one solution θ̄NIG to (A.3) which obviously must
also fulfill the additional constraints |β+ θ̄NIG | < α and |β+ θ̄NIG + 1| < α.

Case 1: r = µ

Here we have that

0 =
√
α2 − (β + θ̄NIG)2 −

√
α2 − (β + θ̄NIG + 1)2
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and hence (β + θ̄NIG)2 = (β + θ̄NIG + 1)2, which obviously is fulfilled iff

θ̄NIG = −1

2
− β.

This is a proper solution since by Assumption (M) α > 1
2 = |β + θ̄NIG | =

|β + θ̄NIG + 1|.

Case 2: r 6= µ

To simplify notations, we set r∗ := r−µ
δ and β∗ := β+ θ̄NIG in the following.

Using these abbreviations, equation (A.3) can be rewritten as√
α2 − β∗2 − (2β∗ + 1) =

√
α2 − β∗2 − r∗.

Squaring this equation and isolating the term
√
α2 − β∗2 yields√

α2 − β∗2 =
(1 + r∗2) + 2β∗

2r∗
.

Squaring again and reorganizing terms we finally obtain the following quadratic
equation for β∗:

β∗2 + β∗ +
1 + r∗2

4
− α2r∗2

1 + r∗2
= 0.

The solutions of this quadratic equation are given by

β∗= β+θ̄NIG = −1

2
±r∗

√
α2

1 + r∗2
− 1

4
=⇒ θ̄NIG = −1

2
−β±r∗

√
α2

1 + r∗2
− 1

4
.

Note that the above solutions only exist if 2α >
√

1 + r∗2 which is more
restrictive than Assumption (M). From equation (A.3) we conclude that for
r∗ > 0 we must have (β + θ̄NIG)2 < (β + θ̄NIG + 1)2, which is equivalent
to −1

2 − β < θ̄NIG . If r∗ < 0, we analogously arrive at the constraint
−1

2 − β > θ̄NIG . Comparing this with the above solutions of the quadratic
equation for β∗, we finally see that the only possible solution for the risk-
neutral Esscher parameter is, re-inserting r−µ

δ = r∗,

θ̄NIG = −1

2
− β +

r − µ
δ

√
α2

1 + ( r−µδ )2
− 1

4
. (A.4)

However, observe that this is a possible, but not a definitive solution! One
additionally has to check if the obtained θ̄NIG really solves the initial equa-
tion (A.3). There exist sets of NIG parameters which fulfill all necessary
constraints, however, the value θ̄NIG calculated according to (A.4) is not a
valid solution of (A.3). Take, for example, (α, β, δ, µ) = (1,−0.1, 0.05, 0)
and r = 0.06, then we have 2 = 2α >

√
1 + r∗2 = 1.56205, and calculating

θ̄NIG according to (A.4) yields θ̄NIG = 0.07975404. Clearly, this θ̄NIG also
fulfills the additional constraints |β + θ̄NIG | < α and |β + θ̄NIG + 1| < α,
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but inserting this value and the other parameters into equation (A.3) one
sees that the latter is violated. Note that the characteristic function φNIG of
an NIG distribution can be obtained via the relation φNIG(u) = MNIG(iu).
Since for every Lévy process it holds that φLt(u) = φL1(u)t, one immedi-
ately obtains from (A.1) that φLt(u) = φNIG(α,β,δ,µ)(u)t = φNIG(α,β,δt,µt)(u),
hence for an NIG Lévy process (Lt)t≥0 we have L(Lt) = NIG(α, β, δt, µt)
for all t > 0. Similar arguments as used above in (A.1) then show that for
any Esscher transform the density dθLt of Lt under the measure Qθ is

dθLt(x) =
eθx

MNIG(α,β,δt,µt)(θ)
dNIG(α,β,δt,µt)(x)

(A.5)

=
n(α, β + θ, δt)

n(α, β, δt)
eθ(x−µt)dNIG(α,β,δt,µt)(x) = dNIG(α,β+θ,δt,µt)(x),

that is, (Lt)t≥0 remains an NIG Lévy process under every Esscher transform
Qθ, but with different parameter β ; β + θ.

Variance Gamma model

This section provides some information on the Variance Gamma model as
introduced in Section 2.3.

Analogously as in the introduction in Section 2.3, the corresponding
Lebesgue density dV G(λ,α,β,µ) can be calculated by

dV G(λ,α,β,µ)(x) =

∞∫
0

dN(µ+βy)(x) dG(λ,(α2−β2)/2)(y) dy

= m(λ, α, β) |x− µ|λ−
1
2 Kλ(α|x− µ|) eβ(x−µ)

with the norming constant

m(λ, α, β) =
(α2 − β2)λ

√
π(2α)λ−

1
2 Γ(λ)

,

and with the same reasoning as in (A.1) one obtains the moment generating
function

MV G(λ,α,β,µ)(u) = euµ
m(λ, α, β)

m(λ, α, β + u)
= euµ

(
α2 − β2

α2 − (β + u)2

)λ
(A.6)

which again is defined for all u ∈ (−α − β, α − β). Observe that here we
have limu→±α−βMV G(λ,α,β,µ)(u) =∞, such that due to by Lemma 2.4 b) the
condition 2α > 1 is sufficient to guarantee a unique solution θ̄ of equation
(2.7) in the VG case. By equation (A.6), the moment generating function
of a VG distribution is given by

MV G(λ,α,β,µ)(u) = euµ
(

α2 − β2

α2 − (β + u)2

)λ
.

35



Thus, the defining equation for the risk-neutral Esscher parameter in this
case is

er =
MV G(λ,α,β,µ)(θ̄V G + 1)

MV G(λ,α,β,µ)(θ̄V G)
= eµ

(
α2 − (β + θ̄V G)2

α2 − (β + θ̄V G + 1)2

)λ
,

or equivalently,

e
r−µ
λ =

α2 − (β + θ̄V G)2

α2 − (β + θ̄V G + 1)2
. (A.7)

As has alread been pointed out on p. 35, the condition 2α > 1 here is suf-
ficient to guarantee the existence of a unique solution θ̄V G of equation (A.7).

Case 1: r = µ

In this case, (A.7) becomes

α2 − (β + θ̄V G)2 = α2 − (β + θ̄V G + 1)2

which apparently is solved by

θ̄V G = −1

2
− β.

This is a proper solution as can be seen analogously as in the NIG model.

Case 2: r 6= µ

To simplify the notation and formulas in the derivation of θ̄V G, we set,
similarly as before, r∗ := r−µ

λ and β∗ = β + θ̄V G. Multiplying both sides of
(A.7) with α2 − (β∗ + 1)2 yields

er
∗(
α2 − (β∗ + 1)2

)
= α2 − β∗2.

Expanding the expressions and rearranging terms we obtain

β∗2 +
2

1− e−r∗
β∗ +

(
1

1− e−r∗
− α2

)
= 0.

The solutions of this quadratic equation are given by

β∗ = β + θ̄V G = − 1

1− e−r∗
±

√
e−r∗

(1− e−r∗)2
+ α2.

Thus, the possible risk-neutral Esscher parameters are

θ̄V G = − 1

1− e−r∗
− β ±

√
e−r∗

(1− e−r∗)2
+ α2. (A.8)

Observe that the moment generating function MV G is only defined on the
interval (−α − β, α − β), therefore θ̄V G ∈ (−α − β, α − β − 1) must hold.

Further, note that we always have
√

e−r∗

(1−e−r∗ )2 + α2 > α.
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Now suppose that r > µ, then e−r
∗
< 1, or equivalently, − 1

1−e−r∗ < 0,
and thus

− 1

1− e−r∗
− β −

√
e−r∗

(1− e−r∗)2
+ α2 < −β − α.

Hence, this solution of (A.7) does not lie within (−α− β, α− β − 1), so the
unique solution in the case r > µ is given by

θ̄V G = − 1

1− e−
r−µ
λ

− β +

√√√√ e−
r−µ
λ(

1− e−
r−µ
λ

)2 + α2. (A.9)

If on the other hand r < µ, then we have e−r∗ > 1, resp. − 1
1−e−r∗ > 0, so

the above solution (A.9) lies outside (−α− β, α− β − 1) because

− 1

1− e−r∗
− β +

√
e−r∗

(1− e−r∗)2
+ α2 > −β + α.

Consequently, the unique solution in the case r < µ is given by

θ̄V G = − 1

1− e−
r−µ
λ

− β −

√√√√ e−
r−µ
λ(

1− e−
r−µ
λ

)2 + α2. (A.10)

Again, we have φV G(u) = MV G(iu) and conclude from (A.6) that φLt(u)
= φV G(λ,α,β,µ)(u)t = φV G(λt,α,β,µt)(u), i.e., for a VG Lévy process (Lt)t≥0

it holds that L(Lt) = V G(λt, α, β, µt) for all t > 0. Similarly as in the
NIG case, one can also show that every Esscher transform of the real-world
measure P only affects the parameter β and (Lt)t≥0 remains a VG Lévy
process under Qθ, but with different parameter β + θ.

A.2 Proofs

Proof of Proposition 2.8: Since Qθ̄ is a risk-neutral measure, we have
Eθ̄
[
eLT
]

= erT <∞, and the construction of Qθ̄ and Assumption (M) imply
θ̄ ∈ (a, b − 1) with a < 0 < b, hence there exists a sufficiently small ε > 0
such that θ̄ − ε ∈ (a, b− 1), too. Thus, we have

Eθ̄[e
−εLT ] =

E[e(θ̄−ε)LT ]

MLT (θ̄)
=
MLT (θ̄ − ε)
MLT (θ̄)

<∞

and conclude that LT also has a moment generating function M θ̄
LT

(u) under

the risk-neutral Esscher measure Qθ̄ which is well-defined and finite at least
on the open interval (−ε, 1). In particular, this implies Eθ̄[L

2
T ] < ∞ and

hence Eθ̄[|LT |] <∞.
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Thus, we can differentiate the state-price density Z θ̄T = eθ̄LT
MLT

(θ̄)
with

respect to θ̄ and obtain

∂Z θ̄T
∂θ̄

=
LT e

θ̄LT MLT (θ̄)− eθ̄LTM ′LT (θ̄)

MLT (θ̄)2

= Z θ̄TLT −
eθ̄LTE[LT e

θ̄LT ]

MLT (θ̄)2
= Z θ̄T (LT − Eθ̄[LT ])

where in the second equality we used the fact that M ′LT (θ̄) = E
[
∂
∂θ̄
eθ̄LT

]
.

The interchange between differentiation and integration here is justified be-
cause E

[∣∣ ∂
∂θ̄
eθ̄LT

∣∣] = E[|LT |eθ̄LT ] = MLT (θ̄)Eθ̄[|LT |] < ∞ as shown above.

Further, observe that XT does not depend on θ̄, and by Proposition 2.7,

neither does XT , such that we have
∂Z θ̄T (XT−XT )

∂θ̄
=

∂Z θ̄T
∂θ̄

(XT −XT ) and

E

[∣∣∣∣∂Z θ̄T∂θ̄ (XT −XT )

∣∣∣∣
]

= E
[∣∣Z θ̄T (LT − Eθ̄[LT ])(XT −XT )

∣∣]
≤ E

[
Z θ̄T (|LT |+ Eθ̄[|LT |]) |XT −XT |

]
= E

[
Z θ̄T |LT | |XT −XT |

]
+ Eθ̄

[
|LT |

]
E
[
Z θ̄T |XT −XT |

]
= Eθ̄

[
|LT | |XT −XT |

]
+ Eθ̄

[
|LT |

]
Eθ̄
[
|XT −XT |

]
< ∞

because Eθ̄[L
2
T ] <∞ and, by assumption, also Eθ̄

[
(XT −XT )2

]
<∞. This

again allows to interchange differentiation and integration in the following
calculation which yields, similarly as above,

∂l(θ̄)

∂θ̄
= e−rT

∂E
[
Z θ̄T (XT −XT )

]
∂θ̄

= e−rTE

[
∂Z θ̄T
∂θ̄

(XT −XT )

]
= e−rTE

[
Z θ̄T (LT − Eθ̄[LT ])(XT −XT )

]
= e−rT

(
E
[
Z θ̄TLT (XT −XT )

]
− Eθ̄

[
LT
]
E
[
Z θ̄T (XT −XT )

])
= e−rTCovθ̄(LT , XT −XT ).

Hence, l(θ̄) is increasing in θ̄ iff Covθ̄(LT , XT ) ≥ Covθ̄(LT , XT ). The latter
inequality is fulfilled for θ̄ > 0, because by Proposition 2.7 we then have
XT = G−1(1 − FLT (LT )) almost surely, so XT is a decreasing function of
LT , implying that (LT , XT ) is a countermonotonic pair of random variables,
and thus, has the smallest covariance among all pairs of random variables
possessing the same marginal distributions. Analogously one obtains that
l(θ̄) is decreasing for θ̄ < 0, because in this case XT = G−1(FLT (LT )) is
an increasing function of LT by Proposition 2.7. Therefore, (LT , XT ) is
comonotonic and hence Covθ̄(LT , XT ) ≤ Covθ̄(LT , XT ). 2
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Proof of Corollary 3.2: Suppose that θ̄ < 0. From equations (3.1) and
(3.3) we know that

G−1
P (y) =

(
K − S0e

F−1
LT

(1−y))
+

= −
(
S0e

F−1
LT

(1−y) −K
)
− = −G−1

−P (1− y).

Applying Proposition 2.7 yields

XP
T = G−1

P (FLT (LT )) = −G−1
−P (1− FLT (LT )) = −X −PT

and, due to Proposition 2.7,

c
(
XP
T

)
= E

[
e−rTZTX

P
T

]
=

1

MLT (θ̄)

∫ 1

0
e
θ̄F−1
LT

(1−y)−rT
G−1
P (1− y) dy

= − 1

MLT (θ̄)

∫ 1

0
e
θ̄F−1
LT

(1−y)−rT
G−1
−P (y) dy

= −E
[
e−rTZTX

−P
T

]
= −c

(
X
−P
T

)
.

The assertions for the case θ̄ > 0 can be shown completely analogously. 2

Proof of Theorem 4.1: i) The price c(XP
T ) of the cost-efficient long put

has been given in equation (4.1). It can be easily seen that the integrand
is integrable with respect to y for all S0 ≥ 0 since, due to Proposition 2.7,
c(XP

T ) is always bounded from above by the price c(XP
T ) of the original

(inefficient) long put which obviously is finite for all S0 ∈ R+. Moreover,
the function

f(S0, y) : R× [0, 1]→ R+, f(S0, y) = e
θ̄F−1
LT

(1−y)−rT (
K − S0e

F−1
LT

(y))
+

is differentiable in S0 for all y ∈ [0, 1] (apart from the point S0 = Ke
−F−1

LT
(y)

,
but since the left- and right-hand side derivatives are bounded, this can be
neglected here), and the partial derivative is

∂

∂S0
f(S0, y) = e

θ̄F−1
LT

(1−y)−rT (−eF−1
LT

(y))
1[0,FLT (ln(K/S0))](y).

Its absolute value is bounded by the integrable function

g(y) =
K

S0
e
θ̄F−1
LT

(1−y)−rT
.

For the integrability of g(y), observe that

1∫
0

g(y) dy =
K

S0

1∫
0

e
θ̄F−1
LT

(1−y)−rT
dy =

K

S0

1∫
0

e
θ̄F−1
LT

(z)−rT
dz

=
K

S0

+∞∫
−∞

eθ̄x−rT fLT (x) dx =
Ke−rT

S0
MLT (θ̄) <∞,
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where fLT denotes the density of LT which exists and is strictly positive on
R due to our assumptions on FLT . Hence, we can interchange differentiation
and integration and obtain

∆P
T =

∂

∂S0
c(XP

T ) =
1

MLT (θ̄)

1∫
0

∂

∂S0
f(S0, y) dy

= − 1

MLT (θ̄)

FLT (ln(K/S0))∫
0

e
θ̄F−1
LT

(1−y)+F−1
LT

(y)−rT
dy.

ii) For the cost-efficient call whose price has been given in (4.2) we consider
the function

f̃(S0, y) : R× [0, 1]→ R+, f̃(S0, y) = e
θ̄F−1
LT

(y)−rT (
S0e

F−1
LT

(1−y) −K
)

+

which is integrable with respect to y for all S0 ≥ 0 (this follows analogously
as in the put case). Further, f̃(S0, y) is differentiable in S0 for all y ∈ [0, 1]

(apart from S0 = Ke
−F−1

LT
(1−y)

which again is negligible here), and we have

∂

∂S0
f̃(S0, y) = e

θ̄F−1
LT

(y)−rT · eF
−1
LT

(1−y)
1[0,1−FLT (ln(K/S0))](y) ≥ 0.

Clearly, the integrability of f̃(S0, y) with respect to y readily transfers to
∂
∂S0

f̃(S0, y), thus we can again interchange differentiation and integration
and obtain

∆C
T =

∂

∂S0
c(XC

T ) =
1

MLT (θ̄)

1∫
0

∂

∂S0
f̃(S0, y) dy

=
1

MLT (θ̄)

1−FLT (ln(K/S0))∫
0

e
θ̄F−1
LT

(y)+F−1
LT

(1−y)−rT
dy. 2

Proof of Theorem 4.2: a) Since the vanilla and the efficient call coincide
for θ̄ < 0, the equation ∆C

T = ∆C
T is immediately obvious, thus we only have

to consider the case θ̄ > 0. Because the vanilla call is most-expensive for
θ̄ > 0, we can combine Proposition 2.7 and equation (3.7) to represent its
price by

c(XC
T ) =

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(y)−rT (
S0e

F−1
LT

(y) −K
)

+
dy

from which one can derive completely analogously as in the proof of Theo-
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rem 4.1 the following formula for the corresponding delta:

∆C
T =

1

MLT (θ̄)

1∫
FLT

(
ln
(
K
S0

)) eθ̄F
−1
LT

(y)+F−1
LT

(y)−rT
dy

=
1

MLT (θ̄)

1−FLT
(

ln
(
K
S0

))∫
0

e
θ̄F−1
LT

(1−y)+F−1
LT

(1−y)−rT
dy (A.11)

Because ∆C
T ≥ 0 by Theorem 4.1, the assertion of the theorem is proven if

we can show that ∆C
T −∆C

T ≥ 0. Comparing equations (4.4) and (A.11), the
latter inequality obviously is equivalent to the statement that the function
DC : [0, 1]→ R, defined by

DC(q) =
1

MLT (θ̄)

q∫
0

e
θ̄F−1
LT

(1−y)+F−1
LT

(1−y) − eθ̄F
−1
LT

(y)+F−1
LT

(1−y)
dy,

is nonnegative for all q ∈ [0, 1]. We have DC(0) = 0 and

DC(1) =
1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(1−y)+F−1
LT

(1−y) − eθ̄F
−1
LT

(y)+F−1
LT

(1−y)
dy

=

∞∫
−∞

eθ̄z

MLT (θ̄)
ezfLT (z) dz −

∞∫
−∞

eθ̄z

MLT (θ̄)
e
F−1
LT

(1−FLT (z))
fLT (z) dz

= E

[
Z θ̄T

ST
S0

]
− E

[
Z θ̄T e

F−1
LT

(1−FLT (LT ))] ≥ 0

because ST
S0

= eLT
d
= e

F−1
LT

(1−FLT (LT ))
, but Z θ̄T , eLT are comonotonic and Z θ̄T ,

e
F−1
LT

(1−FLT (LT ))
are countermonotonic for θ̄ > 0. Moreover,

D′C(q) =
1

MLT (θ̄)

[
e
θ̄F−1
LT

(1−q)+F−1
LT

(1−q) − eθ̄F
−1
LT

(q)+F−1
LT

(1−q)]
from which we conclude

D′C(q) = 0 ⇐⇒ e
θ̄F−1
LT

(1−q)
= e

θ̄F−1
LT

(q) ⇐⇒ q = 0.5.

The assumptions on FLT imply that F−1
LT

(q) is strictly increasing as well,
so the above calculations further show that D′C(q) ≥ 0 for q ≤ 0.5 and
D′C(q) ≤ 0 for q ≥ 0.5. Hence, the function DC(q) is increasing on [0, 0.5]
and decreasing on [0.5, 1] with boundary values DC(0) = 0 and DC(1) ≥ 0
which yields that DC(q) ≥ 0 for all q ∈ [0, 1] and thus ∆C

T −∆C
T ≥ 0.

b) The equality ∆P
T = ∆P

T for θ̄ > 0 again follows from the fact that
vanilla and efficient put coincide in this case, therefore we assume θ̄ < 0
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in the following. Then the vanilla put is most-expensive, and combining
Proposition 2.7 and equation (3.1) allows to represent its price as

c(XP
T ) =

1

MLT (θ̄)

1∫
0

e
θ̄F−1
LT

(1−y)−rT (
K − S0e

F−1
LT

(1−y))
+
dy

from which the delta can be derived as

∆P
T = − 1

MLT (θ̄)

1∫
1−FLT

(
ln
(
K
S0

)) eθ̄F
−1
LT

(1−y)+F−1
LT

(1−y)−rT
dy

= − 1

MLT (θ̄)

FLT

(
ln
(
K
S0

))∫
0

e
θ̄F−1
LT

(y)+F−1
LT

(y)−rT
dy. (A.12)

Because ∆P
T ,∆

P
T ≤ 0, the assertion of the theorem is equivalent to ∆P

T −
∆P
T ≥ 0. Analogously as in the call case we see by comparing equations (4.3)

and (A.12) that for given values K and S0 we have ∆P
T −∆P

T ≥ 0 if and only
if DP

[
FLT

(
ln
(
K
S0

))]
≥ 0, where the function DP (q) : [0, 1] → R is defined

by

DP (q) =
1

MLT (θ̄)

q∫
0

e
θ̄F−1
LT

(y)+F−1
LT

(y) − eθ̄F
−1
LT

(1−y)+F−1
LT

(y)
dy.

We have DP (0) = 0 and calculate, similarly as before, that

DP (1) = E

[
Z θ̄T

ST
S0

]
− E

[
Z θ̄T e

F−1
LT

(1−FLT (LT ))] ≤ 0

because for θ̄ < 0 now Z θ̄T , eLT are countermonotonic and Z θ̄T , e
F−1
LT

(1−FLT (LT ))

are comonotonic. Further,

D′P (q) =
1

MLT (θ̄)

[
e
θ̄F−1
LT

(q)+F−1
LT

(q) − eθ̄F
−1
LT

(1−q)+F−1
LT

(q)]
and hence

D′P (q) = 0 ⇐⇒ e
θ̄F−1
LT

(1−q)
= e

θ̄F−1
LT

(q) ⇐⇒ q = 0.5.

Since F−1
LT

(q) is strictly increasing and θ̄ < 0, we see that D′P (q) ≥ 0 for
q ≤ 0.5 and D′P (q) ≤ 0 for q ≥ 0.5, consequently the function DP (q) has
a positive maximum in q = 0.5 and is strictly decreasing on (0.5, 1]. The
fact that DP (1) ≤ 0 then implies the existence of a unique q∗ ∈ (0.5, 1] with
DP (q∗) = 0 and DP (q) ≥ 0 for all q ∈ [0, q∗]. This proves the assertion. 2
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