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Abstract. The goal of this article is to investigate infinite dimensional affine diffusion
processes on the canonical state space. This includes a derivation of the corresponding

system of Riccati differential equations and an existence proof for such processes, which

has been missing in the literature so far. For the existence proof, we will regard affine
processes as solutions to infinite dimensional stochastic differential equations with values

in Hilbert spaces. This requires a suitable version of the Yamada-Watanabe theorem,

which we will provide in this paper. Several examples of infinite dimensional affine
processes accompany our results.

1. Introduction

Affine processes constitute an important model class due to their analytical tractability; in
particular regarding applications in the field of mathematical finance. There is a substantial
literature about affine processes in finite dimension. We refer, for example, to [13, 16, 19,
28, 20] for affine processes on the canonical state space, and to [6, 35, 29, 11, 27, 7] for
affine processes on more general state spaces. Some recent and related developments are
affine processes with stochastic discontinuities (see [30]), affine processes under parameter
uncertainty (see [15]) and polynomial processes (see [8, 18, 5, 9]).

Only recently, increasing interest evolved in infinite dimensional affine processes: the
theory of probability measure-valued processes has been utilized in [10] for the study of
polynomial diffusions. We also mention the works [25], [38] and [24], where some exam-
ples, such as infinite dimensional square-root processes and infinite dimensional Heston type
processes, are treated within the framework of probability measure-valued stochastic pro-
cesses. Another recent approach to polynomial processes in infinite dimension is the paper
[1], where the notion of a polynomial process – in the sense that polynomials are preserved
under conditional expectations – is extended to a Banach space.

The general study in [23] deals with affine processes in infinite dimension on general state
spaces; more precisely affine processes are understood as processes with an exponential affine
structure of the characteristic exponent, and they are studied on topological vector spaces,
which do not need to be separable or metrizable. The work [43], of which the present
paper constitutes a further development in certain aspects, studies the special case of affine
processes with values in separable Hilbert spaces; with a special focus to applications in
finance. Some recent articles deal with particular examples of affine processes with values in
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Hilbert spaces, such as Ornstein-Uhlenbeck processes with stochastic volatility and tensor
Heston type processes; see, for example [2] and [3].

The paper [37] is between the finite and the infinite dimensional setting. More precisely,
therein it has been investigated when the solutions to a (infinite dimensional) stochastic
partial differential equation admit a finite dimensional realization with (finite dimensional)
affine state processes.

The goal of the present paper is to explore infinite dimensional affine diffusion processes on
the canonical state space. This includes a derivation of the corresponding system of Riccati
differential equations and an existence proof for infinite dimensional affine processes, which
has been missing in the literature so far. For the existence proof, we regard affine processes
as solutions to infinite dimensional stochastic differential equations (SDEs) with values in
Hilbert spaces. This requires a suitable version of the Yamada-Watanabe theorem, and –
in order to apply the Yamada-Watanabe theorem – sufficient conditions for the existence
of weak solutions, and for pathwise uniqueness of solutions. Infinite dimensional versions of
the Yamada-Watanabe theorem can be found in [31], [34] and [36]. However, none of these
results can directly be applied in our setting, and for this reason we provide a self-contained
version in this paper. In order to ensure the existence of weak solutions, we establish a
refined version of a result from [22], where the main idea is to consider starting points from
an appropriate retracted subspace with compact embedding, and for this reason we need
a suitably adjusted version of the Yamada-Watanabe theorem. The pathwise uniqueness
follows from a version of the uniqueness result from [42] in infinite dimension.

The remainder of this paper is organized as follows. In Section 2 we introduce affine
processes, and derive a general Riccati system for the functions appearing in the character-
istic exponent. In Section 3 we provide the existence result for affine processes in the spirit
of strong solutions to infinite dimensional SDEs. In Section 4 we present examples, where
our existence result applies; this includes infinite dimensional processes of Cox-Ingersoll-
Ross type and infinite dimensional processes of Heston type. For convenience of the reader,
some auxiliary results are deferred to Appendix A. Moreover, Appendix B contains the
required results about SDEs in Hilbert spaces; in particular the adjusted version of the
Yamada-Watanabe theorem, and the mentioned results about existence of weak solutions
and pathwise uniqueness. Finally, in Appendix C we provide the required results about
linear operators in Hilbert spaces.

2. Infinite dimensional affine processes

Affine models and their applications to dynamic term structure modelling have been
intensively studied, mostly focusing on finite-dimensional affine models where the dimension,
or the number of factors, is known and fixed. Here, we do not restrict the number of factors to
be known or finite but rather study affine processes from an infinite-dimensional perspective.
For practical applications, this allows to treat the number of factors as unknown parameter
which has to be estimated. For the construction of infinite dimensional affine processes we
follow the approaches in [13, 28]. The used techniques for Hilbert-space valued stochastic
analysis is taken from [12].

Let (H, 〈·, ·〉) be an infinite-dimensional and separable Hilbert space with scalar product
〈·, ·〉 and associated norm ‖ · ‖. The adjoint of a linear operator T ∈ L(H) is denoted by
T ∗. By B(H) we denote the associated Borel σ-algebra. We fix throughout an orthonormal
basis (ei)

∞
i=1 of H.

Affine processes are characterized by the convenient property that their Fourier transforms
have exponential affine form. For the study of Fourier transform we introduce the following
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complexification of H: set
HC = {x+ iy : x, y ∈ H}

and equip it with the inner product 〈x+iy, u+iv〉HC := 〈x, u〉+〈y, v〉+i〈y, u〉−i〈x, v〉. Then
HC is a complex Hilbert space. For z = x + iy ∈ HC we call x = Re(z) and y = Im(z) the
real and imaginary part of z. Furthermore, we denote by z̄ := Re(z)− i Im(z) the complex
conjugate of z and the imaginary subspace of H by iH = {z ∈ HC : Re(z) = 0}. The space
of complex numbers with non-positive real part is denoted by C− = {c ∈ C : Re(c) ≤ 0}.

2.1. Affine processes. We are interested in homogeneous infinite-dimensional continuous
affine processes and introduce the following definition. While we do not aim at the greatest
level of generality, we use a standard definition of affine processes. For a slightly more general
approach (in finite dimensions) see [28]. The time-inhomogeneous case can be treated as in
[16] and [30].

Consider a closed subset X ⊂ H which will serve as state space of our affine process
and assume that the closure of the affine hull of X is the full space H. Let (Ω,F ,F) be a
filtered space on which a family of probability measures (Px)x∈X is given. The filtration F
is right-continuous and Px-complete for all x ∈ X . Finally, consider a continuous process X
with values in X and denote its transition kernel by

pt(x,A) = Px(Xt ∈ A),

for t ≥ 0, x ∈ X , A ∈ B(H). We assume that the transition kernel is a Markov transition
kernel, i.e. it satisfies the following properties (cf. [14])

(i) x 7→ pt(x,A) is B(H)-measurable for each (t, A) ∈ R≥0 ×B(H),
(ii) p0(x, {x}) = 1 for all x ∈ X ,

(iii) pt(x,X ) = 1 for all (t, x) ∈ R≥0 ×H,
(iv) p satisfies the Chapman-Kolmogorov equation, i.e. for each t, s ≥ 0 and (x,A) ∈

H ×B(H), it holds that

pt+s(x,A) =

∫
pt(y,A)ps(x, dy). (1)

The affine property of the Markov process X is characterized via its Fourier transform.
The convex cone where the Fourier transform is defined by

U :=
{
u ∈ HC : sup

x∈X
Re(〈u, x〉HC) <∞

}
.

Then the function X 3 x 7→ e〈u,x〉 is bounded if and only if x ∈ U . Moreover, iH ⊂ U .
For a function φ : R≥0 → H the concepts of Fréchet and Gateaux differentiability coincide

and we call φ differentiable with derivative Dtφ, t ≥ 0 being a bounded linear operator
Dtφ : R≥0 → H, if for every t ≥ 0 it holds that

lim
ε→0

‖ φ(t+ ε)− φ(t)− εDtφ(t) ‖
|ε|

= 0.

Definition 2.1. An H-valued continuous process X with transition kernel pt(x,A) is called
affine with state space X , if there exist C and HC-valued functions φ and ψ such that

(i) φ(·, u) and ψ(·, u) are differentiable for each u ∈ U ,
(ii) the derivatives Dtφ(t, u) and Dtψ(t, u) are jointly continuous, and

(iii) the Fourier-transform has exponential affine dependence on the initial value, i.e. for
all t ≥ 0, x ∈ X , and u ∈ U it holds that∫

e〈u,y〉HCpt(x, dy) = exp
(
φ(t, u) + 〈ψ(t, u), x〉HC

)
. (2)
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Uniqueness of φ and ψ holds under the normalization φ(0, u) = 0 and ψ(0, u) = u. Finite-
dimensional affine processes can be viewed as a special case when H = Rn. In this case,
Definition 2.1 coincides with the affine class studied in [28].

As a next step we study infinite-dimensional diffusions and classify the affine ones. First,
we split the state space in the non-negative part and the unrestricted part. Note that in
contrast to the usual procedure in finite dimensions, we gain additional freedom as the basis
can be chosen in a suitable way. For any index set K ⊂ N we denote the canonical projection
to the subspace HK by πK : x 7→

∑
k∈K〈x, ek〉ek and for x ∈ H we simply write xK = πKx.

Assume that the state space of X is the direct sum

X = H+
I ⊕HJ (3)

where I, J ⊂ N are two disjoint sets such that I ∪ J = N, and H+
I := {

∑
i∈I〈x, ei〉ei : x ∈

H, 〈x, ek〉 ≥ 0} ⊂ HI . Then X is a total set, i.e. the closure of its span is the full space H
and for any x ∈ X we obtain the unique decomposition x = xI + xJ . Using this structural
assumption on the state space X , the set U can be determined precisely as follows: for x ∈ H
we write x ≤ 0 if 〈x, ek〉 ≤ 0 for all k ∈ N and similar for <,> or ≥. It turns out that under
(3),

U =
{
u ∈ HC : Re(uI) ≤ 0 and Re(uJ) = 0

}
. (4)

Moreover, the finite-dimensional affine processes studied in [13] can be viewed as special
case with H = Rn and X = Ri≥0 ⊕ Rj and i+ j = n.

Remark 2.1. Fix t ≥ 0. If X is affine and the state space satisfies (3), then it follows from
Equation (2) that, for all x ∈ X and u ∈ U ,

eRe(φ(t,u)+〈ψ(t,u),x〉HC ) = |eφ(t,u)+〈ψ(t,u),x〉HC |

≤
∫
|e〈u,y〉HC | pt(x, dy) ≤

∫
eRe〈u,y〉HCpt(x, dy) ≤ 1,

since Re〈u, y〉HC ≤ 0 for u ∈ U and y ∈ X . Hence, Re(φ(t, u) + 〈ψ(t, u), x〉HC) ≤ 0 for all
x ∈ X and u ∈ U which is equivalent to (φ(t, u), ψ(t, u)) ∈ C− × U for all u ∈ U .

We are interested in those Markov processes which are strong solutions of stochastic
differential equations with respect to an infinite-dimensional Brownian motion. We follow
the construction of a stochastic integral laid out in [12]. To this end, denote the trace of a
symmetric and non-negative operator Q by TrQ =

∑∞
i=1〈Qei, ei〉 and call the operator Q

trace-class if TrQ <∞. Let W be an H-valued F-Brownian motion with covariance operator
ΣW , i.e. ΣW is a symmetric and non-negative definite operator ΣW with Tr ΣW <∞. Then

there exists Σ
1/2
W such that ΣW = Σ

1/2
W (Σ

1/2
W )∗. Denote H0 := Σ

1/2
W H and by HS(H0;H)

the space of all Hilbert-Schmidt operators from H0 to H, i.e. linear operators Q such that∑∞
i=1〈QΣ

1/2
W ek,Σ

1/2
W ek〉2 <∞.

We assume, that for each x0 ∈ X , X = Xx0 is the unique strong solution to the stochastic
differential equation

dXt = µ(Xt)dt+ σ(Xt)dWt,

X0 = x0
(5)

where µ : H → H and σ : H → HS(H0;H) are continuous; compare Theorem 3.1 for precise
conditions ensuring the existence of a unique strong solution.

By S(·) := σ(·)ΣWσ(·)∗ we denote the dispersion operator of X, such that d[X,X]t =
S(Xt)dt. The next result shows that S(x) is a trace-class operator for each x ∈ X and that
x 7→ TrS(x) is a real-valued and continuous function.
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Lemma 2.1. For each x ∈ X the operator S(x) is non-negative definite and trace-class.
Moreover, the mapping TrS(·) : H → R is continuous.

Proof. Note that ΣW is a symmetric, non-negative definite and trace-class operator. Then,
it follows that for x ∈ X and h ∈ H

hS(x)h∗ = (hσ(x))ΣW (hσ(x))∗ ≥ 0

such that S(x) is also symmetric and non-negative definite. We denote Q = Σ
1/2
W such that

ΣW = QQ∗. From the cyclic property of the trace and the Cauchy-Schwartz inequality it
follows that

TrS(x) = Tr((σ(x)Q)(σ(x)Q)∗) = Tr((σ(x)Q)∗(σ(x)Q))

≤ Tr(σ(x)σ(x)∗) · Tr(QQ∗) = Tr(σ(x)σ(x)∗) Tr ΣW <∞,
because for each x ∈ H, σ(x) ∈ HS(H0;H), and hence Tr(σ(x)σ(x)∗) <∞. The continuity
from S(x) now follows from the continuity of σ(x). �

Theorem 2.2. Assume that the process X, given as unique strong solution of (5), is affine.
Then for all x ∈ X it holds that

µ(x) = m0 +Mx

S(x) = n0 +Nx
(6)

with m0 ∈ X , M ∈ L(H), n0 ∈ L(H) and N ∈ L(H,L(H)). Denote nk = Nek and
mk = Mek, k = 1, 2, . . . . The coefficients nk are symmetric, non-negative definite and
trace-class operators which satisfy nj = 0 for all j ∈ J and∑

i∈I
(Trni)

2 <∞. (7)

The functions φ and ψk(t, u) := 〈ψ(t, u), ek〉HC , k = 1, 2, . . . satisfy the general Riccati
system

∂tφ(t, u) = 〈m0, ψ(t, u)〉HC +
1

2
〈n0ψ(t, u), ψ(t, u)〉HC

φ(0, u) = 0
(8)

∂tψk(t, u) = 〈mk, ψ(t, u)〉HC +
1

2
〈nkψ(t, u), ψ(t, u)〉HC , k = 1, 2, . . .

ψ(0, u) = u,
(9)

for all t ≥ 0 and u ∈ U .

For the proof we need a small result for the interchange of the derivative and the scalar
product. It essentially shows that if ψ is differentiable then it is also weakly differentiable.

Lemma 2.3. Let ψ : R≥0 → H be a Fréchet differentiable function with derivative Dtψ.
Then, for all h ∈ H it holds that

∂t〈ψ(t), h〉 = 〈Dtψ(t), h〉. (10)

Proof. Fix h ∈ H and denote f(t) := 〈ψ(t), h〉. Using the Cauchy-Schwartz inequality we
obtain that

lim
ε→0

|f(t+ ε)− f(t)− ε〈Dtψ(t), h〉|
|ε|

= lim
ε→0

|〈ψ(t+ ε)− ψ(t)− εDtψ(t), h〉|
|ε|

≤ lim
ε→0

‖ ψ(t+ ε)− ψ(t)− εDtφ(t) ‖
|ε|

‖ h ‖= 0
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and the claim follows. �

Proof of Theorem 2.2. When X is an affine process, then the processes

Mu
t := exp

(
φ(T − t, u) + 〈ψ(T − t, u), Xt〉HC

)
, 0 ≤ t ≤ T

are martingales for all u ∈ U since Mu
t = E[exp

(
〈u,XT 〉HC

)
|Ft] = E[Mu

T |Ft]. Next, we

apply the Itô-formula, see Theorem 4.32 in [12], to Mu
t with f(t, x) = exp

(
φ(T − t, u) +

〈ψ(T − t, u), x〉HC

)
. Note that, by Lemma 2.1,

∂tf(t, x) = f(t, x)
(
− ∂tφ(T − t, u)− 〈Dtψ(T − t, u), x〉HC).

Hence,

dMu
t = Mu

t (Itdt+ 〈ψ(T − t, u), σ(Xt)dWt〉HC), (11)

where the drift computes to

It = −∂tφ(T − t, u)− 〈Dtψ(T − t, u), Xt〉HC + 〈ψ(T − t, u), µ(Xt)〉HC (12)

+
1

2

∞∑
k=1

〈S(Xt)ψ(T − t, u), ek〉HC〈ψ(T − t, u), ek〉HC .

The infinite sum equals 〈S(Xt)ψ(T − t, u), ψ(T − t, u)〉HC . Moreover, the process Mu is a
martingale only if It = 0 dt⊗dP -almost surely. By continuity of I it follows even that I = 0
P -almost surely. Letting t→ 0, continuity of X,µ, S, φ, and ψ implies that

∂tφ(t, u) + 〈Dtψ(t, u), x〉HC = 〈ψ(t, u), µ(x)〉HC +
1

2
〈S(x)ψ(t, u), ψ(t, u)〉HC (13)

holds for all x ∈ X and all t ≥ 0. The left hand side is an affine function of x, and hence the
right-hand side is affine in x. Using that ψ(0, u) = u we obtain that µ as well as S are affine
functions of x, such that representation (6) follows. Continuity of µ yields that M ∈ L(H).
Moreover, by Lemma 2.1, S(x) is a symmetric, non-negative definite and trace-class operator
for all x ∈ X . This gives that nj = Nej = 0 for all j ∈ J . Regarding (7), it follows

Trn0 +
∑
i∈I
〈x, ei〉H Trni = TrS(x) <∞

for all x ∈ X , because S is trace-class. Define Tnx :=
∑
i∈I,i≤n〈x, ei〉H Trni. Then Tn ∈

L(H,R) and

sup
n∈N
‖ Tnx ‖≤

∑
i∈I
|〈x, ei〉H |Trni <∞ for all x ∈ H.

By the uniform boundedness principle it follows that
∑
i∈I(Trni)

2 = supn∈N ‖ Tn ‖2< ∞
such that (7) follows.

Finally, inserting (6) into (13) and separating terms gives (8)-(9) since the affine hull of
X is the full space H, where again Lemma 2.1 was used. �

The converse is solved in two steps. First, we derive some admissibility conditions for the
coefficients of the Riccati equations (8)-(9), which are equivalent to affinity in the canonical
state space. Second, we show that these admissibility conditions are sufficient for existence
and uniqueness of solutions for the Riccati equations.

Proposition 2.4. Assume that X is a strong solution of (5), µ and S are affine in the sense
of (6) and the Riccati system (8)-(9) has a solution (φ, ψ) such that φ(t, u) + 〈ψ(t, u), x〉HC

has a non-negative real part for all t ≥ 0, u ∈ U and x ∈ X . Then X is an affine process.
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Proof. If (6) and (8)-(9) hold such that φ(t, u) + 〈ψ(t, u), x〉HC has a non-negative real part
for all t ≥ 0, u ∈ U and x ∈ X , then it follows as in the proof of Theorem 2.2, that the drift
I of the process Mu given in (11) vanishes, such that

dMu
t = Mu

t 〈ψ(T − t, u), σ(Xt)dWt〉HC .

Hence, Mu
t is a continuous local martingale. From the assumption that Re(φ(T − t, u) +

〈ψ(T − t, u), Xt〉HC) ≤ 0, it follows that

Mu
t = exp(φ(T − t, u) + 〈ψ(T − t, u), Xt〉HC)

is uniformly bounded by 1 and hence Mu is even a true martingale. Consequently, for all
t ≥ 0

E[e〈u,XT 〉HC |Ft] = E[Mu
T |Ft] = Mu

t = exp(φ(T − t, u) + 〈ψ(T − t, u), Xt〉HC).

Then (2) holds and X is an affine process. �

The next result gives a partial answer to the solvability of the system of Riccati equations
(8)-(9). We start with some notation. First, define

H−C = {z = x+ iy ∈ HC | 〈x, ek〉H ≤ 0 for all k ∈ N}.

As previously, (H−C )I denotes the projection to the coordinates from set I, i.e. (H−C )I =

{
∑
i∈I〈z, ei〉HCei | z ∈ H−C }. Second, for the two index sets K,L ⊂ N and generic A ∈ L(H)

we denote AKL = πKA|HL . Then AK∪L may be uniquely represented by the 2 × 2 block
operator matrix (

AKK AKL
ALK ALL

)
.

If the index sets are singletons, we write Akl for A{k}{l}. Finally, for x ∈ H we understand
x ≤ 0 as 〈x, ek〉 ≤ 0 for all k ∈ N and x ≥ 0, x < 0, x > 0, x ≮ 0, x ≯ 0, x = 0 in the same
manner.

Proposition 2.5. Assume that (3) and the following admissibility conditions hold:

m0 ∈ X , mi ∈ H+
I\{i} ⊕HJ∪{i} for i ∈ I, and mj ∈ HJ for j ∈ J (14)

||
∑
k≥1

mk〈·, ek〉|| <∞ (15)

nk ∈ L(H) is symmetric, non-negative definite and of trace class, k ∈ N, (16)

nj = 0 for j ∈ J, (17)

n0,II = 0,

n0,IJ = n∗0,JI = 0,

n0,JJ is symmetric, non-negative definite and of trace class,

ni,{kl} =

{
≥ 0 if i = k = l,

= 0 otherwise,
for i, k, l ∈ I, (18)

ni,IJ = n∗i,JI

ni,JJ is symmetric, non-negative definite and of trace class,∑
i∈I
‖ni‖2 <∞. (19)

Then the general Riccati system (8)-(9) has a unique solution (φ(·, u), ψ(·, u)) : R+ →
C− × (H−C )I ⊕ iHJ for each u ∈ (H−C )I ⊕ iHJ .
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These conditions directly correspond to the well-known conditions in the finite-dimensional
case, see [17], with additional assumptions on summability of certain coefficients, (15),
and (19). Regarding (14), this can be seen as follows: note that for i ∈ I and j ∈ J ,
MIIei = πIM |HIei = πImi ∈ H+

I\{i} ⊕ H{i} as well as MIJej = πIM |HJ ej = πImj = 0

because mj ∈ HJ . This corresponds to the condition of BII having nonnegative off-diagonal
elements and BIJ = 0 of Theorem 10.2 in [17] (in the notation used there).

Condition (19) is always satisfied in the finite-dimensional case and appears here for the
first time in literature. Denote the eigenvalues of the trace-class operator n by λi, i ≥ 1. If
n is also symmetric and non-negative definite, then

‖n‖ ≤
∑
i≥1

|λi| = Trn. (20)

Hence, a sufficient criterion for
∑
i∈I ‖nk‖2 <∞ is

∑
i∈I(Trni)

2 <∞.

The proof is separated in a number of smaller results. Set f(ξ) = 1
2

∑∞
i∈I〈niξ, ξ〉HC ei.

Then the Riccati equations in (9) are equivalent to the following semilinear evolution equa-
tion

∂tψ(t, u) = M>ψ(t, u) + f(ψ(t, u)), u ∈ U , t ≥ 0 (21)

with initial condition ψ(0, u) = u. Such equations have been studied in [39] and Theorem 1
therein yields the following result.

Lemma 2.6. Assume that (15) and (19) are satisfied. Then, for each u ∈ U , (21) has a
unique solution ψ(t, u) on some interval [0, Tu) with existence time Tu ∈ (0,∞].

Proof. We will first show that Kt := etM
>
f, t ≥ 0 is locally Lipschitz-continuous. To this

end, note that for ξ and η in the domain of f ,

‖etM
>
f(ξ)− etM

>
f(η)‖2HC

≤ 1

4
e2‖M‖t

∑
i∈I

∣∣〈niξ, ξ〉HC − 〈niη, η〉HC

∣∣2
=

1

4
e2‖M‖t

∑
i∈I

∣∣〈niξ, ξ〉HC − 〈niη, ξ〉HC + 〈niη, ξ〉HC − 〈niη, η〉HC

∣∣2
=

1

4
e2‖M‖t

∑
i∈I
|〈ni(ξ + η), (ξ − η)〉HC |2

≤ 1

4
e2‖M‖t

∑
i∈I
‖ni‖2‖ξ + η‖2HC

‖ξ − η‖2HC
.

Hence, for each t ≥ 0, Kt is locally Lipschitz-continuous by (19) and its Lipschitz constant
on Uα = {x ∈ H :‖ x ‖≤ α}, α > 0 is bounded by αe‖M‖t(

∑
i∈I ‖ni‖2)1/2.

Theorem 1 in [39] now yields that, for each u ∈ U , equation (21) possesses a unique
solution ψ(t, u) on some interval [0, Tu) with 0 < Tu ≤ ∞ and the proof is finished. �

Lemma 2.7. Assume that the admissibility conditions (15) - (19) are satisfied. Then, for
all t ∈ [0, Tu) and u ∈ U it holds that the unique solution of (21), ψ(t, u), satisfies that
ψ(t, u) ∈ U .

Proof. To begin with, we note that by Lemma 2.6, (21), has, for u ∈ U a unique solution
ψ(t, u) on [0, Tu). To show that ψ(t, u) ∈ U , we utilize (4), hence, have to show that
Re(ψJ(t, u)) = 0 and Re(ψI(t, u)) ≤ 0.
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First, for j ∈ J , we obtain by (17), that the projection ψJ(t, u) = πJψ(t, u) satisfies the
autonomous equation

ψJ(t, u) = M∗JJψJ(t, u), t ≥ 0, u ∈ U ,

with ψJ(0, u) = uJ . The unique solution of this equation is given by

ψJ(t, u) = etM
∗
JJ uJ , t ≥ 0.

From (4) it follows Re(uJ) = 0 and hence Re(ψJ(t, u)) = 0.
As a second step we show that Re(ψI(t, u)) ≤ 0 which requires more work. We start with

the observation that, for i ∈ I,

∂t Re(ψi(t, u)) = 〈mi,Re(ψ(t, u))〉

+
1

2
〈ni Re(ψ(t, u)),Re(ψ(t, u))〉 − 1

2
〈ni Im(ψ(t, u)), Im(ψ(t, u))〉

≤ 〈mi,Re(ψ(t, u))〉+
1

2
ni,{ii}(Re(ψi(t, u)))2, (22)

using (17) and (18).
Next, consider ε > 0 and u ∈ U such that Re(ui) < −ε for all i ∈ I. Let

T ′u = inf{t ∈ [0, Tu) : ∃i ∈ I s.t. Re(ψi(t, u)) ≥ 0} (23)

with the convention that inf ∅ =∞. Since Re(ψi(t, u)) is continuous at t = 0 and Re(ψi(0, u))
bounded away from zero, T ′u > 0. Hence, for t ∈ [0, T ′u), it follows that Re(ψI′(t, u)) < 0 for
any subset I ′ ⊂ I.

By Assumption (14), mi ∈ H+
I\{i}⊕HJ∪{i}. Hence, there exist m′i ∈ H

+
I\{i} and m′′i ∈ HJ

such that mi = m′i+mi,i+m′′i . Then 〈m′i,Re(ψI\{i}(t, u))〉 ≤ 0, 〈m′′i ,Re(ψJ(t, u))〉 = 0 and
therefore

〈mi,Re(ψ(t, u))〉 ≤ 〈mi,i,Re(ψi(t, u))〉.

Together with (22) and Ci = 1
2 max{ni,{ii}, |mi,i|}, we are able to achieve the following

estimate,

∂t Re(ψi(t, u)) ≤ 〈mi,i,Re(ψi(t, u))〉+
1

2
ni,{ii}(Re(ψi(t, u)))2

≤ Ci
(
(Re(ψi(t, u)))2 − 2 Re(ψi(t, u))

)
,

where we used Re(ψi(t, u)) < 0. By the comparison theorem, [4](Chapter 1, Theorem 7),
Re(ψi(t, u)) ≤ g(t, ui, Ci) for all t ∈ [0, T ′u), where g(t, u, C) =: g(t) solves

∂tg(t) = C(g(t)2 − 2g(t)),

g(0) = Re(u),

with C ≥ 0 and Re(u) < 0. The unique solution of this Riccati equation is given by
g(t) = 2u(2e2Ct − u(e2Ct − 1))−1. The function g(·, u, C) stays negative on the whole real
line when Re(u) < 0. Moreover, g is increasing in u and C such that we obtain that

Re(ψI(t, u)) ≤ sup
i∈I

g(t, ui, Ci) ≤ g(t,−ε, C∗) < 0

for t ∈ [0, T ′u) where C∗ = supi∈I Ci ≤ 1
2 supi∈I(‖ni‖ + ‖mi‖) ≤ 1

2 ((
∑
i∈I ‖ni‖2)1/2 +

‖M‖) < ∞ by (15) and (19). Using continuity of Re(ψI(t, u)), we obtain that at t = T ′u,
Re(ψI(t, u)) < 0, if T ′u <∞. By the very definition of T ′u in (23), this implies that T ′u =∞.

Summarizing, we obtained up to now that for u ∈ U with Re(uI) < −ε it follows that
Re(ψI(t, u)) ≤ 0 for all t ∈ [0, Tu). The next step is to extend this result to all u ∈ U .
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In this regard, consider arbitrary u ∈ U , a sequence (εn) ↓ 0 and a sequence un → u
satisfying Re(un) < −εn for all n ≥ 1. By part (v) of Theorem 1 in [39], ψ(t, u) is Lipschitz
continuous on some neighborhood of u, uniformly on each compact interval [0, T ], T < Tu.
Therefore, ψ(t, un)→ ψ(t, u) for each t ∈ [0, Tu). Hence,

Re(ψI(t, u)) = lim
n→∞

Re(ψI(t, un)) ≤ 0, t ∈ [0, Tu)

and the claim is proved. �

Lemma 2.8. Assume that the admissibility conditions (15) - (19) are satisfied. Then, for
all t ∈ [0, Tu) and u ∈ U it holds that the unique solution of (21), ψ(t, u), satisfies the
following inequality

‖ψI(t, u)‖2HC
≤ ‖uI‖2HC

+ C(1 + ‖uI‖2HC
)

∫ t

0

hu(s)eC
∫ t
s
hu(r)drds, (24)

where hu(t) =
(
1+‖ψJ(t, u)‖2HC

+‖ψJ(t, u)‖4HC

)
with ψJ(t, u) = etM

∗
JJ uJ and C =

∑
i∈I ‖Ai‖2+

‖M‖2 + 7
2 .

The proof of this lemma is relegated to the appendix. Finally, we show that the unique
solution exists on the whole real line, thus completing the proof of Proposition 2.5.

Proof of Proposition 2.5. First, we show that Tu = ∞. The proof bases on result (iv) of
Theorem 1 in [39], saying that limt→Tu ‖ψI(t, u)‖HC = ∞ if Tu < ∞. In this regard, note
that the right hand side of Equation (24) is finite for all t ≥ 0. Hence, the existence time
Tu of ψI(t, u) for u ∈ U must be infinite, i.e. Tu =∞.

This shows existence and uniqueness regarding ψ. Existence and uniqueness for φ directly
follow by integration. At last, we show Reφ(t, u) ≤ 0 for all t ≥ 0 and u ∈ U : integrate the
real part of (8) and consider the admissibility conditions to get

Reφ(t, u)

=

∫ t

0

〈m0,Reψ(s, u)〉+
1

2
〈n0 Reψ(s, u),Reψ(s, u)〉 − 1

2
〈n0 Imψ(s, u), Imψ(s, u)〉ds

=

∫ t

0

〈m0,I ,ReψI(s, u)〉 − 1

2
〈n0,JJ ImψJ(s, u), ImψJ(s, u)〉ds ≤ 0.

for all t ≥ 0 and u ∈ U . �

Proposition 2.9. Assume that X is a strong solution of (5), µ and S are affine as in
(6), and that the Riccati system (8)-(9) has a solution (φ(t, u), ψ(t, u)) ∈ C− × U for all
t ≥ 0, u ∈ U and x ∈ X . Then the admissibility conditions in Proposition 3.5 hold.

Proof. First of all, by Lemma 2.1, S(x) is a symmetric, non-negative definite and trace-class
operator for all x ∈ X . This gives that nj = Nej = 0 for all j ∈ J . Moreover, from the
Riccati equations (8)-(9) we obtain that

∂t Reφ(0, u) = 〈m0, v〉+
1

2
〈n0v, v〉 −

1

2
〈n0w,w〉, (25)

∂t Reψi(0, u) = 〈mi, v〉+
1

2
〈niv, v〉 −

1

2
〈niw,w〉, (26)

∂t Reψj(0, u) = 〈mj , v〉, (27)

where u ∈ U , and we set v = Reu,w = Imu. From (4), together with (9), we obtain from
(27) that Reψj(·, u) ≡ 0 for all j ∈ J . This implies that 〈mj , v〉 = 0. Again from (4) we
obtain that vJ = 0 while vI ≤ 0. Hence, mj ∈ HJ for all j ∈ J .
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Next, we consider (26). As already noted in Remark 2.1, Reψi(·, u) ≤ 0 for all i ∈ I,
such that ∂t Reψi(0, u) ≤ 0 whenever Reψi(0, u) = Reui = vi = 0. Choose u = v+ iw such
that vI\{i} < 0, vJ∪{i} = 0 and w = 0. Substituting such u’s into (26) leads to

0 ≥ ∂t Reψi(0, u) = 〈mi, vI\{i}〉+
1

2
〈nivI\{i}, vI\{i}〉. (28)

This implies that 〈nivI\{i}, vI\{i}〉 = 0: indeed, if 〈nivI\{i}, vI\{i}〉 6= 0, there would exist a
vI\{i}, such that

〈nivI\{i}, vI\{i}〉 > 0,

and for γ > 0 large enough, (28) would lead to a contradiction that

0 ≥ ∂t Reψi(0, γu) = 〈mi, vI\{i}〉γ +
1

2
〈nivI\{i}, vI\{i}〉γ2 > 0.

Now that we have shown ni,I\{i}I\{i} = 0, it follows from the non-negative definiteness of
ni that

ni,{kl} =

{
≥ 0 if i = k = l,

= 0 otherwise,
for i, k, l ∈ I.

The rest conditions on ni, such as ni,IJ = n∗i,JI and ni,JJ is symmetric, non-negative definite
and of trace class, can be easily seen from its non-negative definiteness as well. Furthermore,
because of ni,I\{i}I\{i} = 0, (28) gives

〈mi, vI\{i}〉 ≤ 0.

Then we conclude that mi ∈ H+
I\{i}⊕HJ∪{i}, since vI\{i} is chosen to be arbitrarily negative.

Finally, we look at (25). Since Reφ(·, u) ≤ 0 and Reφ(0, u) = 0, we may employ the same
reason as for (26) to detect ∂t Reφi(0, u) ≤ 0 for all u ∈ U . Especially, we choose u = v+ iw
with vI < 0, vJ = 0 and w = 0 and get

0 ≥ ∂t Reφi(0, u) = 〈m0, vI〉+
1

2
〈n0vI , vI〉. (29)

An analogous argument applied to (28) shows that n0,II = 0. Besides, the affine form
condition tells that n0 is a symmetric, non-negative definite, trace-class operator, which
implies that n0,JJ must be such one as well and n0,IJ = n∗0,JI = 0 due to n0,II = 0.

Moreover, such an n0 turns (29) to

〈m0, vI〉 = ∂t Reφi(0, u) ≤ 0.

Then m0 must be an element in X , because vI < 0 is arbitrary. �

Remark 2.2. Consider the canonical state space X and assume X to be a strong solution
of (5). Then the affinity property of X is equivalent to the admissibility conditions. The
sufficiency is deduced by Theorem 2.2 and Lemma 2.6 and the necessity results from Propo-
sition 2.5 and Proposition 2.4. Both Theorem 2.2 and Proposition 2.5 indicate that the
both equivalent statements imply the existence and uniqueness of solutions of the Riccati
equations (8)-(9).

Remark 2.3. By Theorem 2.2 the parameters m0,M, n0, N in (6) determine the law of
the process X. Indeed, these parameters determine the functions φ(·, u) : R+ → HC and
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ψk(·, u) : R+ → HC for k ∈ N as solutions of the Riccati equations (8) and (9) for all u ∈ U ,
and hence by (2) for all 0 ≤ s < t and u, v ∈ U we have

E
[
e〈u,Xs〉HC+〈v,Xt〉HC

]
=

∫
H

∫
H

e〈u,y〉HC+〈v,z〉HCpt−s(y, dz)ps(x, dy)

=

∫
H

(∫
H

e〈v,z〉HCpt−s(y, dz)

)
e〈u,y〉HCps(x, dy)

=

∫
H

(
exp

(
φ(t− s, v) + 〈ψ(t− s, v), y〉HC

))
e〈u,y〉HCps(x, dy)

= exp
(
φ(t− s, v)

) ∫
H

e〈ψ(t−s,v)+u,y〉HCps(x, dy)

= exp
(
φ(t− s, v)

)
exp

(
φ(s, u+ ψ(t− s, v)) + 〈ψ(s, u+ ψ(t− s, v)), x〉HC

)
,

and analogously for every finite dimensional family (Xt1 , . . . , Xtn). In particular, the law of
X stays invariant under transformations of the volatility σ which provide the same dispersion
operator S.

3. Existence of affine processes

The goal of this section is to provide an existence result for affine processes on Hilbert
spaces. More precisely, we will prove the existence of affine processes in the spirit of strong
solutions to infinite dimensional SDEs. In Subsection 3.1 we will introduce the general frame-
work and formulate the existence result; see Theorem 3.1 below. Afterwards, Subsection 3.2
is devoted to its proof.

3.1. Formulation of the existence result. Recall thatH is a separable Hilbert space with
orthonormal basis {ek}k∈N, and that the state space X is the direct sum X = H+

I ⊕HJ , where
I, J ⊂ N are disjoint index sets such that I ∪J = N. Let µ : X → H and σ : X → L2(U0, H)
be measurable mappings. Again, starting point is the SDE (see (5)){

dXt = µ(Xt)dt+ σ(Xt)dWt

X0 = x0,
(30)

where W is an U -valued Wiener process on a separable Hilbert space U with some covariance

operator ΣW ∈ L++
1 (U), and the space U0 := Σ

1/2
W (U) is the separable Hilbert space defined

according to Lemma C.2. We define the measurable mapping S : X → L+
1 (H) as

S(x) := σ(x)Σ
1/2
W

(
σ(x)Σ

1/2
W

)∗
for all x ∈ X . (31)

In the light of Theorem 2.2, we assume that µ : X → H and S : X → L+
1 (H) are affine

functions: let m0 ∈ H and M ∈ L(H) be such that

µ(x) = m0 +Mx for all x ∈ X , (32)

and let n0 ∈ L+
1 (H) and N ∈ L(H,L1(H)) be such that

S(x) = n0 +Nx for all x ∈ X . (33)

We assume that n0 is self-adjoint, and that for every x ∈ X the operator Nx is self-adjoint
with Nx ∈ L+

1 (H). Furthermore, we will assume that µ is inward pointing at boundary
points of X , and that σ is parallel to the boundary at boundary points of X . Here are the
formal definitions. The mapping µ is called inward pointing at boundary points of X if

〈µ(x), η〉H ≥ 0 for all x ∈ X and all η ∈ H+
I with 〈x, η〉H = 0,
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and the mapping σ is called parallel to the boundary at boundary points of X if

〈σ(x), η〉H = 0 for all x ∈ X and all η ∈ H+
I with 〈x, η〉H = 0, (34)

where we note that 〈σ(x), η〉H is an operator from L2(U0,R). For short, we will call such a
mapping µ inward pointing and such a mapping σ parallel. We require these two properties
in order to ensure that the closed convex cone X is invariant for the SDE (30).

For a linear operator T ∈ L(H) we introduce the notations TI := πIT , TJ := πJT
and TII := TI |HI , TIJ := TJ |HI , TJI := TI |HJ , TJJ := TJ |HJ . We define the sequences
λ = (λi)i∈I ⊂ R+ and κ = (κi)i∈I ⊂ R+ as

λi := ‖S(ei)II ei‖H , i ∈ I,
κi := ‖S(ei)IJ ei‖H , i ∈ I.

As we will show, we have λ ∈ `2(I), and there exists a sequence ν = (νi)i∈I ⊂ (0,∞) such
that νi → 0 and (

λi
νi

)
i∈I
∈ `2(I). (35)

Let T ∈ K++(HI) be the compact linear operator with representation

Tx =
∑
i∈I

νi〈x, ei〉H ei for each x ∈ HI , (36)

and let HI,0 := T (HI) be the retracted subspace with compact embedding defined according
to Lemma C.2. Furthermore, we set H+

I,0 := T (H+
I ) and X0 := H+

I,0 ⊕ HJ . Our principle
assumption for the existence result is as follows.

Assumption 3.1. We suppose that the following conditions are fulfilled:

(i) We have U = H, and the operator ΣW has a diagonal structure along the orthonormal
basis {ek}k∈N.

(ii) For each x ∈ X the operator σ(x)Σ
1/2
W is self-adjoint.

(iii) The mapping µ has the affine structure (32), and S has the affine structure (33).
(iv) The mapping µ is inward pointing at boundary points of X , and the mapping σ is

parallel to the boundary at boundary points of X .
(v) We have (

κi
λi

)
i∈I0
∈ `2(I0), (37)

where I0 := {i ∈ I : λi > 0}.
(vi) We have

m0,I ∈ H+
I,0 and MIIT = TMII . (38)

(vii) We have ∑
i∈I
‖M i

II‖H′I <∞, (39)

where for each i ∈ I the continuous linear functional M i
II ∈ H ′I is given by

M i
IIx := 〈MIIx, ei〉H , x ∈ HI .
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Conditions (i)–(iv) do not mean severe restrictions. Indeed, the first condition means
that the state space of the Wiener process is the same as the state space of the SDE (30),
and that its covariance operator has a diagonal form with respect to the given orthonormal
basis. This is also typically assumed in finite dimension. The second condition means that

for each x ∈ X we have S(x)1/2 = σ(x)Σ
1/2
W , and hence

σ(x) = S(x)
1/2Σ

−1/2
W for all x ∈ X . (40)

As mentioned in Remark 2.3, other choices of the volatility σ with the same dispersion
operator S do not change the law of the solution. The condition that µ and S have the
affine structures (32) and (33) are natural in the present affine setting, and, as already
pointed out, we require that µ is inward pointing and that σ is parallel in order to ensure
that the state space X is invariant for the SDE (30). Condition (37) ensures that we can
find a linear transformation Λ ∈ L(H) with Λ(X ) = X such that for the transformed SDE{

dYt = µ̄(Yt)dt+ σ̄(Yt)dWt

Y0 = y0,
(41)

corresponding to Y = ΛX, the drift µ̄ : X → H has a decomposition

µ̄(y) = µ̄II(yI) + µ̄J(y), y ∈ X

with affine mappings µ̄II : H+
I → HI and µ̄J : X → HJ , and the volatility σ̄ : X →

L2(U0, H) has a block diagonal structure

σ̄(y)u = σ̄II(yI)uI + σ̄JJ(yI)uJ , y ∈ X and u ∈ U0

with mappings σ̄II : H+
I → L2(UI,0, HI) and σ̄JJ : H+

I → L2(UJ,0, HJ). This allows us to
express the transformed SDE (41) by the two coupled SDEs{

dYI,t = µ̄II(YI,t)dt+ σ̄II(YI,t)dWt

YI,0 = y0,I
(42)

and {
dYJ,t = µ̄J(Yt)dt+ σ̄JJ(YI,t)dWt

YJ,0 = y0,J ,
(43)

and then our task is essentially reduced to solving the SDE (42), which is feasible by virtue
of condition (38). The condition (39) ensures pathwise uniqueness. Now, our main result of
this section reads as follows. Concerning the notion of a unique strong solution starting in
X0, we refer to Definition B.5.

Theorem 3.1. Suppose that Assumption 3.1 is fulfilled. Then the affine SDE (30) has a
unique strong solution starting in X0.

If condition (39) is skipped, then we still obtain the existence of a weak solution to the
affine SDE (30), but pathwise uniqueness might not be satisfied.

3.2. Proof of the existence result. The goal of this subsection is to provide the proof
of Theorem 3.1. The main idea is to apply our version of the Yamada-Watanabe theorem
(see Theorem B.1). As already mentioned, after a suitable transformation we may consider
the two coupled SDEs (42) and (43). This transformation procedure is similar to that in
[19], where existence of affine processes has been proven in finite dimension. After this step,
we obtain the existence of weak solutions by using a refined version of a result from [22]
(see Theorem B.2), where HI,0 serves as the retracted subspace with compact embedding,
and pathwise uniqueness follows from a version of the uniqueness result from [42] in infinite
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dimension (see Theorem B.3). For what follows, let µ : X → H and σ : X → L2(U0, H) be
measurable mappings, and let S : X → L+

1 (H) be given by (31).

Proposition 3.2. Suppose that µ has the affine structure (32). Then the following state-
ments are equivalent:

(i) The mapping µ is inward pointing at boundary points of X .
(ii) We have

〈µ(x), ei〉H ≥ 0 for all x ∈ X and all i ∈ I with 〈x, ei〉H = 0.

(iii) We have

m0 ∈ X , (44)

Mx ∈ (H+
I + lin{ei})⊕HJ for all i ∈ I and x ∈ lin+{ei}, (45)

M(HJ) ⊂ HJ . (46)

Suppose that µ has the affine structure (32) and is inward pointing at boundary points of
X . Then (44) immediately yields that m0,I ∈ H+

I , and therefore, the condition m0,I ∈ H+
I,0

appearing in (38) is equivalent to m0,I ∈ HI,0.

Proof of Proposition 3.2. (i) ⇒ (ii): This implication is obvious.
(ii) ⇒ (i): Let x ∈ X and η ∈ H+

I be such that 〈x, η〉H = 0. Note that

〈x, η〉H =
∑
i∈I0

〈x, ei〉H〈ei, η〉H ,

where I0 = {i ∈ I : 〈ei, η〉H > 0}. Therefore, we have 〈x, ei〉H = 0 for all i ∈ I0, and hence

〈µ(x), η〉H =
∑
i∈I0

〈µ(x), ei〉H〈ei, η〉H ≥ 0.

(ii) ⇔ (iii): The proof of this equivalence is analogous to that of [37, Prop. A.10]. �

Proposition 3.3. Suppose that S has the affine structure (33). Then the following state-
ments are equivalent:

(i) The mapping σ is parallel to the boundary at boundary points of X .
(ii) We have

〈σ(x), ei〉H = 0 for all x ∈ X and all i ∈ I with 〈x, ei〉H = 0.

(iii) We have

n0ξ = 0 for all ξ ∈ HI , (47)

N(x) = 0 for all x ∈ HJ , (48)

N(x)ξ = 0 for all i, j ∈ I with i 6= j and all x ∈ lin+{ei} and ξ ∈ lin+{ej}. (49)

Proof. (i) ⇔ (ii): The proof of this equivalence is analogous to that in the proof of Propo-
sition 3.2.
(ii) ⇔ (iii): Note that (34) is satisfied if and only if

σ(x)∗η = 0 for all x ∈ X and all η ∈ H+
I with 〈x, η〉H = 0.

Since (Σ
1/2
W )∗ is one-to-one, by (31) this is equivalent to

〈S(x)η, η〉H = 0 for all x ∈ X and all η ∈ H+
I with 〈x, η〉H = 0.

Therefore, the proof of this equivalence is analogous to that of [37, Prop. A.20]. �
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Consequently, if the mappings µ and σ are affine, then the inward pointing property
and the parallel property mean that the parameters m0,M, n0, N satisfy the admissibility
conditions from Proposition 2.5. Hence, in this case the general Riccati system (8)-(9) has
a unique solution (φ(·, u), ψ(·, u)) : R+ → C− × (H−C )I ⊕ iHJ for each u ∈ (H−C )I ⊕ iHJ .

Proposition 3.4. Suppose that S has the affine structure (33), and that σ is parallel to the
boundary at boundary points of X . Then the following statements are true:

(i) We have S(x) = S(xI) for all x ∈ X .
(ii) We have S(x)ξ = N(x)ξ for all x ∈ H+

I and ξ ∈ HI .
(iii) We have S(ei)ej = 0 for all i, j ∈ I with i 6= j.
(iv) We have λ ∈ `2(I) and the representation

λi = 〈S(ei)II ei, ei〉H , i ∈ I.
(v) We have the representation

S(x)II ξ =
∑
i∈I

λi〈x, ei〉H〈ei, ξ〉H ei for all x ∈ H+
I and ξ ∈ HI .

Proof. By condition (48) from Proposition 3.3 we have S(x) = S(xI) for all x ∈ X , and by
condition (47) from Proposition 3.3 we have S(x)ξ = N(x)ξ for all x ∈ H+

I and ξ ∈ HI .
Therefore, by condition (49) from Proposition 3.3 we have S(ei)ej = 0 for all i, j ∈ I with
i 6= j. Now, the remaining statements follow from Lemma C.7. �

Now, we will deal with linear transformations which leave the state space X invariant.
The next result provides a characterization of such transformations. Note that the closed
convex cone X has the representations

X =
⋂
i∈I
{x ∈ H : 〈x, ei〉H ≥ 0} =

⋂
y∈H+

I

{x ∈ H : 〈x, y〉H ≥ 0}. (50)

Lemma 3.5. For a bounded linear operator Λ ∈ L(H) the following statements are equiva-
lent:

(i) We have Λ(X ) ⊂ X .
(ii) We have Λ∗(H+

I ) ⊂ H+
I and Λ(HJ) ⊂ HJ .

Proof. (i) ⇒ (ii): Suppose there exists x ∈ HJ with Λx ∈ X \HJ . Then, by (50) and since
Λx /∈ HJ there exists i ∈ I with 〈Λx, ei〉H > 0. We have −x ∈ HJ ⊂ X , and hence

〈Λ(−x), ei〉H = −〈Λx, ei〉H < 0,

which provides the contradiction Λ(−x) /∈ X . Therefore, we have Λ(HJ) ⊂ HJ , and hence

〈Λ∗x, y〉H = 〈x,Λy〉H = 0 for all x ∈ HI and all y ∈ HJ ,

which shows Λ∗(HI) ⊂ HI . Furthermore, we have

〈Λ∗x, y〉H = 〈x,Λy〉H ≥ 0 for all x, y ∈ H+
I ,

showing that Λ∗(H+
I ) ⊂ H+

I .

(ii) ⇒ (i): For all x, y ∈ H+
I we have

〈Λx, y〉H = 〈x,Λ∗y〉H ≥ 0,

and hence by (50) we deduce Λ(H+
I ) ⊂ X . Therefore, for each x ∈ X we obtain

Λx = ΛxI + ΛxJ ∈ X ,
completing the proof. �
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Now, let Λ ∈ L(H) be an isomorphism such that Λ(X ) = X ; that is, the conditions from
Lemma 3.5 are fulfilled. We introduce the new mappings µ̄ : X → H and σ̄ : X → L+

2 (U0, H)
as

µ̄(y) := Λµ(x), y ∈ X , (51)

σ̄(y) := Λσ(x), y ∈ X , (52)

where x = Λ−1y ∈ X , and we define the new mapping S̄ : X → L+
1 (H) as

S̄(y) := σ̄(y)Σ
1/2
W

(
σ̄(y)Σ

1/2
W

)∗
, y ∈ X . (53)

Then we have

S̄(y) = ΛS(x)Λ∗ = ΛS(x)
1/2
(
ΛS(x)

1/2
)∗

for all y ∈ X , (54)

where x = Λ−1y ∈ X . Indeed, taking into account (31) we obtain

S̄(y) = σ̄(y)Σ
1/2
W

(
σ̄(y)Σ

1/2
W

)∗
= Λσ(x)Σ

1/2
W

(
Λσ(x)Σ

1/2
W

)∗
= Λσ(x)Σ

1/2
W

(
σ(x)Σ

1/2
W

)∗
Λ∗ = ΛS(x)Λ∗ = ΛS(x)

1/2
(
ΛS(x)

1/2
)∗
.

Lemma 3.6. Let X be a solution to the SDE (30). Then Y := ΛX is a solution to the SDE
(41) with y0 = Λx0.

Proof. Since Λ is a continuous linear operator, this is straightforward. �

Lemma 3.7. The following statements are true:

(i) If µ is inward pointing at boundary points of X , then µ̄ is also inward pointing at
boundary points of X .

(ii) If σ is parallel to the boundary at boundary points of X , then σ̄ is also parallel to the
boundary at boundary points of X .

Proof. Let y ∈ X and η ∈ H+
I with 〈y, η〉H = 0 be arbitrary. We set x := Λ−1y ∈ X . By

Lemma 3.5 we have Λ∗η ∈ H+
I . Furthermore, we have

〈x,Λ∗η〉H = 〈Λx, η〉H = 〈y, η〉H = 0.

Therefore, if µ is inward pointing, then we obtain

〈µ̄(y), η〉H = 〈Λ(µ(x)), η〉H = 〈µ(x),Λ∗η〉H ≥ 0.

Similarly, if σ is parallel, then we obtain

〈σ̄(y), η〉H = 〈Λ(σ(x)), η〉H = 〈σ(x),Λ∗η〉H = 0,

finishing the proof. �

Now, assume that µ has the affine structure (32). We define m̄0 ∈ H and M̄ ∈ L(H) as

m̄0 := Λm0 and M̄ := ΛMΛ−1. (55)

Then µ̄ has the affine structure

µ̄(y) = m̄0 + M̄y for all y ∈ X . (56)

Indeed, let y ∈ X be arbitrary. By (51), (32) and (55) we have

µ̄(y) = Λµ(x) = Λ(m0 +Mx) = Λm0 + ΛMΛ−1y = m̄0 + M̄y,
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where x = Λ−1y ∈ X . Let us decompose µ̄ with respect to H = HI ⊕ HJ . For this
purpose, we additionally assume that µ is inward pointing. We define the affine mappings
µ̄II : H+

I → HI and µ̄J : X → HJ as

µ̄II(y) := m̄0,I + M̄IIy, y ∈ H+
I , (57)

µ̄J(y) := m̄0,J + M̄Jy, y ∈ X . (58)

Then we have the decomposition

µ̄(y) = µ̄II(yI) + µ̄J(y) for all y ∈ X . (59)

Indeed, let y ∈ X be arbitrary. Taking into account Lemma 3.7, by condition (46) from
Proposition 3.2 we have πIM̄yJ = 0, and hence

µ̄(y) = m̄0 + M̄y = m̄0,I + m̄0,J + πIM̄y + πJM̄y

= m̄0,I + m̄0,J + πIM̄yI + πJM̄y

= m̄0,I + M̄IIyI + m̄0,J + M̄Jy = µ̄II(yI) + µ̄J(y).

Lemma 3.8. Suppose that µ̄ has the affine structure (56). If µ̄ is inward pointing at
boundary points of X , then µ̄II is inward pointing at boundary points of H+

I .

Proof. Taking into account (56), by Proposition 3.2 we have

m̄0 ∈ X ,
M̄x ∈ (H+

I + lin{ei})⊕HJ for all i ∈ I and x ∈ lin+{ei},
M̄(HJ) ⊂ HJ .

Therefore, we have

m̄0,I ∈ H+
I ,

M̄IIx ∈ (H+
I + lin{ei}) for all i ∈ I and x ∈ lin+{ei}.

Hence, taking into account (57), by Proposition 3.2 we deduce that µ̄II is inward pointing
at boundary points of H+

I . �

Now, we will consider a concrete choice for the transformation Λ, which will provide the
announced block diagonal structure of the volatility σ̄. From now on, suppose that condition
(37) is fulfilled. By Lemma C.8 the mapping

Dx := −
∑
i∈I0

〈x, ei〉H
S(ei)IJ ei

λi
, x ∈ H (60)

is a well-defined continuous linear operator D ∈ L(H). We define Λ ∈ L(H) as

Λ := Id +D. (61)

Lemma 3.9. The following statements are true:

(i) We have ran(D) ⊂ HJ ⊂ ker(D).
(ii) We have ran(D∗) ⊂ HI ⊂ ker(D∗).

(iii) Λ is an isomorphism with Λ−1 = Id−D.
(iv) We have Λ(X ) = X .
(v) We have Λx = x and Λ−1x = x for all x ∈ HJ .
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Proof. The first statement immediately follows from (60), and since H⊥J = HI , we obtain

ran(D∗) ⊂ ran(D∗) = (ran(D∗)⊥)⊥ = ker(D)⊥ ⊂ HI ⊂ ran(D)⊥ = ker(D)∗.

Since ran(D) ⊂ ker(D), we also have D2 = 0, which gives us

(Id +D)(Id−D) = Id−D2 = Id,

showing that Λ is an isomorphism with Λ−1 = Id − D. Furthermore, taking into account
ran(D) ⊂ HJ , we obtain Λ(X ) ⊂ X and Λ−1(X ) ⊂ X , and hence Λ(X ) = X . Finally, since
HJ ⊂ ker(D), we have Dx = 0 for all x ∈ HJ , and hence Λx = x and Λ−1x = x for all
x ∈ HJ . �

The following auxiliary result concerns the quantities appearing in the affine structures
(32) and (56) of µ and µ̄.

Lemma 3.10. Suppose that µ has the affine structure (32) and that µ is inward pointing
at boundary points of X . Then we have m0,I = m̄0,I and MII = M̄II .

Proof. By (55) and Lemma 3.9 we have

m̄0,I = πIm̄0 = πIΛm0 = πI(Id +D)m0 = πIm0 + πIDm0 = m0,I .

Furthermore, by (55) and Lemma 3.9 we have

M̄ = ΛMΛ−1 = (Id +D)M(Id−D) = M +DM −MD −DMD.

By Proposition 3.2 we have M(HJ) ⊂ HJ . Therefore, by Lemma 3.9 we obtain

(DM)II = (MD)II = (DMD)II = 0,

and hence MII = M̄II . �

From now on, we assume that S has the affine structure (33) and that σ is parallel. Then
we have

S(ei)ei = 0 for each i ∈ I \ I0. (62)

Indeed, by Proposition 3.4 we have 〈S(ei)ei, ei〉H = 0, and hence applying Lemma C.6
provides (62).

Lemma 3.11. The following statements are true:

(i) We have DS(x)I πI = −S(x)J πI for all x ∈ H+
I .

(ii) We have S(x)I D
∗ = −S(x)I πJ for all x ∈ H+

I .

Proof. By (60) we have

Dei = −S(ei)J ei
λi

for all i ∈ I0.

Therefore, by Proposition 3.4 and (62), for all x ∈ H+
I and ξ ∈ HI we obtain

DS(x)I ξ = D

(∑
i∈I0

λi〈x, ei〉H〈ei, ξ〉H ei
)

= −
∑
i∈I0

〈x, ei〉H〈ei, ξ〉HS(ei)J ei

= −
∑
i∈I
〈x, ei〉H〈ei, ξ〉HS(ei)J ei = −S

(∑
i∈I
〈x, ei〉H ei

)
J

∑
i∈I
〈ξ, ei〉H ei

= −S(x)J ξ.
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Therefore, we have

DπIS(x)πI = −πJS(x)πI .

By Lemma 3.9 we have ran(D∗) ⊂ HI . Therefore, taking adjoints we obtain

S(x)I D
∗ = πIS(x)πID

∗ = (DπIS(x)πI)
∗ = −πIS(x)πJ = −S(x)I πJ ,

completing the proof. �

Now, we introduce n̄0 ∈ L+
1 (H) and N̄ ∈ L(H,L1(H)) as

n̄0 := Λn0Λ∗ and N̄y := ΛNxΛ∗ for all y ∈ H, (63)

where x = Λ−1y ∈ H. Then S̄ has the affine structure

S̄(y) = n̄0 + N̄y for all y ∈ X . (64)

Indeed, let y ∈ X be arbitrary. By (54), (33) and (63) we have

S̄(y) = ΛS(x)Λ∗ = Λ(n0 +Nx)Λ∗ = Λn0Λ∗ + ΛNxΛ∗ = n̄0 + N̄y,

where x = Λ−1y ∈ X .

Lemma 3.12. For each y ∈ X the following statements are true:

(i) We have S̄(y)πI = S(x)I πI , where x = Λ−1y ∈ X , and hence S̄(y)(HI) ⊂ HI .
(ii) We have S̄(y)(HJ) ⊂ HJ .

Proof. Let y ∈ X be arbitrary, and set x := Λ−1y ∈ X . Furthermore, let η ∈ HI be
arbitrary. By Lemma 3.9 we have D∗η = 0. Therefore, by (54) and Lemma 3.11 we obtain

S̄(y)η = ΛS(x)Λ∗η = (Id +D)S(x)(η +D∗η)

= (Id +D)S(x)η = (Id +D)(S(x)I η + S(x)J η)

= (Id +D)S(x)I η + S(x)J η

= S(x)I η +DS(x)I η + S(x)J η = S(x)I η.

Now, let η ∈ HJ be arbitrary. Then by (54) we have

S̄(y)η = ΛS(x)Λ∗η = (Id +D)S(x)(η +D∗η)

= (Id +D)S(x)I(η +D∗η) + S(x)J(η +D∗η)

= S(x)I η + S(x)I D
∗η +DS(x)I(η +D∗η) + S(x)J(η +D∗η).

Note that by Lemma 3.9 we have

DS(x)I(η +D∗η) + S(x)J(η +D∗η)η ∈ HJ .

Furthermore, by Lemma 3.11 we obtain

S(x)I η + S(x)I D
∗η = 0,

and hence S̄(y)η ∈ HJ , completing the proof. �

Now, we are ready to analyze the structure of S̄ and its square root.

Proposition 3.13. The following statements are true:

(i) For all y ∈ X and η ∈ H we have

S̄(y)η = S̄(yI)II ηI + S̄(yI)JJ ηJ . (65)
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(ii) For all y ∈ H+
I and η ∈ HI we have

S̄(y)II η =
∑
i∈I

λi〈y, ei〉H〈ei, η〉H ei. (66)

Proof. The mapping S̄ has the affine structure (64), and by Lemma 3.7 the mapping σ̄ is
parallel to the boundary at boundary points of X . Therefore, by Proposition 3.4 we have

S̄(y) = S̄(yI) for all y ∈ X .

Now, let y ∈ X and η ∈ H be arbitrary. By Lemma 3.12 we have

S̄(y)η = S̄(yI)η = S̄(yI)ηI + S̄(yI)ηJ = S̄(yI)II ηI + S̄(yI)JJ ηJ .

Now, let y ∈ H+
I be arbitrary. By Lemma 3.9, for each i ∈ I we have

〈Λ−1y, ei〉H = 〈y −Dy, ei〉H = 〈y, ei〉H − 〈y,D∗ei〉 = 〈y, ei〉H .

Therefore, by Lemma 3.12 and Proposition 3.4, for all y ∈ H+
I and η ∈ HI we obtain

S̄(y)II η = S(Λ−1y)II η =
∑
i∈I

λi〈Λ−1y, ei〉H〈ei, η〉H ei =
∑
i∈I

λi〈y, ei〉H〈ei, η〉H ei,

completing the proof. �

Lemma 3.14. The following statements are true:

(i) We have

S̄(y)
1/2η = S̄(yI)

1/2
II ηI + S̄(yI)

1/2
JJ ηJ for all y ∈ X and η ∈ H.

(ii) We have

S̄(y)
1/2
II η =

∑
i∈I

√
λi〈y, ei〉H 〈ei, η〉H ei for all y ∈ H+

I and η ∈ HI .

Proof. By equation (65) from Proposition 3.13 we have(
S̄(yI)

1/2
II πI + S̄(yI)

1/2
JJ πJ

)2
= S̄(yI)II πI + S̄(yI)JJ πJ = S̄(y),

proving the first statement. Furthermore, the second statement is an immediate consequence
of equation (66) from Proposition 3.13. �

Now, let us analyze the structure of the volatility σ̄. From now on, we assume that U = H,
that the covariance operator ΣW ∈ L++

1 (U) has a diagonal structure along {ek}k∈N, and

that for each x ∈ X the operator σ(x)Σ
1/2
W is self-adjoint. Then we have

σ̄(y) = S̄(y)
1/2Σ

−1/2
W for all y ∈ X . (67)

Indeed, let y ∈ X be arbitrary. By (54) we have

S̄(y)
1/2 = ΛS(x)

1/2,

where x = Λ−1y ∈ X , and hence by (40) we obtain

σ̄(y) = Λσ(x) = ΛS(x)
1/2Σ

−1/2
W = S̄(y)

1/2Σ
−1/2
W .

Recall that U0 = Σ
1/2
W (U) is a separable Hilbert space with inner product

〈u, v〉U0
:=
〈
Σ
−1/2
W u,Σ

−1/2
W v

〉
U
, u, v ∈ U0. (68)

By Lemma C.2 the system {gk}k∈N given by

gk = Σ
1/2
W ek, k ∈ N (69)
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is an orthonormal basis of U0. Now, we define

UI,0 := Σ
1/2
W (UI) ⊂ UI and UJ,0 := Σ

1/2
W (UJ) ⊂ UJ .

We define the mappings σ̄II : H+
I → L2(UI,0, HI) and σ̄JJ : H+

I → L2(UJ,0, HJ) as

σ̄II(y) := S̄(y)
1/2
II Σ

−1/2
W,II , y ∈ H+

I , (70)

σ̄JJ(y) := S̄(y)
1/2
JJ Σ

−1/2
W,JJ , y ∈ H+

I . (71)

Proposition 3.15. The following statements are true:

(i) We have the representation

σ̄(y)u = σ̄II(yI)uI + σ̄JJ(yI)uJ for all y ∈ X and u ∈ U0. (72)

(ii) We have the representation

σ̄II(y)u =
∑
i∈I

√
λi〈y, ei〉H 〈gi, u〉U0

ei for all y ∈ H+
I and u ∈ UI,0. (73)

(iii) If λ ∈ `1(I) and gi =
√
λiei for all i ∈ I, then we have the representation

σ̄II(y)u =
∑
i∈I

√
〈y, ei〉H 〈ei, u〉U ei for all y ∈ H+

I and u ∈ UI,0.

Proof. Let u ∈ U0 be arbitrary. Note that

Σ
−1/2
W u = Σ

−1/2
W,II uI + Σ

−1/2
W,JJ uJ

is the decomposition of Σ
−1/2
W u according to U = UI ⊕ UJ . Therefore, by (67) and Lemma

3.14, for each y ∈ X we have

σ̄(y)u = S̄(y)
1/2Σ

−1/2
W u = S̄(yI)

1/2
II Σ

−1/2
W,II uI + S̄(yI)

1/2
JJ Σ

−1/2
W,JJ uJ

= σ̄II(yI)uI + σ̄JJ(yI)uJ .

Furthermore, by Lemma 3.14 and (68), for all y ∈ H+
I and u ∈ UI,0 we have

σ̄II(y)u = S̄(y)
1/2
II Σ

−1/2
W,II u =

∑
i∈I

√
λi〈y, ei〉H 〈ei,Σ−

1/2
W,II u〉H ei

=
∑
i∈I

√
λi〈y, ei〉H 〈Σ

1/2
W,IIei, u〉U0

ei =
∑
i∈I

√
λi〈y, ei〉H 〈gi, u〉U0

ei.

If λ ∈ `1(I) and gi =
√
λiei for all i ∈ I, then by (68) we obtain

σ̄II(y)u =
∑
i∈I

√
λi〈y, ei〉H 〈gi, u〉U0 ei =

∑
i∈I

λi
√
〈y, ei〉H 〈ei, u〉U0 ei

=
∑
i∈I

λi
√
〈y, ei〉H 〈Σ−

1/2
W,II ei,Σ

−1/2
W,II u〉U ei =

∑
i∈I

√
〈y, ei〉H 〈ei, u〉U ei,

completing the proof. �

Lemma 3.16. The mapping σ̄II is parallel to the boundary at boundary points of H+
I .

Proof. By the representation (73) from Proposition 3.15 we have

〈σ̄II(y), ei〉H = 0 for all y ∈ H+
I and all i ∈ I with 〈y, ei〉H = 0.

Therefore, using Proposition 3.3 finishes the proof. �
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From now on, we assume that µ has the affine structure (32) and is inward pointing. By
virtue of the decompositions (59) and (72) of µ̄ and σ̄ we can express the transformed SDE
(41) by the two coupled SDEs (42) and (43). The following two auxiliary results show that
the drift and the volatility appearing in the SDE (42) are continuous and satisfy the linear
growth condition.

Lemma 3.17. The mapping µ̄II : H+
I → HI satisfies the linear growth condition, and for

all y, z ∈ H+
I we have

‖µ̄II(y)− µ̄II(z)‖H ≤ ‖M̄II‖L(HI)‖y − z‖H .

Proof. By (57), for each y ∈ H+
I we have

‖µ̄II(y)‖H = ‖m̄0,I + M̄IIy‖H ≤ ‖m̄0,I‖H + ‖M̄II‖L(HI)‖y‖H ,

and for all y, z ∈ H+
I we have

‖µ̄II(y)− µ̄II(z)‖H = ‖M̄II(y − z)‖H ≤ ‖M̄II‖L(HI)‖y − z‖H ,

completing the proof �

Lemma 3.18. The mapping σ̄II : H+
I → L2(UI,0, HI) satisfies the linear growth condition,

and for all y, z ∈ H+
I we have

‖σ̄II(y)− σ̄II(z)‖2L2(UI,0,HI) ≤ ‖λ‖`2(I)‖y − z‖H .

Proof. The mapping S̄ has the affine structure (64), and by Lemma 3.7 the mapping σ̄ is
parallel to the boundary at boundary points of X . Therefore, by Proposition 3.4 we have

S̄(y)η = N̄(y)η for all y ∈ H+
I and η ∈ HI .

Since {gi}i∈I is an orthonormal basis of UI,0, by (70) and Lemma C.5, for each y ∈ H+
I we

obtain

‖σ̄II(y)‖2L2(UI,0,HI) =
∑
i∈I
‖σ̄II(y)gi‖2H =

∑
i∈I
‖σ̄II(y)Σ

1/2
W,IIei‖

2
H

=
∥∥σ̄II(y)Σ

1/2
W,II

∥∥2

L2(HI)
=
∥∥S̄(y)

1/2
II

∥∥2

L2(HI)
= ‖S̄(y)II‖L1(HI)

= ‖N̄II(y)‖L1(HI) ≤ ‖N̄II‖L(HI ,L1(HI))‖y‖H ,

where the operator N̄II ∈ L(HI , L1(HI)) is given by N̄IIη = (N̄η)II for η ∈ HI . This
proves that σ̄II satisfies the linear growth condition. Furthermore, by Lemma 3.14 and the
elementary inequality

(
√
a−
√
b)2 ≤ |a− b|, a, b ∈ R+,

for all y, z ∈ H+
I we have

‖σ̄II(y)− σ̄II(z)‖2L2(UI,0,HI) =
∥∥(σ̄II(y)− σ̄II(z))Σ

1/2
W,II

∥∥2

L2(HI)

=
∥∥S̄(y)

1/2
II − S̄(z)

1/2
II

∥∥2

L2(HI)
=
∑
i∈I

(√
λi〈y, ei〉H −

√
λi〈z, ei〉H

)2

≤
∑
i∈I
|λi〈y − z, ei〉H | ≤

(∑
i∈I

λ2
i

)1/2(∑
i∈I
|〈y − z, ei〉H |2

)1/2

= ‖λ‖`2(I)‖y − z‖H ,

finishing the proof. �
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Now, we define the retracted subspace with compact embedding. By Lemma A.1 there
exists a sequence ν = (νi)i∈I ⊂ (0,∞) with νi → 0 such that we have (35), which gives rise
to the compact linear operator T ∈ K++(HI) with representation (36) and the retracted
subspace HI,0 := T (HI) according to Lemma C.2. We also recall the notations H+

I,0 :=

T (H+
I ) and X0 := H+

I,0 ⊕HJ .

Remark 3.1. If I is finite, then we simply take νi := 1 for all i ∈ I. In this case, the
operator T is the identity operator, and we have HI,0 = HI , H

+
I,0 = H+

I and X0 = X .

Lemma 3.19. We have Λ(X0) = X0.

Proof. Let x ∈ X0 be arbitrary. By Lemma 3.9 we have Dx ∈ HJ , and hence Λx = x+Dx ∈
X0 as well as Λ−1x = x−Dx ∈ X0. �

The following two results show that the drift and the volatility appearing in the SDE (42)
satisfy the linear growth condition with respect to the norm ‖ · ‖HI,0 .

Proposition 3.20. Suppose that condition (38) is fulfilled. Then we have µ̄II(H
+
I,0) ⊂ HI,0,

and µ̄II |H+
I,0

: H+
I,0 → HI,0 satisfies the linear growth condition with respect to ‖ · ‖HI,0 .

Proof. By Lemma 3.10 we have m̄0,I ∈ H+
I,0 and M̄IIT = TM̄II . Hence, by Lemma C.3 we

have M̄II(HI,0) ⊂ HI,0, and M̄II |HI,0 ∈ L(HI,0) with respect to ‖ · ‖HI,0 . Therefore, taking

into account (57) we have µ̄II(H
+
I,0) ⊂ HI,0, and for each y ∈ H+

I,0 we obtain

‖µ̄II(y)‖HI,0 = ‖m̄0,I + M̄IIy‖HI,0 ≤ ‖m̄0,I‖HI,0 + ‖M̄II‖L(HI,0)‖y‖HI,0 ,
proving the linear growth condition. �

Recalling the representation (36), by Lemma C.2 the system {fi}i∈I given by

fi = Tei = νiei, i ∈ I
is an orthonormal basis of HI,0. Also recall that system {gk}k∈N given by (69) is an or-
thonormal basis of U0. In view of the upcoming result, we emphasize that the spaces HI,0

and UI,0 have to be distinguished, although we have H = U . Indeed, by definition we have

HI,0 = T (HI), where T is given by (36), and we have UI,0 = Σ
1/2
W (HI).

Proposition 3.21. The following statements are true:

(i) For all y ∈ H+
I,0 and all u ∈ UI,0 we have σ̄II(y)u ∈ HI,0.

(ii) For all y ∈ H+
I,0 we have σ̄II(y) ∈ L2(UI,0, HI,0) with representation

σ̄II(y)u =
∑
i∈I

√
λi
νi

√
〈y, fi〉H0

〈gi, u〉U0
fi, u ∈ UI,0.

(iii) The mapping σ̄II |H+
I,0

: H+
I,0 → L2(UI,0, HI,0) satisfies the linear growth condition with

respect to ‖ · ‖HI,0 .

Proof. Let y ∈ H+
I,0 and u ∈ UI,0 be arbitrary. By Proposition 3.15 and Lemma C.2 we

have

σ̄II(y)u =
∑
i∈I

√
λi〈y, ei〉H 〈gi, u〉U0 ei

=
∑
i∈I

√
λiνi〈y, fi〉HI,0 〈gi, u〉U0 ei =

∑
i∈I

√
λi
νi

√
〈y, fi〉HI,0〈gi, u〉U0 fi.
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Therefore, by the Cauchy Schwarz inequality and (35) we obtain∑
i∈I

1

ν2
i

|〈σ̄II(y)u, ei〉H |2 =
∑
i∈I

1

ν2
i

λiνi〈y, fi〉HI,0 |〈gi, u〉U0
|2 =

∑
i∈I

λi
νi
〈y, fi〉HI,0 |〈gi, u〉U0

|2

≤

(∑
i∈I

(
λi
νi

)2
)1/2(∑

i∈I
|〈y, fi〉HI,0 |2

)1/2

‖u‖2U0
=

∥∥∥∥(λiνi
)
i∈I

∥∥∥∥
`2(I)

‖y‖HI,0‖u‖2U0
<∞,

and by Lemma C.2 it follows that σ̄II(y)u ∈ HI,0. Recall that {gi}i∈I is an orthonormal
basis of UI,0. Hence, by Lemma C.2 and the Cauchy Schwarz inequality we obtain

‖σ̄II(y)‖2L2(UI,0,HI,0) =
∑
i∈I
‖σ̄II(y)gi‖2HI,0 =

∑
i∈I

λi
νi
〈y, fi〉HI,0

≤

(∑
i∈I

(
λi
νi

)2
)1/2(∑

i∈I
|〈y, fi〉HI,0 |2

)1/2

=

∥∥∥∥(λiνi
)
i∈I

∥∥∥∥
`2(I)

‖y‖HI,0 ,

proving that σ̄II(y) ∈ L2(UI,0, HI,0). Moreover, it follows that σ̄II |H+
I,0

satisfies the linear

growth condition with respect to ‖ · ‖HI,0 . �

The following auxiliary result implies that the drift appearing in the SDE (43) is Lipschitz
continuous. Note that the volatility in the SDE (43) is constant by definition.

Lemma 3.22. Let yI ∈ H+
I be arbitrary. Then for all yJ , zJ ∈ HJ we have

‖µ̄J(yI + yJ)− µ̄J(yI + zJ)‖H ≤ ‖M̄J‖L(H)‖yJ − zJ‖H .

Proof. Taking into account (58), for all yJ , zJ ∈ HJ we have

‖µ̄J(yI + yJ)− µ̄J(yI + zJ)‖H = ‖M̄J(yJ − zJ)‖H ≤ ‖M̄J‖L(H)‖yJ − zJ‖H ,

completing the proof. �

The following two results provide the existence of weak solutions and pathwise uniqueness
of solutions for the affine SDE (30), which we require in order to apply the Yamada-Watanabe
theorem.

Proposition 3.23. Suppose that condition (38) is fulfilled. Then for each probability
measure ν on (X0,B(X0)) there exists a weak solution to the affine SDE (30) such that
ν = P ◦X0.

Proof. Let ν be a probability measure on (X0,B(X0)). Taking into account Lemma 3.19,
setting ν̄ := ν ◦ Λ, that is ν̄(B) = ν(Λ−1B) for all B ∈ B(X0), defines another probability
measure on (X0,B(X0)). Let ν̄I be the probability measure on (H+

I,0,B(H+
I,0)) given by

ν̄I(B) = ν̄(B ×HJ) for all B ∈ B(HI,0). In view of Lemmas 3.17, 3.18, Propositions 3.20,
3.21 and Lemmas 3.7, 3.8, 3.16 we may apply Theorem B.2, which provides a weak solution
(YI ,W ) to the affine SDE (42) on some stochastic basis B such that ν̄I = P ◦ YI,0. By
desintegration, there exists a stochastic kernel K from (H+

I,0,B(H+
I,0)) into (HJ ,B(HJ))

such that ν̄ = K ⊗ ν̄I . We define the probability kernel K̄ from (Ω,F0) into (HJ ,B(HJ))
as

K̄(ω,B) := K(YI,0(ω), B) for all ω ∈ Ω and B ∈ B(HJ).
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Furthermore, we define the new stochastic basis

B̃ :=
(
Ω̃, F̃ , (F̃t)t∈R+ , P̃

)
:=
(
Ω×HJ ,F ⊗B(HJ), (Ft ⊗B(HJ))t∈R+ , K̄ ⊗ P

)
,

and we define the F̃0-measurable random variable Y0 : Ω̃→ X0 as

Y0(ω) :=
(
YI,0(ω1), YJ,0(ω2)

)
, ω ∈ Ω̃,

where YJ,0(ω2) := ω2. For all A ∈ B(H+
0,I) and B ∈ B(HJ) we have

P̃(Y0 ∈ A×B) =

∫
Ω

∫
HJ

1{Y0∈A×B}(ω1, ω2)K̄(ω1, dω2)P(dω1)

=

∫
Ω

∫
HJ

1A×B(YI,0(ω1), x2)K(YI,0(ω1), dx2)P(dω1)

=

∫
H+

0,I

∫
HJ

1A×B(x1, x2)K(x1, dx2)ν̄I(dx1) = ν̄(A×B),

showing that P̃ ◦ Y0 = ν̄. In view of Lemma 3.22, there exists a strong solution YJ to the

affine SDE (43) on the stochastic basis B̃ with initial condition YJ,0. Setting Y := (YI , YJ),

this gives us a weak solution (Y,W ) to the affine SDE (41) such that P̃ ◦ Y0 = ν̄. Now, we
set X := Λ−1Y . Taking into account Lemma 3.6 we deduce (X,W ) is a weak solution to
the affine SDE (30). Moreover, for each B ∈ B(X0) we have

P̃(X0 ∈ B) = P̃(Λ−1Y0 ∈ B) = P̃(Y0 ∈ Λ(B)) = ν̄(Λ(B)) = ν(B),

showing that P̃ ◦X0 = ν. �

Proposition 3.24. Suppose that condition (39) is fulfilled. Then we have pathwise unique-
ness with starting points in X for the affine SDE (30).

Proof. Note that µ̄II has the affine structure (57), and that σ̄II has the diagonal structure
(73) from Proposition 3.15. Also noting (39), we may apply Theorem B.3, which provides
pathwise uniqueness with starting points in H+

I for the affine SDE (42). Moreover, in view of
Lemma 3.22, for every weak solution YI to (42) we have pathwise uniqueness with starting
points in HJ for the affine SDE (43). Consequently, we have pathwise uniqueness with
starting points in X for the affine SDE (41). Since Λ ∈ L(H) is an isomorphism, taking into
account Lemma 3.6 we deduce that pathwise uniqueness with starting points in X for the
affine SDE (30) holds. �

Remark 3.2. Note that we cannot apply Thm. 2.1 from [41] in order to derive pathwise

uniqueness. Indeed, defining ψ1, ϕ, ψ : R+ → R+ as ψ1(θ) := ψ(θ) := θ and ϕ(θ) :=
√
θ for

θ ∈ R+, the integral divergence condition from (A4) in [41] is not fulfilled, because∫ 1

0

1

ψ(θ) + ϕ(θ)
dθ =

∫ 1

0

1

θ + θ1/2
dθ =

∫ 1

0

1

θ1/2(θ1/2 + 1)
dθ =

∫ 1

0

(
1

θ1/2
− 1

θ1/2 + 1

)
dθ <∞.

Noting that B(X0) = B(X )X0 by (83), the proof of Theorem 3.1 is now an immediate con-
sequence of Propositions 3.23 and 3.24, combined with our version of the Yamada-Watanabe
theorem (Theorem B.1).
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4. Examples

In this section, we present examples where Theorem 3.1 applies. In Subsections 4.1 and
4.2 the application is straightforward. More care is required in Subsections 4.3 and 4.4,
where we consider infinite dimensional processes of Cox-Ingersoll-Ross type and of Heston
type. In both of these two examples, we will first specify the volatility structure, then we
define the retracted subspace with compact embedding, and in the last step we introduce
the drift.

4.1. Particular situations. As a consequence of the following result, Theorem 3.1 in par-
ticular applies when the subspace HI is finite dimensional.

Corollary 4.1. If the index set I is finite, then the affine SDE (30) has a unique strong
solution starting in X .

Proof. Since I is finite, condition (37) is fulfilled. Furthermore, by Remark 3.1 the compact
linear operator T ∈ K(HI) given by (36) is the identity operator, and we have HI,0 = HI ,
H+
I,0 = H+

I and X0 = X . Therefore, Assumption 3.1 is satisfied. Consequently, applying
Theorem 3.1 completes the proof. �

In particular, Corollary 4.1 applies when the Hilbert space H is finite dimensional. There-
fore, we have generalized [19, Thm. 8.1], which provides the existence of affine processes in
finite dimension.

4.2. Infinite dimensional processes of Ornstein-Uhlenbeck type. Note that Corol-
lary 4.1 in particular applies when I = ∅, which provides the existence of affine processes
with state space being the whole Hilbert space H. In this situation, where the process X
is a so-called Ornstein-Uhlenbeck process, we can say even more. By condition (48) from
Proposition 3.3 the mapping S is constant, and hence the volatility σ given by (40) is con-
stant as well. Therefore, the affine SDE (30) has the explicit solution given by the variation
of constants formula

Xt = x0 +

∫ t

0

St−sm0ds+

∫ t

0

St−sσdWs, t ∈ R+,

where (St)t≥0 denotes the uniformly continuous semigroup generated by the linear operator
M ∈ L(H) appearing in (32). Ornstein-Uhlenbeck processes on Hilbert spaces have recently
been studied in [2] and [3], and they provide a link to the theory of semilinear stochastic
partial differential equations (SPDEs) in the spirit of the semigroup approach; see for exam-
ple [12]. More precisely, in the general situation, where I and J are arbitrary disjoint index
sets, we could also regard the affine SDE (30) as a SPDE and look for (mild) martingale
solutions, which means that the variation of constants formula

Xt = Stx0 +

∫ t

0

St−sm0ds+

∫ t

0

St−sσ(Xs)dWs, t ∈ R+

is satisfied. According to [12, Thm. 8.1], a sufficient condition for the existence of martingale
solutions is that the semigroup (St)t≥0 is compact. However, we have the following negative
result.

Proposition 4.2. Suppose that dimH = ∞. Then no uniformly continuous, compact
semigroup exists.
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Proof. Suppose that A ∈ L(H) is the infinitesimal generator of a compact semigroup. Ac-
cording to [33, Prop. 3.1.4], for every B ∈ L(H) the operator A+B is also the generator of a
compact semigroup. In particular, choosing B = −A we obtain that the semigroup (St)t≥0

given by St = Id for each t ≥ 0 is compact. Since dimH =∞, this is a contradiction. �

Consequently, apart from the particular case of Ornstein-Uhlenbeck processes, the SPDE
approach is not appropriate in order to establish the existence of affine processes, and this
is why we regard affine processes as solutions to infinite dimensional SDEs in this paper.

4.3. Infinite dimensional processes of Cox-Ingersoll-Ross type. In this subsection,
we establish the existence of infinite dimensional processes of Cox-Ingersoll-Ross type. Here
we have the index sets I = N and J = ∅, and hence the state space is given by X = H+. We
define the volatility structure S : H+ → L+

1 (H), the retracted subspace H0 and the drift
µ : H+ → H in three steps:

Volatility structure. Let λ = (λi)i∈N ⊂ (0,∞) be a sequence such that λ ∈ `2(N). By Lemma
C.9 the mapping

N(x)ξ :=
∑
i∈N

λi〈x, ei〉H〈ei, ξ〉H ei, x, ξ ∈ H

is a well-defined continuous linear operator N ∈ L(H,L1(H)), and for every x ∈ H+ the
operator N(x) is self-adjoint with N(x) ∈ L+

1 (H). We define the affine mapping S : H+ →
L+

1 (H) as

S(x) := N(x) for all x ∈ H+.

Then S has the affine form (33) with n0 = 0. Note that conditions (47)–(49) from Proposition
3.3 are fulfilled, ensuring that the associated volatility σ : H+ → L2(U0, H) given by (40)
is parallel. Furthermore, condition (37) is fulfilled, because κi = 0 for each i ∈ N, and the
transformation Λ ∈ L(H) given by (61) is simply the identity operator. By Proposition 3.15
the volatility is given by

σ(x)u =
∑
i∈N

√
λi〈x, ei〉H 〈gi, u〉U0 ei for all x ∈ H+ and u ∈ U0,

where gi = Σ
1/2
W ei for all i ∈ N. If we even have λ ∈ `1(N), then we can take the covariance

operator ΣW ∈ L++
1 (U) defined as

ΣW u :=
∑
i∈N

λi〈ei, u〉U ei for all u ∈ U ,

and then the volatility admits the representation

σ(x)u =
∑
i∈N

√
〈x, ei〉H 〈ei, u〉U ei for all x ∈ H+ and u ∈ U0.

Retracted subspace. By Lemma A.1 there exists a sequence (νi)i∈N ⊂ (0,∞) such that νi → 0
and (

λi
νi

)
i∈N
∈ `2(N).

Let T ∈ K++(H) be the compact linear operator with representation

Tx =
∑
i∈N

νi〈x, ei〉H ei, x ∈ H, (74)
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and let H0 := T (H) be the retracted subspace defined according to Lemma C.2. Moreover,
we set H+

0 := T (H+).

Drift. We define the affine mapping µ : H+ → H as

µ(x) := m0 +Mx, x ∈ H+,

where m0 ∈ H+
0 , and M ∈ L(H) is of the form

Mx =
∑
i∈N

ρi〈x, ei〉H ei, x ∈ H (75)

with a sequence ρ = (ρi)i∈N ⊂ R such that ρ ∈ `1(N). Note that condition (39) and
conditions (44)–(46) from Proposition 3.2 are fulfilled, which shows that µ is inward pointing.
By the representations (74) and (75) we have MT = TM , showing that condition (38) is
fulfilled. Consequently, by Theorem 3.1 the affine Cox-Ingersoll-Ross type SDE (30) with
parameters specified above has a unique strong solution starting in H+

0 .

4.4. Infinite dimensional processes of Heston type. In this subsection, we establish
the existence of infinite dimensional processes of Heston type. We assume that the disjoint
index sets I and J are both infinite. Let τ : I → J be a bijection such that τ(i1) ≤ τ(i2) for
all i1, i2 ∈ I with i1 ≤ i2. We define the volatility structure S : X → L+

1 (H), the retracted
subspace HI,0 and the drift µ : X → H in three steps:

Volatility structure. Let n0 ∈ L+
1 (H) be such that n0ξ = 0 for all ξ ∈ HI . Furthermore, let

λ = (λi)i∈I ⊂ (0,∞) and κ = (κi)i∈I ⊂ (0,∞) be sequences such that λ ∈ `2(I) and κi ≤ λi
for all i ∈ I. Moreover, we assume that(

κi
λi

)
i∈I
∈ `2(I).

By Lemma C.10 the mapping

N(x)ξ :=
∑
i∈I
〈x, ei〉H

(
〈λiei + κieτ(i), ξ〉H ei + 〈κiei + λieτ(i), ξ〉H eτ(i)

)
, x, ξ ∈ H

is a well-defined continuous linear operator N ∈ L(H,L1(H)), and for every x ∈ X the
operator Nx is self-adjoint with Nx ∈ L+

1 (H). We define the affine mapping S : X → L+
1 (H)

as

S(x) := n0 +Nx, x ∈ X .

By Lemma C.10 we have the identities

λi = ‖S(ei)II ei‖H , i ∈ I,
κi = ‖S(ei)IJ ei‖H , i ∈ I.

Note that conditions (47)–(49) from Proposition 3.3 are fulfilled, ensuring that the associated
volatility σ : X → L2(U0, H) given by (40) is parallel. Furthermore, condition (37) is
fulfilled, and the transformation Λ ∈ L(H) specified by (61) is given by Λ = Id +D, where
D ∈ L(H) denotes the linear operator

Dx = −
∑
i∈I

κi
λi
〈x, ei〉H eτ(i), x ∈ H.
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Retracted subspace. By Lemma A.1 there exists a sequence (νi)i∈I ⊂ (0,∞) such that νi → 0
and (

λi
νi

)
i∈I
∈ `2(I).

Let T ∈ K(HI) be the compact linear operator with representation

Tx =
∑
i∈I

νi〈x, ei〉H ei, x ∈ HI , (76)

and let HI,0 := T (HI) be the retracted subspace defined according to Lemma C.2. Moreover,
we set H+

I,0 := T (H+
I ) and X0 := H+

I,0 ⊕HJ .

Drift. Let m0 ∈ X be such that m0,I ∈ H+
I,0. Furthermore, let MII ∈ L(HI) be a linear

operator of the form

MIIx =
∑
i∈I

ρi〈x, ei〉H ei, x ∈ HI (77)

with a bounded sequence ρ = (ρi)i∈I ⊂ R such that ρ ∈ `1(I), and let MJ ∈ L(H,HJ) be
arbitrary. We define M ∈ L(H) as

Mx := MIIxI +MJx, x ∈ H,

and the affine mapping µ : X → H as

µ(x) = m0 +Mx, x ∈ X .

Note that condition (39) and conditions (44)–(46) from Proposition 3.2 are fulfilled, which
shows that µ is inward pointing. By the representations (76) and (77) we have MIIT =
TMII , showing that condition (38) is fulfilled. Consequently, by Theorem 3.1 the affine
Heston type SDE (30) has a unique strong solution starting in X0.

Appendix A. Auxiliary results

We begin the proof of Lemma 2.8 with the following remark: an A ∈ L(H;L(H)) is consid-
ered to be a sesquilinear map from HC×HC into HC by defining η∗Aξ =

∑∞
i=1〈Aiξ, η〉HCei for

all ξ, η ∈ HC. It is well-defined, if (Ai)i∈N are trace class operators such that
∑
i∈I(trAi)

2 <
∞ and Aj = 0 for all j ∈ J . Actually, we have

‖η∗Aξ‖2HC
=

∞∑
i=1

|〈Aiξ, η〉HC |2 ≤
∞∑
i=1

(trAi)
2‖ξ‖2HC

‖η‖2HC

=
∑
i∈I

(trAi)
2‖ξ‖2HC

‖η‖2HC
<∞.

Note that, for all i ∈ N, 〈ψ(t, u),Mi〉HC = 〈M∗ψ(t, u), ei〉HC and 〈niψ(t, u), ψ(t, u)〉HC =
〈ψ(t, u)∗Nψ(t, u), ei〉HC . Here, we use M and N from Equation (6).

Since ψ(t, u) is Fréchet differentiable and 〈Dtψ(t, u), ei〉HC = ∂tψi(t, u), Equation (9) is
equivalent to

Dtψ(t, u) = M∗ψ(t, u) +
1

2
ψ(t, u)∗Nψ(t, u), t ≥ 0,

ψ(0, u) = u ∈ U .
(78)
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Proof of Lemma 2.8. We truncate I at n by considering In = I ∩{1, . . . , n}, n ∈ N. Denote
Jn = N \ In. By the very definition of 〈·, ·〉HC we directly obtain that

∂t‖ψIn(t, u)‖2HC
=
∑
i∈In

∂t

(
Reψi(t, u)2 + Imψi(t, u)2

)
= 2

∑
i∈In

(
Reψi(t, u)∂t(Reψi(t, u)) + Imψi(t, u)∂t(Imψi(t, u))

)
= 2

∑
i∈In

Re
(
ψi(t, u)∂tψi(t, u)

)
. (79)

It follows that for a bounded linear operator L ∈ L(H) and ψ ∈ H, 〈Lψ,ψ〉H + 〈Lψ,ψ〉H =
2 Re〈Lψ,ψ〉H . Then, (78) together with (18) yields

∂tψi(t, u) = 〈ψIn(t, u) + ψJn(t, u),mi〉HC

+
1

2
〈ni(ψIn(t, u) + ψJn(t, u)), ψIn(t, u) + ψJn(t, u)〉HC

= 〈ψIn(t, u),mi,In〉HC + 〈ψJn(t, u),mi,Jn〉HC +
1

2
ni,ii|ψi(t, u)|2

+ Re〈ni,InJnψJn(t, u), ψIn(t, u)〉HC +
1

2
〈ni,JnJnψJn(t, u), ψJn(t, u)〉HC ,

for all i ∈ In. Hence, for t ∈ [0, Tu) and i ∈ In,

2 Re
(
ψi(t, u)∂tψi(t, u)

)
=2 Re

(
ψi(t, u)

(
〈ψIn(t, u),mi,In〉HC + 〈ψJn(t, u),mi,Jn〉HC

))
+ Reψi(t, u)ni,ii|ψi(t, u)|2

+ 2 Reψi(t, u) Re〈ni,InJnψJn(t, u), ψIn(t, u)〉HC

+ Re
(
ψi(t, u)〈ni,JnJnψJn(t, u), ψJn(t, u)〉HC

)
. (80)

Since Reψi(t, u) ≤ 0 for i ∈ In ⊂ I and t ∈ [0, Tu) and ni,ii ≥ 0, we obtain that
Reψi(t, u)ni,ii|ψi(t, u)|2 ≤ 0 and it follows that

(80) ≤ 2 Re
(
ψi(t, u)

(
〈ψIn(t, u),mi,In〉HC + 〈ψJn(t, u),mi,Jn〉HC

))
+ 2 Reψi(t, u) Re〈ni,InJnψJn(t, u), ψIn(t, u)〉HC

+ Re
(
ψi(t, u)〈ni,JnJnψJn(t, u), ψJn(t, u)〉HC

)
.

Using that 2 Re(αβ) ≤ |α|2 + |β|2 and 2 ReαReβ ≤ |α|2 + |β|2 for α, β ∈ C, we get

(80) ≤ |ψi(t, u)|2 + |〈ψIn(t, u),mi,In〉HC |2 + |ψi(t, u)|2 + |〈ψJn(t, u),mi,Jn〉HC |2

+ |ψi(t, u)|2 + |〈ni,InJnψJn(t, u), ψIn(t, u)〉HC |2

+
1

2
|ψi(t, u)|2 +

1

2
|〈ni,JnJnψJn(t, u), ψJn(t, u)〉HC |2.

Note that for i ∈ In, 〈ψIn(t, u),mi,In〉HC = 〈ψIn(t, u), πInMei〉HC = 〈M∗ψIn(t, u), ei〉HC and
that this is also true when In is replaced by Jn. Hence,

(80) ≤ 7

2
|ψi(t, u)|2 + |〈M∗ψIn(t, u), ei〉HC |2 + |〈M∗ψJn(t, u), ei〉HC |2

+ |〈ni,InJnψJn(t, u), ψIn(t, u)〉HC |2 +
1

2
|〈ni,JnJnψJn(t, u), ψJn(t, u)〉HC |2.
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Moreover, ‖ni,KL‖ ≤ ‖ni‖ for any subset K,L ⊂ N, such that

2 Re
(
ψi(t, u)∂tψi(t, u)

)
≤ 7

2
|ψi(t, u)|2 + |〈M∗ψIn(t, u), ei〉HC |2 + |〈M∗ψJn(t, u), ei〉HC |2

+ ‖ni‖2
(
‖ψJn(t, u)‖2HC

‖ψIn(t, u)‖2HC
+

1

2
‖ψJn(t, u)‖4HC

)
.

It follows from (79) that

∂t‖ψIn(t, u)‖2HC
≤
∑
i∈In

(
7

2
|ψi(t, u)|2 + |〈M∗ψIn(t, u), ei〉HC |2 + |〈M∗ψJn(t, u), ei〉HC |2

)
+
∑
i∈In

‖ni‖2
(
‖ψJn(t, u)‖2HC

‖ψIn(t, u)‖2HC
+ ‖ψJn(t, u)‖4HC

)
≤ 7

2
‖ψIn(t, u)‖2HC

+ ‖M∗ψIn(t, u)‖2HC
+ ‖M∗ψJn(t, u)‖2HC

+
∑
i∈In

‖ni‖2
(
‖ψJn(t, u)‖2HC

‖ψIn(t, u)‖2HC
+ ‖ψJn(t, u)‖4HC

)
≤ 7

2
‖ψIn(t, u)‖2HC

+ ‖M‖2‖ψIn(t, u)‖2HC
+ ‖M‖2‖ψJn(t, u)‖2HC

+
∑
i∈In

‖ni‖2
(
‖ψJn(t, u)‖2HC

‖ψIn(t, u)‖2HC
+ ‖ψJn(t, u)‖4HC

)
≤ C

(
‖ψIn(t, u)‖2HC

+ ‖ψJn(t, u)‖2HC
+ ‖ψJn(t, u)‖2HC

‖ψIn(t, u)‖2HC

+ ‖ψJn(t, u)‖4HC

)
≤ C

(
1 + ‖ψIn(t, u)‖2HC

)(
1 + ‖ψJn(t, u)‖2HC

+ ‖ψJn(t, u)‖4HC

)
holds for all t ∈ [0, Tu), where C =

∑
i∈I ‖ni‖2 + ‖M‖2 + 7

2 . We set hn,u(t) := 1 +

‖ψJn(t, u)‖2HC
+ ‖ψJn(t, u)‖4HC

Applying Gronwall’s inequality yields that for t ∈ [0, Tu),

1 + ‖ψIn(t, u)‖2HC
≤ 1 + ‖uIn‖2HC

+ C(1 + ‖uIn‖2HC
)

∫ t

0

hn,u(s)eC
∫ t
s
hn,u(r)drds. (81)

Let t ∈ [0, Tu). By the definitions of In and Jn, it holds that limn→∞ ‖ψIn(t, u)‖HC =
‖ψI(t, u)‖HC , limn→∞ uIn = uI increasingly and limn→∞ ‖ψJn(t, u)‖HC = ‖ψJ(t, u)‖HC de-
creasingly. It follows that limn→∞ hn,u(r) = hu(r) decreasingly for all r ∈ [s, t]. By Dini’s

theorem this convergence is uniform over [s, t], thus, limn→∞
∫ t
s
hn,u(r)dr =

∫ t
s
hu(r)dr

decreasingly for all s ∈ [0, t].

Consider the sequence of functions (hn,u(s) exp(
∫ t
s
Chn,u(r)dr))n∈N. Similar to the discus-

sion above, this sequence converges to hu(s) exp(C
∫ t
s
hu(r)dr) decreasingly for all s ∈ [0, t].

Again, by Dini’s Theorem, this convergence is uniform on [0, t] and therefore it holds that

lim
n→∞

∫ t

0

hn,u(s)eC
∫ t
s
hn,u(r)drds =

∫ t

0

hu(s)e
∫ t
s
hu(r)drds, t ∈ [0, Tu).

Taking limits on both sides of (81), we finally get

1 + ‖ψI(t, u)‖2HC
≤ 1 + ‖uI‖2HC

+ C(1 + ‖uI‖2HC
)

∫ t

0

hu(s)eC
∫ t
s
hu(r)drds, t ∈ [0, Tu).

Subtracting 1 from both sides, the required inequality is proved. �

We proceed with further auxiliary results, which we require in this paper.
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Lemma A.1. Let λ = (λk)k∈N ⊂ (0,∞) be a sequence such that λ ∈ `1(N). Then there
exists a sequence (νk)k∈N ⊂ (0,∞) such that νk ↓ 0 and(

λk
νk

)
k∈N
∈ `1(N).

Proof. We define the decreasing sequences (ρk)k∈N ⊂ (0,∞) and (νk)k∈N ⊂ (0,∞) as

ρk :=

∞∑
n=k

λn and νk :=
√
ρk.

Then we have νk ↓ 0. Furthermore, we have

∞∑
k=1

λk
νk

=

∞∑
k=1

ρk − ρk+1√
ρk

≤
∞∑
k=1

∫ ρk

ρk+1

1√
x
dx =

∫ ρ1

0

1√
x
dx = 2

√
ρ1,

completing the proof. �

Definition A.1. Let X,Y be normed spaces, and let A ⊂ X be a subset. A function
f : A→ Y satisfies the linear growth condition if there is a constant K ∈ R+ such that

‖f(x)‖Y ≤ K(1 + ‖x‖X) for all x ∈ A.

Lemma A.2. Let X,Y, Z be normed spaces, let A ⊂ X and B ⊂ Y be subsets, and let
f : A → Y with f(A) ⊂ B and g : B → Z be functions satisfying the linear growth
condition. Then g ◦ f : A→ Z satisfies the linear growth condition, too.

Proof. There are constants K,L ∈ R+ such that

‖f(x)‖Y ≤ K(1 + ‖x‖X) for all x ∈ A,

‖g(y)‖Z ≤ L(1 + ‖y‖Y ) for all y ∈ B.

Therefore, for each x ∈ A we obtain

‖g(f(x))‖Z ≤ L(1 + ‖f(x)‖Y ) ≤ L(1 +K(1 + ‖x‖X))

= L+ LK(1 + ‖x‖X) ≤ L(K + 1)(1 + ‖x‖X),

completing the proof. �

Appendix B. Infinite dimensional stochastic differential equations

The goal of this appendix is to provide the required results about the existence of solu-
tions to infinite dimensional SDEs. In particular, we will present a version of the Yamada-
Watanabe theorem for starting points from a subspace which is equipped with a finer topol-
ogy. This version of the Yamada-Watanabe theorem is inspired by [22], where an existence
result for starting points from a retracted subspace with compact embedding is presented.
We will also provide a refined version of this existence result as well as a result for pathwise
uniqueness, which is a version of the uniqueness result from [42] in infinite dimension.

Let H be a separable Hilbert space, and let X ⊂ H be a subset. Let U be a separable
Hilbert space and let ΣW ∈ L++

1 (U) be a self-adjoint, positive trace class operator. By

Lemma C.2 the set U0 := Σ
1/2
W U , equipped with the inner product

〈u, v〉U0
:=
〈
Σ
−1/2
W u,Σ

−1/2
W v

〉
U
, u, v ∈ U0
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is a separable Hilbert space. Let µ : X → H and σ : X → L2(U0, H) be measurable
mappings. We consider the SDE{

dXt = µ(Xt)dt+ σ(Xt)dWt

X0 = x0,
(82)

where W is a U -valued Wiener process with covariance operator ΣW . Let (H0, ‖ · ‖H0
) be a

separable Hilbert space as in Lemma C.2. Then we have H0 ⊂ H as a set, and by Lemma
C.2 we have H0 ∈ B(H) and B(H0) = B(H)H0 . We define X0 := X ∩H0, and denote by
B(X ) the Borel σ-algebra of X with respect to ‖ · ‖H , and by B(X0) the Borel σ-algebra of
X0 with respect to ‖ · ‖H0

. Then we have

B(X0) = B(H)X0 = B(X )X0 , (83)

because B(X0) = B(H0)X = (B(H)H0
)X = B(H)X0

= B(X )X0
. Furthermore, we set

W(X ) := {w ∈ C(R+;H) : w(t) ∈ X for all t ∈ R+}
as well as

W0(U) := {w ∈ C(R+;U) : w(0) = 0}.
For what follows, the letter B will denote a stochastic basis B = (Ω,F , (Ft)t∈R+

,P). We
briefly recall the relevant solution concepts, which are adjusted to the present setting, where
the solutions are X -valued, and where starting points from H0 are considered.

Definition B.1. A pair (X,W ), where X is an adapted process with X0 ∈ X0 and paths
in W(X ), and where W is a U -valued Wiener process with covariance operator ΣW on a
stochastic basis B, is called a weak solution to (82) starting in X0 if we have P-almost surely∫ t

0

(
‖µ(Xs)‖H + ‖σ(Xs)‖2L2(U0,H)

)
ds <∞ for all t ∈ R+

as well as

Xt = X0 +

∫ t

0

µ(Xs)ds+

∫ t

0

σ(Xs)dWs for all t ∈ R+.

Definition B.2. We say that pathwise uniqueness with starting points in X0 holds for (82)
if for two weak solutions (X,W ) and (X ′,W ) starting in X0 on the same stochastic basis B
and with the same U -valued Wiener process W such that P(X0 = X ′0) = 1 we have X = X ′

up to indistinguishability.

In the sequel P ◦ ΣW denotes the distribution of an U -valued Wiener process W with
covariance operator ΣW on the space (W0(U),B(W0(U))).

Definition B.3. Let ÊX0(X ) be the set of maps F : X0 ×W0(U) → W(X ) such that for
every probability measure ν on (X0,B(X0)) there exists a map

Fν : X0 ×W0(U)→W(X )

such that the following conditions are fulfilled:

(i) Fν is B(X0)⊗B(W0(U))
ν⊗(P◦ΣW )

/B(W(X ))-measurable.
(ii) For ν-almost all x ∈ X0 we have

F (x,w) = Fν(x,w) for P ◦ ΣW -almost all w ∈W0(U).

Definition B.4. A weak solution (X,W ) to (82) starting in X0 on a stochastic basis B is

called a strong solution starting in X0 if there exists a mapping F ∈ ÊX0(X ) such that the
following conditions are satisfied:
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(i) For all x ∈ X0 and t ∈ R+ the mapping

W0(U)→W(X ), w 7→ F (x,w)

is Bt(W0(U))
P◦ΣW

/Bt(W(X ))-measurable.
(ii) We have up to indistinguishability

X = FP◦X0(X0,W ).

Definition B.5. We say that the SDE (82) has a unique strong solution starting in X0 if

there exists a mapping F ∈ ÊX0(X ) such that:

(i) Condition (i) from Definition B.4 is satisfied.
(ii) For every U -valued Wiener process W on a stochastic basis B and any F0/B(X0)-

measurable random variable x0 : Ω→ X0 the pair (X,W ), where X := F (x0,W ), is a
weak solution to (82) with P(X0 = x0) = 1.

(iii) For any martingale solution (X,W ) to (82) we have up to indistinguishability

X = FP◦X0(X0,W ).

Now, we are ready to present our version of the Yamada-Watanabe theorem. For related
work about the Yamada-Watanabe theorem in infinite dimension, we refer to [31], [34] and
[36].

Theorem B.1. The SDE (82) has a unique strong solution starting in X0 if and only if
both of the following two conditions are satisfied:

(i) For each probability measure ν on (X0,B(X0)) there exists a weak solution to (82) such
that ν = P ◦X0.

(ii) Pathwise uniqueness for solutions to (82) starting in X0 holds.

Proof. The proof is analogous to the proof of [34, Thm. 2.1], and we provide an out-
line. First, suppose the SDE (82) has a unique strong solution starting in X0. Then path-
wise uniqueness for solutions to (82) starting in X0 holds. For a probability measure ν on
(X0,B(X0)) we consider the probability space(

X0 ×W0(U),B(X0)⊗B(W0(U))
ν⊗(P◦ΣW )

, ν ⊗ (P ◦ ΣW )
)

with corresponding completed filtration, and let x0 : X0 ×W0(U) → X0 and W : X0 ×
W0(U) → W0(U) be the canonical projections. Then X := FP◦x0

(x0,W ) is the desired
weak solution to (82). Conversely, suppose that conditions (i) and (ii) are fulfilled. Let ν
be a probability measure on (X0,B(X0)), and let (X,W ) be a weak solution to (82) with
P ◦X0 = ν. We define the probability measure Pν on(

X0 ×W(X )×W0(U),B(X0)⊗B(W(X ))⊗B(W0(U))
)

as Pν := P ◦ (X0, X,W ). By desintegration, there exists a stochastic kernel Kν from (X0 ×
W0(U),B(X0)⊗B(W0(U))) into (W(X ),B(W(X ))) such that

Pν = Kν ⊗
(
ν ⊗ (P ◦ ΣW )

)
.

Furthermore, there exists a map Fν : X0 ×W0(U) → W(X ) satisfying condition (i) from
Definition B.4 such that

Kν((x,w), ·) = δFν(x,w) for ν ⊗ (P ◦ ΣW )-almost all (x,w) ∈ X0 ×W0(U).

Now, we define F : X0 ×W0(U)→W(X ) as

F (x,w) := Fδx(x,w) for all x ∈ X0 and all w ∈W0(U).
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Then we have F ∈ ÊX0
(X ), and this mapping provides the desired unique strong solution

starting in X0. �

Now, we present sufficient conditions for an application of our version of the Yamada-
Watanabe theorem (Theorem B.1). We start with sufficient conditions for the existence of
weak solutions. Here we present a refined version of a result from [22], where the essential
idea is to consider starting points from a retracted subspace with compact embedding. For
the rest of this section, we assume that the set X is of the form

X = lin+{ek : k ∈ N}

for some orthonormal basis {ek}k∈N of H.

Theorem B.2. We suppose that the following conditions are fulfilled:

(i) The compact linear operator T ∈ K(H) from Lemma C.2 has the representation (91)
with respect to the given orthonormal basis {ek}k∈N.

(ii) The mappings µ : X → H and σ : X → L2(U0, H) are continuous and satisfy the
linear growth condition.

(iii) We have µ(X0) ⊂ H0 and σ(X0) ⊂ L2(U0, H0), and the mappings µ|X0
: X0 → H0 and

σ|X0
: X0 → L2(U0, H0) satisfy the linear growth condition with respect to ‖ · ‖H0

.
(iv) The mapping µ is inward pointing at boundary points of X , and the mapping σ is

parallel to the boundary at boundary points of X .

Then for each probability measure ν on (X0,B(X0)) there exists a weak solution (X,W ) to
the SDE (82) such that ν = P ◦X0.

Proof. Let Π : H → X be the metric projection on the closed convex cone X . Then we have

Πx =
∑
i∈N
〈x, ei〉+H ei for each x ∈ H,

and Π is continuous and satisfies ‖Πx‖H ≤ ‖x‖H for all x ∈ H. Furthermore, we have
ΠT = TΠ. By Lemma C.4 we have Π(H0) ⊂ H0, and Π|H0

: H0 → H0 satisfies the linear
growth condition with respect to ‖ · ‖H0

. Consider the H-valued SDE{
dXt = µ̄(Xt)dt+ σ̄(Xt)dWt

X0 = x0,
(84)

where µ̄ : H → H is given by µ̄ := µ ◦ Π, and σ̄ : H → L2(U0, H) is given by σ̄ := σ ◦ Π.
Then the functions µ̄ and σ̄ are continuous, and by Lemma A.2 they satisfy the linear growth
condition. Furthermore, we have µ̄(H0) ⊂ H0 and σ̄(H0) ⊂ L2(U0, H0), and by Lemma A.2
the mappings µ̄|H0

: H0 → H0 and σ̄|H0
: H0 → L2(U0, H0) satisfy the linear growth

condition with respect to ‖ · ‖H0
. Now, let ν be a probability measure on (X0,B(X0)). Let

x0 : Ω→ X0 be a F0-measurable random variable with P ◦x0 = ν, and let W be a U -valued
Wiener process with covariance operator ΣW , defined on some stochastic basis. Note that
x0 is also F0/B(H)X0 -measurable, because we have B(X0) = B(H)X0 by (83). Now, we
proceed as in the proof of [22, Thm. 2] (see also [21, Thm. 3.12]), where only deterministic
starting points are considered, and provide an outline of the arguments. Note that, apart
from the initial conditions, our framework is a special case of that considered in [22, Thm.
2], because for each T ∈ R+ the mapping

C([0, T ];H)× [0, T ]→ H, (f, t) 7→ f(t)

is continuous, and hence conditions (B1)–(B3) and (A3) appearing in [22, Thm. 2] are
fulfilled. There exist sequences of coefficients (µ̄n)n∈N and (σ̄n)n∈N with µ̄n(H0) ⊂ H0 and
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σ̄n(H0) ⊂ L2(U0, H0) for each n ∈ N, which are Lipschitz continuous with respect to ‖ · ‖H0
,

and we have µ̄n → µ̄ and σ̄n → σ̄ for n→∞. Hence, for each n ∈ N the H0-valued SDE{
dXn

t = µ̄n(Xn
t )dt+ σ̄n(Xn

t )dWt

Xn
0 = x0

has unique strong solution Xn. For an arbitrary T ∈ R+ we define the solution measures
%n := P ◦ Xn on C([0, T ];H0) ⊂ C([0, T ];H) for each n ∈ N. Since the identity operator
Id : (H0, ‖ · ‖H0

) → (H, ‖ · ‖H) is compact, there exists a subsequence (nk)k∈N such that
%nk → % on C([0, T ];H), and this provides a weak solution (X,W ) to the SDE (84). It
remains to prove that (X,W ) is also a weak solution to the original SDE (82). For this
purpose, we will show that the closed convex cone X is invariant; more precisely that X ∈ X
up to an evanescent set. Let i ∈ N be arbitrary. For each x ∈ H with 〈x, ei〉H ≤ 0 we have
〈Π(x), ei〉H = 0, and hence, by Propositions 3.2 and 3.3 we obtain

〈µ(Π(x)), ei〉H ≥ 0 and 〈σ(Π(x)), ei〉H = 0. (85)

We define the stopping time

S := inf{t ∈ R+ : 〈Xt, ei〉H < 0},

and claim that P(S = ∞) = 1. Suppose, on the contrary, that P(S < ∞) > 0. For each
n ∈ N we define the stopping time

Tn := inf

{
t ∈ R+ : 〈Xt, ei〉H < − 1

n

}
.

By the continuity of sample paths of X, there exists n ∈ N such that P(Bn) > 0, where

Bn := {Tn <∞} ∩ {〈Xt, ei〉H ≤ 0 for all t ∈ [[S, Tn]]}.

Note that Bn ∈ F . Indeed, by [26, Props. I.1.21 and I.1.23] we have

[[S, Tn]] ∈ O ⊂ F ⊗B(R+),

and hence

Bn = {Tn <∞} ∩
⋂
t∈Q+

(
{〈Xt, ei〉H ≤ 0} ∩ [[S, Tn]](•,t)

)
∈ F .

On the set Bn we have

S < Tn <∞ as well as 〈XS , ei〉H = 0 and 〈XTn , ei〉H = − 1

n
.

Furthermore, we have

〈X, ei〉H ≤ 0 on [[S, Tn]] ∩ (Bn × R+).

Therefore, using (85), on the set Bn we obtain

− 1

n
= 〈XTn , ei〉H − 〈XS , ei〉H =

∫ Tn

S

〈µ̄(Xs), ei〉H ds+

∫ Tn

S

〈σ̄(Xs), ei〉H dWs

=

∫ Tn

S

〈µ(Π(Xs)), ei〉H ds+

∫ Tn

S

〈σ(Π(Xs)), ei〉H dWs ≥ 0,

which is a contradiction. Consequently, we have X ∈ X up to an evanescent set, and hence
(X,W ) is also a weak solution to the SDE (82). �

We conclude this appendix with sufficient conditions for pathwise uniqueness. The fol-
lowing result is a version of [42, Thm. 2] in infinite dimension.
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Theorem B.3. We suppose that the following conditions are fulfilled:

(i) We have U = H, and the operator ΣW has a diagonal structure along the orthonormal
basis {ek}k∈N.

(ii) There exists a sequence L = (Li)i∈N ⊂ R+ with L ∈ `1(N) such that for each i ∈ N we
have

|µi(x)− µi(y)| ≤ Li‖x− y‖H for all x, y ∈ X , (86)

where µi : H → R is defined as

µi(x) := 〈µ(x), ei〉H , x ∈ H.

(iii) For each i ∈ N there is a mapping σi : R+ → R+ with σi(0) = 0 such that

σ(x)u =
∑
i∈N

σi(〈x, ei〉H)〈gi, u〉U0
ei for all x ∈ X and u ∈ U0, (87)

where gi = Σ
1/2
W ei for all i ∈ N.

(iv) There exists a measurable, increasing function ρ : R+ → R+ with ρ(0) = 0 and ρ(u) ∈
(0,∞) for all u ∈ (0,∞) satisfying∫ ε

0

1

ρ(u)2
du =∞ for all ε > 0 (88)

such that for each i ∈ N we have

|σi(x)− σi(y)| ≤ ρ(|x− y|) for all x, y ∈ R+. (89)

Then we have pathwise uniqueness with starting points in X for the SDE (82).

Proof. The proof is similar to that of [42, Thm. 2], and we only sketch the most relevant
arguments. The sequence (λk)k∈N ⊂ (0,∞) given by λk := 〈ΣW ek, ek〉U for k ∈ N satisfies∑
k∈N λk < ∞ and we have ΣW ek = λkek for all k ∈ N. Furthermore, the system {gi}i∈N

is an orthonormal basis of U0. Let (X,W ) and (Y,W ) be two weak solutions to the SDE
(82) with P(X0 = Y0) = 1. We set Z := X − Y . Let i ∈ N be arbitrary. By the diagonal
structure (87) of σ we have P-almost surely

〈Zt, ei〉H =

∫ t

0

(
µi(Xs)− µi(Ys)

)
ds+

∫ t

0

(
σi(〈Xs, ei〉H)− σi(〈Ys, ei〉H)

)
dβis, t ∈ R+,

where the process

βi :=
1√
λi
〈W, ei〉U

is a real-valued standard Wiener process; see [12, Prop. 4.3.ii]. Using (88), we can choose a
sequence (ϕn)n∈N of functions ϕn ∈ C2(R) precisely as in the proof of [42, Thm. 2]. Now,
let t ∈ R+ and n ∈ N be arbitrary. By Itô’s formula we obtain P-almost surely

ϕn(〈Zt, ei〉H) =

∫ t

0

ϕ′n(〈Zs, ei〉H)
(
µi(Xs)− µi(Ys)

)
ds

+
1

2

∫ t

0

ϕ′′n(〈Zs, ei〉H)
(
σi(〈Xs, ei〉H)− σi(〈Ys, ei〉H)

)2
ds

+

∫ t

0

ϕ′n(〈Zs, ei〉H)
(
σi(〈Xs, ei〉H)− σi(〈X ′s, ei〉H)

)
dβis.
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Taking expectations, the last term vanishes, and by (86) for the first term we obtain∣∣∣∣E[ ∫ t

0

ϕ′n(〈Zs, ei〉H)
(
µi(Xs)− µi(Ys)

)
ds

]∣∣∣∣ ≤ ∫ t

0

E
[
|µi(Xs)− µi(Ys)|

]
ds

≤ Li
∫ t

0

E
[
‖Xs − Ys‖H

]
ds = Li

∫ t

0

E
[
‖Zs‖H

]
ds.

Furthermore, using (89) the second term is estimated as

1

2

∫ t

0

ϕ′′n(〈Zs, ei〉H)
(
σi(〈Xs, ei〉H)− σi(〈Ys, ei〉H)

)2
ds

≤ 1

2

∫ t

0

ϕ′′n(〈Zs, ei〉H)ρ
(
|〈Zs, ei〉H |

)2
ds ≤ t

n
.

Therefore, letting n→∞ we obtain

E
[
|〈Zt, ei〉H |

]
≤ Li

∫ t

0

E
[
‖Zs‖H

]
ds.

Using the monotone convergence theorem, we deduce

E
[
‖Zt‖H

]
≤ E

[∑
i∈N
|〈Zt, ei〉H |

]
=
∑
i∈N
E
[
|〈Zt, ei〉H |

]
≤ ‖L‖`1(N)

∫ t

0

E
[
‖Zs‖H

]
ds.

Since L ∈ `1(N), by Gronwall’s inequality we obtain X = Y up to indistinguishability, which
concludes the proof. �

Appendix C. Linear operators in Hilbert spaces

In this appendix we provide the required results about linear operators in Hilbert spaces.
For two Hilbert spaces H and G the notations L(H,G), K(H,G), L1(H,G), L2(H,G),
L+(H,G) and L++(H,G) mean the sets of all bounded linear operators, compact linear
operators, nuclear operators, Hilbert-Schmidt operators, nonnegative operators and strictly
positive operators. The following is a well-known result about compact operators.

Proposition C.1. Let H0 and H be separable Hilbert spaces. For every compact linear
operator T ∈ K(H0, H) there exist orthonormal bases {fk}k∈N of H0 and {ek}k∈N of H,
and a decreasing sequence (sk)k∈N ⊂ R+ with sk ↓ 0 such that

Tx =

∞∑
k=1

sk〈x, fk〉H0 ek for each x ∈ H0. (90)

Proof. See, for example [40, Satz VI.3.6]. �

The numbers (s2
k)k∈N are the eigenvalues of T ∗T , and the (sk)k∈N are called the singular

values of T . We say that a compact linear operator T ∈ K(H0, H) with representation (90)
has positive singular values if sk > 0 for all k ∈ N. For what follows, let H be a separable
Hilbert space.

Lemma C.2. Let T ∈ K++(H) be a compact, self-adjoint, positive linear operator with
representation

Tx =
∑
k∈N

λk〈x, ek〉H ek for each x ∈ H, (91)

where {ek}k∈N is an an orthonormal basis of H, and (λk)k∈N ⊂ (0,∞) is a decreasing
sequence with λk ↓ 0. Then the following statements are true:
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(i) The space H0 := T (H) equipped with the inner product

〈x, y〉H0 := 〈T−1x, T−1y〉H , x, y ∈ H0 (92)

is a separable Hilbert space, which is dense in H.
(ii) The operator T : (H, ‖ · ‖H)→ (H0, ‖ · ‖H0

) is an isometric isomorphism.
(iii) The system {fk}k∈N given by

fk := Tek = λkek, k ∈ N
is an orthonormal basis of H0.

(iv) For all x ∈ H0 and k ∈ N we have

〈x, ek〉H = λk〈x, fk〉H0
. (93)

(v) We have the representation

H0 =

{
x ∈ H :

∑
k∈N

1

λ2
k

|〈x, ek〉H |2 <∞
}
. (94)

(vi) The identity operator Id : (H0, ‖ · ‖H0)→ (H, ‖ · ‖H) is a compact linear operator with
positive singular values.

(vii) We have H0 ∈ B(H) and B(H0) = B(H)H0
.

Proof. By (92), we have

〈Tx, Ty〉H0
= 〈x, y〉H , x, y ∈ H.

Hence T : (H, ‖ · ‖H)→ (H0, ‖ · ‖H0) is an isometric isomorphism, and it follows that H0 is
a separable Hilbert space. Furthermore, for all k, l ∈ N we have

〈fk, fl〉H0 = 〈Tek, T el〉H0 = 〈ek, el〉H ,

showing that {fk}k∈N is an orthonormal system of H0. For all x, y ∈ H0 we have

〈x, y〉H0 = 〈T−1x, T−1y〉H =
∑
k∈N
〈T−1x, ek〉H〈ek, T−1y〉H

=
∑
k∈N

1

λ2
k

〈x, ek〉H〈ek, y〉H .

In particular, for all x ∈ H0 and k ∈ N we have

〈x, ek〉H0
=

1

λ2
k

〈x, ek〉H ,

and hence

〈x, ek〉H = λ2
k〈x, ek〉H0

= λk〈x, λkek〉H0
= λk〈x, fk〉H0

,

showing (93). Therefore, we obtain

x =
∑
k∈N
〈x, ek〉H ek =

∑
k∈N

λk〈x, fk〉H0
ek =

∑
k∈N
〈x, fk〉H0

fk for each x ∈ H0.

Consequently, the system {fk}k∈N is an orthonormal basis of H0, and the identity operator
Id : (H0, ‖ · ‖H0

)→ (H, ‖ · ‖H) is a compact linear operator with positive singular values. In
particular, we have B(H)H0

⊂ B(H0), and by Kuratowski’s theorem (see, for example [32,
Thm. I.3.9]) we obtain H0 ∈ B(H) and B(H0) = B(H)H0

. Furthermore, by (93) we have∑
k∈N

1

λ2
k

|〈x, ek〉H |2 =
∑
k∈N
|〈x, fk〉H0

|2 for each x ∈ H0,
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proving the representation (94), which also shows that H0 is dense in H. �

Informally, we will call a space of the form H0 = T (H), as provided in Lemma C.2, a
retracted subspace with compact embedding.

Lemma C.3. Let T ∈ K++(H) be a compact linear operator as in Lemma C.2, and let
S ∈ L(H) be a linear operator such that ST = TS. Then the following statements are true:

(i) We have S(H0) ⊂ H0 and S|H0
∈ L(H0) with respect to ‖ · ‖H0

.
(ii) If S is self-adjoint, then S|H0

is self-adjoint with respect to 〈·, ·〉H0
.

(iii) If S ∈ L+(H), then we have S|H0
∈ L+(H0) with respect to 〈·, ·〉H0

.
(iv) If S ∈ L++(H), then we have S|H0 ∈ L++(H0) with respect to 〈·, ·〉H0 .
(v) If S ∈ L1(H), then we have S|H0 ∈ L1(H0) with respect to 〈·, ·〉H0 .

(vi) If S ∈ L2(H), then we have S|H0
∈ L2(H0) with respect to 〈·, ·〉H0

.

Proof. Recall that H0 = T (H). Since ST = TS, we have

S|H0
= STT−1 = TST−1,

showing that S(H0) ⊂ H0. By Lemma C.2 the operators T : (H, ‖ · ‖H)→ (H0, ‖ · ‖H0
) and

T−1 : (H0, ‖ · ‖H0
) → (H, ‖ · ‖H) are isometric isomorphisms, showing that S|H0

∈ L(H0)
with respect to ‖ · ‖H0

. Furthermore, by (92) we have

〈Sx, y〉H0
= 〈TST−1x, y〉H0

= 〈ST−1x, T−1y〉H for all x, y ∈ H0,

which, together with Lemma C.2, provides the remaining statements. �

For the next result, we refer to Definition A.1 for the notion of the linear growth condition.

Lemma C.4. Let T ∈ K++(H) be a compact linear operator as in Lemma C.2, and let
f : H → H be a mapping such that fT = Tf . Then the following statements are true:

(i) We have f(H0) ⊂ H0.
(ii) If f satisfies the linear growth condition with respect to ‖ · ‖H , then f |H0

: H0 → H0

satisfies the linear growth condition with respect to ‖ · ‖H0
.

Proof. Recall that H0 = T (H). Since fT = Tf , we have

f |H0
= fTT−1 = TfT−1,

showing that f(H0) ⊂ H0. By Lemma C.2 the operators T : (H, ‖ · ‖H) → (H0, ‖ · ‖H0
)

and T−1 : (H0, ‖ · ‖H0
) → (H, ‖ · ‖H) are isometric isomorphisms, proving the remaining

statement regarding the linear growth condition. �

Lemma C.5. For every self-adjoint operator T ∈ L+
1 (H) we have

‖T 1/2‖2L2(H) = ‖T‖L1(H).

Proof. Let {ek}k∈N be an orthonormal basis of H. Then we have

‖T 1/2‖2L2(H) =
∑
k∈N
‖T 1/2ek‖2H =

∑
k∈N
〈T 1/2ek, T

1/2ek〉H

=
∑
k∈N
〈Tek, ek〉H = ‖T‖L1(H),

completing the proof. �

Lemma C.6. Let T ∈ L+(H) be a self-adjoint operator, and let x ∈ H be such that
〈Tx, x〉H = 0. Then we have Tx = 0.
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Proof. By assumption we have 〈Tξ, ξ〉H = 0 for each ξ ∈ lin{x}. This gives us

0 ≤ 〈T (ξ + y), ξ + y〉H = 2〈Ty, ξ〉H + 〈Ty, y〉H for all ξ ∈ lin{x} and y ∈ H.

Therefore, we have 〈Ty, x〉H = 0 for all y ∈ H, and hence 〈Tx, y〉H = 0 for all y ∈ H, which
implies Tx = 0. �

For what follows, let {ek}k∈N be an orthonormal basis of H. The closed convex cone H+

is defined as

H+ := {x ∈ H : 〈x, ek〉H ≥ 0 for all k ∈ N}.

Lemma C.7. Let T ∈ L(H,L1(H)) be such that the following conditions are fulfilled:

(i) We have T (ei)ej = 0 for all i, j ∈ N with i 6= j.
(ii) For each x ∈ H the operator T (x) is self-adjoint.

(iii) For each x ∈ H+ we have T (x) ∈ L+
1 (H).

We define the sequence λ = (λi)i∈N ⊂ R+ as

λi := ‖T (ei)ei‖H for all i ∈ N.

Then we have λ ∈ `2(N), the representation

λi = 〈T (ei)ei, ei〉H , i ∈ N (95)

as well as

T (x)ξ =
∑
i∈N

λi〈x, ei〉H〈ei, ξ〉H ei for all x, ξ ∈ H. (96)

Proof. Let i ∈ N be arbitrary. Since T (ei) is self-adjoint, we obtain

〈T (ei)ei, ej〉H = 〈ei, T (ei)ej〉H = 0 for each j ∈ N with j 6= i,

and hence T (ei)ei ∈ lin{ei}. Therefore, we have

T (ei)ei = 〈T (ei)ei, ei〉H ei,
and hence

λi = ‖T (ei)ei‖H = 〈T (ei)ei, ei〉H ,
showing (95) and T (ei)ei = λiei. Therefore, for all x, ξ ∈ H we obtain

T (x)ξ = T

(∑
i∈N
〈x, ei〉H ei

)∑
j∈N
〈ξ, ej〉H ej =

∑
i∈N
〈x, ei〉H〈ei, ξ〉H T (ei)ei

=
∑
i∈N

λi〈x, ei〉H〈ei, ξ〉H ei,

showing (96). Now, let x ∈ H+ be arbitrary. Since T (x) ∈ L+
1 (H), we have∑

i∈N
λi〈x, ei〉H =

∑
i∈N
〈T (x)ei, ei〉H <∞.

Since this series converges absolutely, we deduce that∑
i∈N

λi|〈x, ei〉H | <∞.

For each n ∈ N let Tn ∈ H ′ be the continuous linear functional given by

Tnx =

〈
x,

n∑
i=1

λiei

〉
H

, x ∈ H.
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Let x ∈ H be arbitrary. Then for each n ∈ N we have

|Tnx| =
∣∣∣∣〈x, n∑

i=1

λiei

〉
H

∣∣∣∣ =

∣∣∣∣ n∑
i=1

λi〈x, ei〉H
∣∣∣∣ ≤ n∑

i=1

λi|〈x, ei〉H |,

and hence

sup
n∈N
|Tnx| ≤

∑
i∈N

λi|〈x, ei〉H | <∞.

By the uniform boundedness principle (see, for example [40, Thm. IV.2.1]) it follows that
supn∈N ‖Tn‖H′ <∞. Note that for each n ∈ N we have

‖Tn‖2H′ =

∥∥∥∥ n∑
i=1

λiei

∥∥∥∥2

H

=

n∑
i=1

λ2
i ,

and hence

sup
n∈N
‖Tn‖H′ =

∑
i∈N

λ2
i .

Consequently, we have λ ∈ `2(N). �

Lemma C.8. Let (yk)k∈N ⊂ H be a sequence such that (‖yk‖)k∈N ∈ `2(N). Then the
mapping

Tx :=

∞∑
k=1

〈x, ek〉H yk, x ∈ H

is a well-defined continuous linear operator T ∈ L(H).

Proof. By the Cauchy Schwarz inequality, for each x ∈ H we have

∞∑
k=1

‖〈x, ek〉H yk‖ =

∞∑
k=1

|〈x, ek〉H | ‖yk‖ ≤
( ∞∑
k=1

|〈x, ek〉H |2
)1/2( ∞∑

k=1

‖yk‖2H
)1/2

= ‖x‖H
( ∞∑
k=1

‖yk‖2H
)1/2

<∞,

because (‖yk‖)k∈N ∈ `2(N). Thus, applying the uniform boundedness principle (see, for
example [40, Kor. IV.2.5]) concludes the proof. �

Lemma C.9. Let λ = (λk)k∈N ⊂ R+ be a nonnegative sequence such that λ ∈ `2(N). Then
the following statements are true:

(i) The mapping

T (x)ξ :=
∑
k∈N

λk〈x, ek〉H〈ek, ξ〉H ek, x, ξ ∈ H (97)

is a well-defined continuous linear operator T ∈ L(H,L1(H)).
(ii) For each x ∈ H+ we have T (x) ∈ L+

1 (H).
(iii) For each x ∈ H the operator T (x) is self-adjoint.
(iv) We have T (ei)ej = 0 for all i, j ∈ N with i 6= j.
(v) For each k ∈ N we have

λk = ‖T (ek)ek‖H = 〈T (ek)ek, ek〉H .
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Proof. Let x ∈ H be arbitrary. Then we have

T (x)ξ =
∑
k∈N

λk〈x, ek〉H ek 〈ek, ξ〉H for all ξ ∈ H,

and by the Cauchy-Schwarz inequality we obtain∑
k∈N
‖λk〈x, ek〉H ek‖H‖ek‖H =

∑
k∈N
|λk〈x, ek〉H | ≤

(∑
k∈N

λ2
k

)1/2(∑
k∈N
|〈x, ek〉H |2

)1/2

= ‖λ‖`2(I)‖x‖H .
Therefore, we have T (x) ∈ L1(H) with

‖T (x)‖L1(H) ≤ ‖λ‖`2(I)‖x‖H ,

and hence T ∈ L(H,L1(H)). If x ∈ H+, then we have λk〈x, ek〉H ≥ 0 for each k ∈ N, and
hence

〈T (x)ξ, ξ〉H =
∑
k∈N

λk〈x, ek〉H |〈ek, ξ〉H |2 ≥ 0 for all ξ ∈ H,

showing that T (x) ∈ L+
1 (H). For all ξ, η ∈ H we have

〈T (x)ξ, η〉H =
∑
k∈N

λk〈x, ek〉H 〈ek, ξ〉H〈ek, η〉H

=
∑
k∈N

λk〈x, ek〉H 〈ek, η〉H〈ξ, ek〉H = 〈ξ, T (x)η〉H ,

showing that Tx is self-adjoint. The remaining statements follow from the representation
(97). �

In accordance with the notation from Subsection 4.4, let I, J ⊂ N be infinite, disjoint
index sets such that I ∪ J = N, and let τ : I → J be a bijection such that τ(i1) ≤ τ(i2) for
all i1, i2 ∈ I with i1 ≤ i2. We define

H+
I := lin+{ei : i ∈ I}, HI := lin{ei : i ∈ I} and HJ := lin{ej : j ∈ J}

as well as the closed convex cone X := H+
I ⊕ HJ . We also recall that πI : H → HI and

πJ : H → HJ denote the corresponding projections, as well as the notations TII = πIT |HI
and TIJ = πJT |HI for T ∈ L(H).

Lemma C.10. Let λ = (λi)i∈I ⊂ R+ and κ = (κi)i∈I ⊂ R+ be nonnegative sequences such
that λ ∈ `2(I) and κi ≤ λi for all i ∈ I. Then the following statements are true:

(i) The mapping

T (x)ξ :=
∑
i∈I
〈x, ei〉H

(
〈λiei + κieτ(i), ξ〉H ei + 〈κiei + λieτ(i), ξ〉H eτ(i)

)
, x, ξ ∈ H (98)

is a well-defined continuous linear operator T ∈ L(H,L1(H)).
(ii) For each x ∈ X we have T (x) ∈ L+

1 (H).
(iii) For each x ∈ H the operator T (x) is self-adjoint.
(iv) We have T (ei)ej = 0 for all i, j ∈ I with i 6= j.
(v) For each i ∈ I we have

λi = ‖T (ei)II ei‖H = 〈T (ei)II ei, ei〉H .
(vi) For each i ∈ I we have

κi = ‖T (ei)IJ ei‖H = 〈T (ei)IJ ei, eτ(i)〉H .
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Proof. Let x ∈ H be arbitrary. Then we have the decomposition T (x) = T1(x) + T2(x),
where

T1(x)ξ =
∑
i∈I
〈x, ei〉H ei 〈λiei + κieτ(i), ξ〉H , ξ ∈ H,

T2(x)ξ =
∑
i∈I
〈x, ei〉H eτ(i) 〈κiei + λieτ(i), ξ〉H , ξ ∈ H.

By the Cauchy-Schwarz inequality we obtain∑
i∈I
‖〈x, ei〉H ei‖H‖λiei + κieτ(i)‖H =

∑
i∈I
|〈x, ei〉H |

√
λ2
i + κ2

i

≤
(∑
i∈I
|〈x, ei〉H |2

)1/2(∑
i∈I

(λ2
i + κ2

i )

)1/2

≤
(
‖λ‖2`2(I) + ‖κ‖2`2(I)

)1/2‖x‖H ,
and similarly∑

i∈I
‖〈x, ei〉H eτ(i)‖H‖κiei + λieτ(i)‖H =

∑
i∈I
|〈x, ei〉H |

√
λ2
i + κ2

i

≤
(∑
i∈I
|〈x, ei〉H |2

)1/2(∑
i∈I

(λ2
i + κ2

i )

)1/2

≤
(
‖λ‖2`2(I) + ‖κ‖2`2(I)

)1/2‖x‖H .
Therefore, we have T1(x), T2(x) ∈ L1(H), and hence T (x) ∈ L1(H) with

‖T (x)‖L1(H) ≤ ‖T1(x)‖L1(H) + ‖T2(x)‖L1(H) ≤ 2
(
‖λ‖2`2(I) + ‖κ‖2`2(I)

)1/2‖x‖H ,
showing that T ∈ L(H,L1(H)). Now let x ∈ X and ξ ∈ H be arbitrary. Since κi ≤ λi for
all i ∈ I, we obtain

〈T (x)ξ, ξ〉H =
∑
i∈I
〈x, ei〉H

(
〈λiei + κieτ(i), ξ〉H〈ei, ξ〉H + 〈κiei + λieτ(i), ξ〉H〈eτ(i), ξ〉H

)
=
∑
i∈I
〈x, ei〉H

(
λi
(
|〈ei, ξ〉|2 + |〈eτ(i), ξ〉|2

)
+ 2κi〈ei, ξ〉H〈eτ(i), ξ〉H

)
=
∑
i∈I
〈x, ei〉H

(
(λi − κi)

(
|〈ei, ξ〉|2 + |〈eτ(i), ξ〉|2

)
+ κi

(
〈ei, ξ〉H + 〈eτ(i), ξ〉H

)2)
≥ 0,

showing that T (x) ∈ L+
1 (H). Furthermore, for all x ∈ H and all ξ, η ∈ H we have

〈T (x)ξ, η〉H =
∑
i∈I
〈x, ei〉H

(
〈λiei + κieτ(i), ξ〉H〈ei, η〉H + 〈κiei + λieτ(i), ξ〉H〈eτ(i), η〉H

)
=
∑
i∈I
〈x, ei〉H

(
〈λiei + κieτ(i), η〉H〈ei, ξ〉H + 〈κiei + λieτ(i), η〉H〈eτ(i), ξ〉H

)
= 〈T (x)η, ξ〉H ,

showing that T (x) is self-adjoint. Moreover, by the representation (98) we have T (ei)ej = 0
for all i, j ∈ I with i 6= j as well as

T (ei)ei = λiei + κieτ(i) for each i ∈ I.

Therefore, the remaining statements follow immediately. �
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