

Stochastische Prozesse

Vorlesung: Prof. Dr. Peter Pfaffelhuber

Übung: Moritz Ritter

Übungsblatt 12

Abgabe: Freitag, 27.01.2023.

Aufgabe 1 (4 Punkte). Im folgenden Zeigen wir, dass für jedes $\gamma > \frac{1}{2}$ die Pfade einer Brown'schen Bewegung fast sicher in keinem Punkt Hölder-stetig der Ordnung γ sind. Dies impliziert insbesondere, dass die Pfade fast sicher nirgends differenzierbar sind. Gehen Sie dabei wie folgt vor:

i) Sei $\omega \colon [0,1) \to \mathbb{R}$ Hölder- γ stetig in t, d.h. es existiert zu jedem $\delta > 0$ ein $c(\delta,\omega)$ mit der Eigenschaft, dass $|\omega_s - \omega_t| < c|s-t|^{\gamma}$ für alle $s \in [0,1)$ mit $|s-t| \leq \delta$. Wir schreiben hierzu $\omega \in H_{\gamma,t}$. Setze $k > \frac{2}{2\gamma - 1}$ und zeigen Sie, dass für es für ω ein n_0 und N_0 gibt, sodass für alle $n \geq n_0$ und $N \geq N_0$ gilt, dass $\omega \in A_{N,n}$ mit

$$A_{N,n} = \bigcup_{i=1}^{n} \bigcap_{l=1}^{k-1} \{ \omega : |\omega_{(i+1+l)/n} - \omega_{(i+l)/n}| \le Nn^{-\gamma} \}$$

$$=: A_{N,n,i}$$

Hinweis: Wähle $i = \lfloor tn \rfloor + 1$, $n_0 = \frac{k+1}{\delta}$ und $N_0 = 2c(k+1)^{\gamma}$ und verwenden Sie die Dreiecksungleichung.

- ii) Folgern Sie aus i), dass $H_{\gamma} := \bigcup_{t \in [0,1)}^{\infty} \subset A := \bigcup_{N=1}^{\infty} A_N$ mit $A_N := \liminf_{n \to \infty} A_{N,n}$.
- iii) Sei nun $B=(B_t)_{t\in[0,1)}$ eine Brown'sche Bewegung. Zeigen Sie nun $P[B\in A_{N,n,i}]\leq 2N^kn^{k(-\gamma+1/2)}$ und damit $P[B\in A_N]=0$. Folgern Sie, dass $P[B\in A]=0$.
- iv) Folgern Sie, $B \notin H_{\gamma}$ fast sicher.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass für $\gamma < \frac{1}{2}$ die Pfade der Brown'schen Bewegung fast sicher Hölder-stetig der Ordnung γ sind.

Hinweis: Verwenden Sie Theorem 13.8 (Kolmogorov, Chentsov)

Aufgabe 3 (4 Punkte). Es sei $(B_t)_{t\geq 0}$ eine Standard-Brownsche Bewegung. Zeigen Sie, dass

$$P(\sup_{s \le t} B_s > \sqrt{2t \log \log \log t}) \xrightarrow{t \to \infty} 0.$$

Widerspricht dies dem Gesetz des iterierten Logarithmus?

Aufgabe 4 (4 Punkte). Zeigen Sie ohne Verwendung des Gesetzes vom iterierten Logarithmus: Sei $B = (B_t)_{t\geq 0}$ eine Standard-Brownsche Bewegung und $(t_n)_{n\geq 1}$ eine fallende Nullfolge reeller Zahlen. Dann gilt

$$\limsup_{n\to\infty} \frac{B_{t_n}}{\sqrt{t_n}} = \infty \ \ P\text{-fast sicher}.$$

Folgern Sie, dass für $t \ge 0$ die Pfade von B f.s. nicht Hölder-stetig von der Ordnung $\gamma = \frac{1}{2}$ in t sind.

Hinweis: Verwenden Sie für den ersten Teil das Blumenthal'sche 0-1-Gesetz.