

Stochastische Prozesse

Wintersemester 2022/23

Vorlesung: Prof. Dr. Peter Pfaffelhuber

Übung: Moritz Ritter

Übungsblatt 5

Abgabe: Freitag, 18.11.2022.

Aufgabe 1 (4 Punkte). Sei (Ω, \mathcal{A}, P) ein Wahrscheinlichkeitsraum und $(X_t)_{t \in \mathbb{R}_+}$ eine Menge von iid Zufallsvariablen. Sei $B \in \mathcal{A}$ eine Menge mit $P[X_1 \in B] > 0$ und $T_B := \inf\{t \geq 0 | X_t \in B\}$. Zeigen Sie, dass die Menge $\{T_B > 0\}$ eine Nullmenge ist.

Aufgabe 2 (3 Punkte). Sei $(\Omega, \mathcal{A}, \mathbb{F}, P)$ ein filtrierter Wahrscheinlichkeitsraum und T und S Stoppzeiten. Zeigen Sie, dass $\mathscr{F}_T \cap \mathscr{F}_S = \mathscr{F}_{T \wedge S}$.

Aufgabe 3 (3 Punkte). Zeigen Sie:

- i) Sei W eine Brownsche Bewegung. Dann ist W ein Martingal.
- ii) Sei N ein Poisson-Prozess mit Intensität $a_t = \mathbb{E}[N_t]$. Dann ist der kompensierte Poisson-Prozess $N_t a_t$ ein Martingal.

Aufgabe 4 (2 Punkte). Zeigen Sie, dass für alle quadratintegrierbaren Martingale M, dh. $E\left[M_t^2\right] < \infty$ für alle $t \in \mathbb{R}_+$, und $s \le t$ folgende Aussagen gelten:

i)
$$E[(M_t - M_s)^2 \mid \mathscr{F}_s] = E[M_t^2 - M_s^2 \mid \mathscr{F}_s].$$

ii)
$$E[(M_t - M_s)^2] = E[M_t^2] - E[M_s^2].$$

Aufgabe 5 (4 Punkte). Geben Sie für einen wiederholten Münzwurf (mit fairer Münze) einen Wahrscheinlichkeitsraum an und zeigen Sie, dass der Prozess $(M_n)_{n\in\mathbb{N}}$, der die Summe der Auszahlung $X=(X_n)_{n\in\mathbb{N}}$ von 1 bzw. -1 beschreibt, ein Martingal bzgl. seiner Filtration ist. Das Spiel endet, wenn die Auszahlung von $a\in\mathbb{N}$ erreicht ist. Ist das gestoppte Spiel immer noch ein Martingal? Was lässt sich über die Konvergenz (fast sicher und L^1) des gestoppten Spiels aussagen?

Hinweis: Sie dürfen für die Konvergenz ohne Beweis annehmen, dass $\limsup_{n\to\infty} M_n = \infty$ fast sicher.