Übungen zur Vorlesung "Analysis III"

Blatt 12

Abgabetermin: Montag, 27.01.2020, bis 10.00 Uhr in den Briefkästen im Math. Institut (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Es sei $n \geq 1$ und $A \in \mathbb{R}^{n \times n}$ eine symmetrische $n \times n$ -Matrix mit reellwertigen Einträgen. Wir definieren die Quadrik

 $Q_A := \{ x \in \mathbb{R}^n \mid x^\top A x = 1 \}.$

- (a) Zeigen Sie, dass Q_A eine (n-1)-dimensionale Untermannigfaltigkeit des \mathbb{R}^n ist. HINWEIS: Betrachten Sie die Funktion $f(x) := x^{\top}Ax$ und nutzen Sie den Satz vom regulären Wert.
- (b) Folgern Sie aus (a), dass \mathbb{S}^{n-1} eine Untermannigfaltigkeit ist.

Aufgabe 2 (4 Punkte)

Es sei

$$O(n) := \{ A \in \mathbb{R}^{n \times n} \mid A^{\top} A = E_n \}$$

die orthogonale Gruppe, wobei E_n die n-dimensionale Einheitsmatrix bezeichne. Ferner sei $M_s(n \times n; \mathbb{R}) \subset \mathbb{R}^{n \times n} \cong \mathbb{R}^{n^2}$ der Vektorraum der symmetrischen Matrizen.

- a) Bestimmen Sie $\dim_{\mathbb{R}}(M_s(n \times n; \mathbb{R})).$
- b) Wir definieren die Abbildung $f: \mathbb{R}^{n \times n} \longrightarrow M_s(n \times n; \mathbb{R})$ durch $f(A) = A^{\top} A$. Zeigen Sie, dass

$$f'(A)B = A^{\top}B + B^{\top}A$$

für jedes $B \in \mathbb{R}^{n \times n}$ gilt.

HINWEIS: Rufen Sie sich einen Zusammenhang zwischen Jacobi-Matrix und Richtungsableitungen in Erinnerung, so können Sie vermeiden, erstere überhaupt aufstellen zu müssen.

c) Folgern Sie, dass O(n) eine Untermannigfaltigkeit des $\mathbb{R}^{n\times n}$ ist und bestimmen Sie deren Dimension.

HINWEIS: Nutzen Sie den Satz vom regulären Wert.

Aufgabe 3 (4 Punkte)

Es sei $I:[a,b]\subset\mathbb{R}$ ein Intervall. Dann nennen wir eine Abbildung $\gamma\in\mathcal{C}^1(I,\mathbb{R}^n)$ eine \mathcal{C}^1 -Kurve. Ihr Länge $L(\gamma)$ definieren wir durch

$$L(\gamma) := \sup_{\substack{a \le t_0 < t_1 < \dots < t_n \le b, \\ n \in \mathbb{N}}} \sum_{i=1}^n ||\gamma(t_i) - \gamma(t_{i-1})||_2.$$

(a) Zeigen Sie, dass

$$L(\gamma) = \int_a^b ||\gamma'(t)||_2 dt.$$

Sei nun $\beta \in C^1(J, \mathbb{R}^n)$ eine weitere C^1 -Kurve und $\phi \in C^1(I, J)$ eine Bijektion mit $\phi' > 0$ oder $\phi' < 0$, sodass $\gamma = \beta \circ \phi$, dann heißt γ eine Umparametrisierung von β . Diese heißt orientierungserhaltend, falls $\phi' > 0$ gilt, und orientierungsumkehrend, falls $\phi' < 0$ gilt.

(b) Es sei γ eine Umparametrisierung von β . Zeigen Sie, dass dann $L(\gamma) = L(\beta)$ gilt.

Aufgabe 4 (4 Punkte)

Es sei $E \subset \mathbb{R}^n$ und $f \in \mathcal{C}^0(E, \mathbb{R}^n)$ eine Funktion, sowie $\gamma \in \mathcal{C}^1(I, E)$ eine \mathcal{C}^1 -Kurve. Wir definieren das Kurvenintegral

$$\int_{\gamma} f(x)dx := \int_{I} \langle f(\gamma(t)), \gamma'(t) \rangle dt,$$

wobei $\langle \cdot, \cdot \rangle$ das Standardskalarprodukt auf dem \mathbb{R}^n bezeichne.

(a) Zeigen Sie für $f_1, f_2 \in \mathcal{C}^0(E, \mathbb{R}^n)$ und $\lambda_1, \lambda_2 \in \mathbb{R}$, dass

$$\int_{\gamma} (\lambda_1 f_1 + \lambda_2 f_2)(x) dx = \lambda_1 \int_{\gamma} f_1(x) dx + \lambda_2 \int_{\gamma} f_2(x) dx.$$

(b) Es sei $\beta = \gamma \circ \phi$ eine Umparametrisierung. Zeigen Sie, dass

$$\begin{split} &\int_{\beta}f(x)dx=\int_{\gamma}f(x)dx & \text{falls } \phi \text{ orientierungserhaltend,} \\ &\int_{\beta}f(x)dx=-\int_{\gamma}f(x)dx & \text{falls } \phi \text{ orientierungsumkehrend ist.} \end{split}$$

(c) Zeigen Sie, dass

$$\left| \int_{\gamma} f(x) dx \right| \le ||f \circ \gamma||_{I} \cdot L(\gamma),$$

mit $||\cdot||_I$ der Supremumsnorm auf I.