Übungen zur Vorlesung "Wahrscheinlichkeitstheorie"

Wintersemester 2018/19, Blatt 12

Abgabetermin: 24.1.2019, bis 12:00 Uhr

(Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Bitte nur maximal zu zweit abgeben.)

Aufgabe 45 (4 Punkte)

Es seien $\mathcal{F} = (\mathcal{F}_t)_{t \in \mathbb{N}_0}$ eine Filtration und S sowie T zwei \mathcal{F} -Stoppzeiten. Beweisen oder widerlegen Sie, dass

$$\mathcal{F}_S \cap \mathcal{F}_T = \mathcal{F}_{S \wedge T},$$

wobei $a \wedge b := \min\{a, b\}.$

Aufgabe 46 (4 Punkte)

Sei $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{N}_0}$ eine Filtration und T eine \mathcal{F} -Stoppzeit. Zeigen Sie, dass eine Zufallsvariable Z mit Werten in \mathbb{R} genau dann \mathcal{F}_T -messbar ist, wenn es eine adaptierte Folge $X_0, X_1, \ldots, X_{\infty}$ reellwertiger Zufallsvariablen gibt, sodass $Z = X_T$.

HINWEIS: Betrachten Sie $X_n = Z\mathbb{1}_{\{T \leq n\}}$.

Aufgabe 47 (4 Punkte)

Sei $\mathcal{X} = (X_n)_{n \geq 0}$ ein Martingal bezüglich der Filtration $\mathcal{F} = (\mathcal{F}_n)_{n \geq 0}$, T eine \mathcal{F} -Stoppzeit, \mathcal{X}^T der bei T gestoppte Prozess und $\mathcal{H} = (H_n)_{n \geq 0}$ prävisibel. Zeigen Sie, dass

a)
$$\mathcal{H} \cdot (\mathcal{X}^T) = (\mathcal{H} \cdot \mathcal{X})^T$$
 und

b)
$$\langle \mathcal{X}^T \rangle = \langle \mathcal{X} \rangle^T$$
.

Aufgabe 48 (4 Punkte)

Es sei $(X_i)_{i=1,2,...}$ eine Familie unabhängig identisch verteilter Zufallsvariablen mit

$$\mathbb{P}(X_1 = -1) = \mathbb{P}(X_1 = 1) = \frac{1}{2} \text{ und } S_n := \sum_{i=1}^n X_i.$$

Damit ist $S = (S_n)_{n \geq 0}$ ein Martingal. Sei weiterhin $F = (F_n)_{n \geq 0}$ dessen natürliche Filtration, $T := \inf\{i \geq 1 \mid X_i = 1\}$ und der Prozess $\mathcal{H} = (H_i)_{i \geq 0}$ gegeben durch

$$H_1 := 1, \qquad H_n := 2 \cdot H_{n-1} \mathbb{1}_{\{X_{n-1} = -1\}}.$$

- a) Zeigen Sie, dass \mathcal{H} prävisibel ist und berechnen Sie $\mathbb{E}[(\mathcal{H} \cdot \mathcal{S})_n]$ und $\mathbb{E}[(\mathcal{H} \cdot \mathcal{S})_T]$.
- b) Warum widerspricht Ihr Ergebnis aus a) nicht dem Optional-Sampling-Theorem (13.23) im Martingal-Fall?