Übungen zur Vorlesung "Wahrscheinlichkeitstheorie"

Wintersemester 2018/19, Blatt 11

Abgabetermin: 17.1.2019, bis 12:00 Uhr (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Bitte nur maximal zu zweit abgeben.)

Aufgabe 41 (4 Punkte)

Mit einem Startkapital von 1 Euro spielen Sie folgendes Glücksspiel: Wenn Ihr Kapital vor der n-ten Runde K_{n-1} beträgt, gewinnen Sie in der n-ten Runde nach dem Wurf einer fairen Münze $\frac{2}{3}K_{n-1}$ dazu, sofern Kopf erscheint, sonst verlieren Sie $\frac{1}{2}K_{n-1}$.

- a) Berechnen Sie $\mathbb{E}[K_n]$, und überzeugen Sie sich, dass $\lim_{n\to\infty} \mathbb{E}[K_n] = \infty$ ist.
- b) Zeigen Sie, dass K_n stochastisch gegen 0 konvergiert.

HINWEIS: Für $n \in \mathbb{N}$ ist $K_n = \prod_{i=1}^n Y_i$ mit stochastisch unabhängigen, identisch verteilten Zufallsvariablen Y_i . Betrachten Sie in Teil b) die Zufallsvariable $\log K_n$ und wenden Sie das schwache Gesetz großer Zahlen an.

Aufgabe 42 (4 Punkte)

Seien $(\mathcal{F}_t)_{t\geq 0}$ und $(\mathcal{G}_t)_{t\geq 0}$ Filtrationen mit $\mathcal{F}_t\subseteq \mathcal{G}_t$, $t\geq 0$ und $\mathcal{X}=(X_t)_{t\geq 0}$ ein an beide Filtrationen adaptierter stochastischer Prozess.

- a) Sei \mathcal{X} ein Martingal bezüglich $(\mathcal{G}_t)_{t\geq 0}$. Zeigen Sie, dass \mathcal{X} auch ein Martingal bezüglich $(\mathcal{F}_t)_{t\geq 0}$ ist.
 - Insbesondere gilt: Ist \mathcal{X} ein Martingal bezüglich $(\mathcal{G}_t)_{t\geq 0}$, so ist \mathcal{X} auch ein Martingal bezüglich der von \mathcal{X} erzeugten Filtration.
- b) Geben Sie ein Beispiel für $(\mathcal{F}_t)_{t\geq 0}$, $(\mathcal{G}_t)_{t\geq 0}$ und \mathcal{X} an, sodass \mathcal{X} ein Martingal bezüglich $(\mathcal{F}_t)_{t\geq 0}$ ist, aber nicht bezüglich $(\mathcal{G}_t)_{t\geq 0}$.
- c) Sei $(\mathcal{H}_t)_{t\geq 0}$ eine weitere Filtration, sodass $\mathcal{G}_t = \sigma(\mathcal{F}_t, \mathcal{H}_t)$ und X_t unabhängig von \mathcal{H}_s gegeben \mathcal{F}_s für alle $t\geq s\geq 0$. Zeigen Sie: Ist \mathcal{X} ein Martingal bezüglich $(\mathcal{F}_t)_{t\geq 0}$, dann ist \mathcal{X} auch ein Martingal bezüglich $(\mathcal{G}_t)_{t\geq 0}$.

Aufgabe 43 (4 Punkte)

Zeigen Sie:

- a) Jedes Supermartingal $(X_n)_{n\in\mathbb{N}_0}$ mit $\mathbb{E}[X_n]=\mathbb{E}[X_0]$ für alle n ist bereits ein Martingal.
- b) Ein Martingal $(X_t)_{t \in [0,T]}$ für $0 < T < \infty$ ist gleichgradig integrierbar.

Aufgabe 44 (4 Punkte)

Geben Sie ein Martingal $\mathcal{M}=(M_t)_t$ an mit $\lim_{t\to\infty}M_t=\infty$ fast sicher.