Sixth sheet of exercises

1. Two independent random variables

Let X and Y be two independent random variables with distribution functions F and G . Prove the following statements :

- (a) The distribution function of $X + Y$ is given by $F * G$.
- (b) If X is absolutely continuous with density f, then $X + Y$ is absolutely continuous with density

$$
h: \mathbb{R} \to \mathbb{R}, \quad h(x) = \int_{\mathbb{R}} f(x - t) G(dt).
$$

(c) If X and Y are absolutely continuous with densities f and g , then we have

$$
h(x) = \int_{\mathbb{R}} f(x - t)g(t)dt = \int_{\mathbb{R}} f(t)g(x - t)dt, \ \ x \in \mathbb{R}.
$$

2. Interesting results

The following two questions are independent.

(1) We know from the course that the negative Binomial distribution $NB(\beta, p)$ with parameters

 $\beta > 0$ and $p \in (0, 1)$ is specified by the stochastic vector

$$
\pi(k) = \frac{\Gamma(\beta + k)}{k!\Gamma(\beta)} p^{\beta} (1 - p)^k, \quad k \in \mathbb{N}_0.
$$

Prove that for $k \in \mathbb{N}$, we have

$$
\frac{\Gamma(\beta+k)}{k!\Gamma(\beta)}=\frac{(\beta+k-1)(\beta+k-2)\cdot\ldots\cdot\beta}{k!}.
$$

(2) Let N be a random variable with values in \mathbb{N}_0 . Prove that

$$
\mathbb{E}[N] = \sum_{k=1}^{\infty} \mathbb{P}(N \ge k).
$$

3. Probability generating functions

Let N be a N₀-valued random variable. Let $\mathbb{P} \circ N$ denotes the law of N (it could be denoted \mathbb{P}_N).

(a) If $\mathbb{P} \circ N = \text{Bi}(n, p)$, then we have $\mathcal{M}_N^p = (0, \infty)$ and

$$
\phi_N(t) = (1 - p + pt)^n.
$$

(b) If $\mathbb{P} \circ N = \text{Pois}(\lambda)$, then we have $\mathcal{M}_N^p = (0, \infty)$ and

$$
\phi_N(t) = e^{-\lambda(1-t)}.
$$

(c) If $\mathbb{P} \circ N = NB(\beta, p)$, then we have $\mathcal{M}_N^p = (0, \frac{1}{1-p})$ and

$$
\phi_N(t) = \left(\frac{1 - (1 - p)t}{p}\right)^{-\beta}.
$$

4. Interesting Lemma

We define the process $M = (M_n)_{n \in \mathbb{N}_0}$ as

$$
M_n := \sum_{k=1}^n Y_k Z_k,
$$

where Y_k and Z_k are defined in Lemma 3.2.21. in the course. Prove that M is a square-integrable **F**-martingale with $M_0 = 0$ and

$$
\mathbb{E}[M_n^2] = \sum_{k=1}^n \mathbb{E}[(Y_k Z_k)^2] \text{ for all } n \in \mathbb{N}.
$$