Sixth sheet of exercises

1. Two independent random variables

Let X and Y be two independent random variables with distribution functions F and G. Prove the following statements :

- (a) The distribution function of X + Y is given by F * G.
- (b) If X is absolutely continuous with density f, then X + Y is absolutely continuous with density

$$h: \mathbb{R} \to \mathbb{R}, \ h(x) = \int_{\mathbb{R}} f(x-t)G(dt)$$

(c) If X and Y are absolutely continuous with densities f and g, then we have

$$h(x) = \int_{\mathbb{R}} f(x-t)g(t)dt = \int_{\mathbb{R}} f(t)g(x-t)dt, \ x \in \mathbb{R}.$$

2. Interesting results

The following two questions are independent.

- (1) We know from the course that the negative Binomial distribution $NB(\beta, p)$ with parameters
 - $\beta>0$ and $p\in(0,1)$ is specified by the stochastic vector

$$\pi(k) = \frac{\Gamma(\beta+k)}{k!\Gamma(\beta)} p^{\beta} (1-p)^k, \ k \in \mathbb{N}_0.$$

Prove that for $k \in \mathbb{N}$, we have

$$\frac{\Gamma(\beta+k)}{k!\Gamma(\beta)} = \frac{(\beta+k-1)(\beta+k-2)\cdot\ldots\cdot\beta}{k!}.$$

(2) Let N be a random variable with values in \mathbb{N}_0 . Prove that

$$\mathbb{E}[N] = \sum_{k=1}^{\infty} \mathbb{P}(N \ge k).$$

3. Probability generating functions

Let N be a \mathbb{N}_0 -valued random variable. Let $\mathbb{P} \circ N$ denotes the law of N (it could be denoted \mathbb{P}_N).

(a) If $\mathbb{P}\circ N=\mathrm{Bi}(n,p),$ then we have $\mathscr{M}^p_N=(0,\infty)$ and

$$\phi_N(t) = (1 - p + pt)^n.$$

(b) If $\mathbb{P} \circ N = \text{Pois}(\lambda)$, then we have $\mathscr{M}^p_N = (0, \infty)$ and

$$\phi_N(t) = e^{-\lambda(1-t)}.$$

(c) If $\mathbb{P} \circ N = NB(\beta, p)$, then we have $\mathscr{M}_N^p = (0, \frac{1}{1-p})$ and

$$\phi_N(t) = \left(\frac{1 - (1 - p)t}{p}\right)^{-\beta}.$$

4. Interesting Lemma

We define the process $M = (M_n)_{n \in \mathbb{N}_0}$ as

$$M_n := \sum_{k=1}^n Y_k Z_k,$$

where Y_k and Z_k are defined in Lemma 3.2.21. in the course. Prove that M is a square-integrable \mathbb{F} -martingale with $M_0 = 0$ and

$$\mathbb{E}[M_n^2] = \sum_{k=1}^n \mathbb{E}[(Y_k Z_k)^2] \text{ for all } n \in \mathbb{N}.$$