Second sheet of exercises : Foundations of life insurance mathematics

1. Rate of return

Calculate (provided it exists) the rate of return of the payment flow $Z = Z_L - Z_P$ in the following cases :

- (a) $Z_P = 3\mathbf{1}_{[2,\infty)}$ and $Z_L = 2\mathbf{1}_{[6,\infty)}$.
- (b) $Z_P(s) = 2 + s$ and $Z_L(s) = 1 + s^2/2$.

2. Future life time and force of mortality

- Let T_x be the future lifetime of a person of age x, and let F be its distribution function.
 - (a) We suppose that $t_{\max} < \infty$, where t_{\max} is the maximal future lifetime of the person. Calculate $F(t_{\max})$.
 - (b) Let $\lambda(t)$ be the force of mortality at time t. Compute the distribution function F in the following cases :
 - (1) De Moivre (1724) : $\lambda(t) = \frac{1}{t_{\text{max}} t}, t \in (0, t_{\text{max}})$ with $t_{\text{max}} = 86$.
 - (2) Gompertz (1825) : $\lambda(t) = be^{ct}$ with b, c > 0.
 - (3) Makeham (1860) : $\lambda(t) = a + be^{ct}$ with a, b, c > 0.
 - (4) Weibull (1939) : $\lambda(t) = kt^{\gamma}$ with k > 0 and $\gamma > -1$.

3. Net single premium

Let $\overline{\Pi} \in \mathbb{R}_+$ be a net single premium. We suppose that the payment spectrum $A(\cdot)$ is constant $(A(t) = A, t \in \mathbb{R}_+)$ and the capital function is $K(t) = e^{\delta t}$ with $\delta > 0$. We suppose that the future lifetime T is exponentially distributed with parameter $\lambda > 0$. Compute Π .

4. Regular payment flow

We consider $W : [0, \infty) \times \mathscr{Z} \to [-\infty, +\infty]$, defined by W(t, Z) = K(t)a(Z), where K is a capital function and Z is a payment flow (a(Z) being the present value of Z). W(t, Z) is the value of the payment flow Z at time t. The purpose of the exercise is to prove that W is *regular*. That is to prove that W verifies the following properties :

(1) Finiteness : $\forall t \geq 0, W(t, Z) \in \mathbb{R}$, for $Z \in \mathscr{Z}_g$ such that $Z(\infty) < \infty$.

- (2) Sensitivity : $\forall t, u \geq 0, W(t, \varepsilon_u) \neq 0$, where $\varepsilon_u := \mathbf{1}_{[u,\infty)}$.
- (3) Additivity : $\forall Z_1, Z_2 \in \mathscr{Z}$, such that $Z_1 + Z_2 \in \mathscr{Z}$, we have

$$W(t, Z_1 + Z_2) = W(t, Z_1) + W(t, Z_2), t \ge 0,$$

provided the last quantity in the right side is well defined.

(4) Monotone continuity : Let $(Z_n)_n \subset \mathscr{Z}_g$ be a monotone increasing sequence. We suppose that $Z := \sup_n Z_n \in \mathscr{Z}_g$, then we have

$$W(\cdot, Z) = \sup_{n} W(\cdot, Z_n).$$

- (5) Immediacy : $u \mapsto W(t, \varepsilon_u)$ is right-continuous $\forall t \ge 0$.
- (6) Consistency : $\forall u \geq 0$, for $Z \in \mathscr{Z}_g$ such that $Z(\infty) < \infty$, we have

$$W(\cdot, Z) = W(\cdot, W(u, Z)\varepsilon_u).$$