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Chapter 1

Foundations of life insurance

mathematics

1.1 Elementary �nancial mathematics

1.1.1 Interest rates and capital functions

De�nition 1.1.1. A monotone increasing, right-continuous function K : R+ →
[1,∞) with K(0) = 1 is called a capital function (or accumulation function).

De�nition 1.1.2. Let K be a capital function.

(a) We call r := K(1) the accumulation factor (for the �rst year).

(b) We call i := r − 1 the interest rate or the e�ective interest rate.

(c) We call v := 1/r the discount factor.

Example 1.1.3 (Discrete interest rates (with compound interest)). We set

K(t) := (1 + i)btc, t ∈ R+,

where btc := max{k ∈ N0 : k ≤ t}. Here i is indeed the interest rate from De�nition
1.1.2(b).

Example 1.1.4 (Continuous interest rates (with compound interest)). We set

K(t) := eδt, t ∈ R+,

where δ ∈ R+ denotes the so-called nominal interest rate. Here we have r = eδ,
i = eδ − 1 and v = e−δ. In general we have δ 6= i. Furthermore, note that

lim
n→∞

(
1 +

i

n

)n
= ei.

2
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De�nition 1.1.5. Let K be a capital function. If there is a non-negative, measurable
function k : R+ → R+ such that

K(t) = 1 +

∫ t

0

k(s)ds, t ∈ R+,

then φ : R+ → R+,

φ(t) :=
k(t)

K(t)
, t ∈ R+

is called the force of interest of K.

Example 1.1.6. For K(t) = eδt we have

K(t) = 1 +

∫ t

0

δeδsds, t ∈ R+.

Thus we have k(t) = δeδt, and obtain

φ(t) =
k(t)

K(t)
=
δeδt

eδt
= δ.

This is the reason for calling δ from Example 1.1.4 the interest rate.

Lemma 1.1.7. Let K be a capital function as in De�nition 1.1.5. Then we have

K(t) = exp

(∫ t

0

φ(s)ds

)
, t ∈ R+.

Proof. Suppose that k is continuous. Then we have K ∈ C1(R+) with K ′ = k, and it
follows

d

dt

(
lnK(t)

)
=

k(t)

K(t)
= φ(t).

Since K(0) = 1, we deduce

lnK(t) =

∫ t

0

φ(s)ds.

De�nition 1.1.8. Let K be a capital function. We de�ne die accumulated force of
interest Φ : R+ → R+ by

Φ(t) :=

∫
(0,t]

1

K(s−)
dK(s), t ∈ R+,

where

K(s−) := lim
u↑s

K(u).
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Remark 1.1.9. Let K be a capital function as in De�nition 1.1.5. Then we have

Φ(t) =

∫ t

0

φ(s)ds =

∫ t

0

k(s)

K(s)
ds.

With Lemma 1.1.7 it follows

K(t) = eΦ(t) ⇔ Φ(t) = lnK(t).

But in general, we do not have Φ(t) = lnK(t).

Example 1.1.10. Let K(t) = (1 + i)btc as in Example 1.1.3. Then K(s−) = 1 for
all s ∈ [0, 1]. We obtain

Φ(1) =

∫
(0,1]

1

K(s−)
dK(s) =

∫
(0,1]

dK(s) = K(1)−K(0) = i.

However lnK(1) = ln(1 + i).

1.1.2 Payment �ows

De�nition 1.1.11.

(a) A directed payment �ow is a right-continuous, monotone increasing function
Z : R+ → R+.

(b) We denote by Zg the set of all directed payment �ows.

(c) A function Z : R+ → R is called an undirected payment �ow (or simply
payment �ow) if there are Z1, Z2 ∈ Zg with Z = Z1 − Z2 such that Z1(∞) :=
limt→∞ Z1(t) <∞ or Z2(∞) := limt→∞ Z2(t) <∞.

(d) We denote by Z the set of all undirected payment �ows.

Example 1.1.12. If K is a capital function, then Z := K − 1 is a directed payment
�ow, which we call interest payment �ow.

Example 1.1.13. Let (zj)j∈N0 ⊂ R+ be a sequence, and let (tj)j∈N0 be a strictly
increasing sequence with t0 = 0 and limj→∞ tj =∞. Then

Z(t) :=
∞∑
j=0

zj1[tj ,∞)(t), t ∈ R+

is a directed payment �ow, which we call a discrete annuity.
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De�nition 1.1.14. Let K be a capital function, and let Z ∈ Zg be a discrete annuity.
Then we call

a(Z) :=
∞∑
j=0

zj
K(tj)

∈ [0,∞]

the present value of the payment �ow Z.

Remark 1.1.15. We can express the present value as

a(Z) =
∞∑
j=0

∆Z(tj)

K(tj)
=
∑
t≥0

∆Z(t)

K(t)
,

where

∆Z(t) := Z(t)− Z(t−).

Remark 1.1.16. For every Z ∈ Zg there exists a unique measure mZ on (R+,B(R+))
such that mZ({0}) = Z(0) and

mZ((s, t]) = Z(t)− Z(s), 0 ≤ s ≤ t.

For every mZ-integrable function f : R+ → R we de�ne∫
R+

f(s) dZ(s) :=

∫
R+

f dmZ .

De�nition 1.1.17. Let Z ∈ Z be a payment �ow.

(a) The terminal value of Z until time t ∈ R+ is given by

s(Z)(t) := K(t)

∫
[0,t]

1

K(s)
dZ(s).

(b) The present value of Z until time t is given by

a(Z)(t) :=

∫
[0,t]

1

K(s)
dZ(s).

(c) The present value of the total payment �ow Z is

a(Z) :=

∫
R+

1

K(s)
dZ(s).
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Remark 1.1.18. For Z ∈ Zg we have a(Z) ∈ [0,∞], and for Z ∈ Zg we have
a(Z) ∈ [−∞,∞].

Proposition 1.1.19. For a càdlàg-function Z : R+ → R with Z0 = 0 the following
statements are equivalent:

(i) Z is locally of bounded variation.

(ii) There are increasing, right-continuous functions Z1, Z2 : R+ → R+ with Z1(0) =
Z2(0) = 0 such that Z = Z1 − Z2.

Proposition 1.1.20. Let Z : R+ → R be a càdlàg-function of locally bounded
variation with Z(0) = 0. Then there are unique increasing, right-continuous func-
tions Z1, Z2 : R+ → R+ with Z1(0) = Z2(0) = 0 such that Z = Z1 − Z2 and
Var(Z) = Z1 + Z2. They are given by

Z1 =
Z + Var(Z)

2
and Z2 = Z1 − Z.

1.1.3 Equivalence principle and premium reserve

Let K be a capital function.

De�nition 1.1.21. Two payment �ows Z1, Z2 ∈ Z are called equivalent (relative to
K) if a(Z1) = a(Z2) ∈ R.

De�nition 1.1.22. Let ZL, ZP ∈ Zg be such that min{a(ZL), a(ZP )} <∞.

(a) For every time t ∈ R+ the prospective premium reserve of (ZL, ZP ) relative to
the capital function K is de�ned as

V (t) := K(t)

[ ∫
[t,∞)

dZL(s)

K(s)
−
∫

[t,∞)

dZP (s)

K(s)

]
.

(b) If V (t) ≥ 0 for all t ∈ R+, then we call (ZL, ZP ) a savings plan.

(c) If V (t) ≤ 0 for all t ∈ R+, then we call (ZL, ZP ) a credit agreement, and −V (t)
is the residual debt at time t.

Remark 1.1.23. Here P stands for premium (paid to a company) and L for bene�t
(German: Leistung) (paid to the policyholder).



7

Example 1.1.24 (Savings account). Consider K(t) = eδt and ZP = A, ZL = B1[5,∞),
say with δ = 0.05 and A = 10000. How do we choose B such that ZP and ZL are
equivalent? The equivalence a(ZP ) = a(ZL) means

A

K(0)
=

B

K(5)
.

Since K(0) = 1, it follows

B = K(5)A = e5δA.

Furthermore, we have

V (t) = K(t)
( B

K(5)
1[0,5](t)− A1{0}(t)

)
= K(t)

B

K(5)
1(0,5](t).

De�nition 1.1.25. Let ZL, ZP ∈ Zg be such that min{a(ZL), a(ZP )} < ∞. For
every time t ∈ R+ the retrospective premium reserve of (ZL, ZP ) relative to the capital
function K is de�ned as

(r)V (t) := K(t)

[ ∫
[0,t)

dZP (s)

K(s)
−
∫

[0,t)

dZL(s)

K(s)

]
.

Lemma 1.1.26. Let ZL, ZP ∈ Zg be equivalent payment �ows relative to the capital
function K. Then we have

(r)V (t) = V (t) for all t ∈ R+.

Proof. Since a(ZL) = a(ZP ), we obtain

V (t) = K(t)

[ ∫
[t,∞)

dZL(s)

K(s)
−
∫

[t,∞)

dZP (s)

K(s)

]
= K(t)

[
a(ZL)−

∫
[0,t)

dZL(s)

K(s)
− a(ZP ) +

∫
[0,t)

dZP (s)

K(s)

]
= K(t)

[ ∫
[0,t)

dZP (s)

K(s)
−
∫

[0,t)

dZL(s)

K(s)

]
=(r) V (t).

De�nition 1.1.27. Let Z ∈ Z be a payment �ow with decomposition Z = ZP − ZL
for some ZP , ZL ∈ Zg. We call (provided it exists) the minimal i ∈ R+ such that
a(ZP ) = a(ZL) relative to the capital function K(t) = (1 + i)t the rate of return of Z.
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Example 1.1.28. Consider ZP = π1[tP ,∞) and ZL = A1[tL,∞) with π,A ∈ (0,∞)
and tP , tL ∈ R+. The equivalence a(ZP ) = a(ZL) means

π

(1 + i)tP
=

A

(1 + i)tL
.

For tL 6= tP it follows

i =

(
A

π

) 1
tL−tP

− 1.

Since i ∈ R+, one of the following two conditions has to be satis�ed:

• tL > tP and A ≥ π.

• tL < tP and A ≤ π.

1.2 Foundations of life insurance mathematics

1.2.1 Probabilities of death

Let (Ω,F ,P) be a probability space. Furthermore, let Tx : Ω → (0,∞) die future
lifetime of a person of age x. We denote by F = FTx : R → [0, 1] its distribution
function, ans assume that F (0) = 0. We set

tqx := P(Tx ≤ t) ∈ [0, 1], t ∈ R+

and qx := 1qx. Often, we agree to write T = Tx.

De�nition 1.2.1. Das maximal future lifetime is de�ned as

tmax := sup{t ∈ R+ : F (t) < 1} = sup{t ∈ R+ : P(T > t) > 0} ∈ (0,∞].

De�nition 1.2.2. We de�ne the survival function F̄ : R→ [0, 1] as

F̄ (t) := 1− F (t) = P(Tx > t).

Furthermore, we set tpx := P(Tx > t) and px := 1px.

De�nition 1.2.3. If T is absolutely continuous with density f : R → R+, then we
de�ne

λ : (0, tmax)→ R+, λ(t) :=
f(t)

1− F (t)
=
f(t)

F̄ (t)
.

We call λ(t) the force of mortality at time t.
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De�nition 1.2.4. More generally, we de�ne the accumulated force of mortality

Λ(t) :=

∫
[0,t]

1

1− F (u−)
dF (u) ∈ [0,∞], t ∈ R+.

Remark 1.2.5. If T is absolutely continuous with density f : R→ R+, then we have

Λ(t) =

∫ t

0

λ(s)ds, t ∈ (0, tmax).

The survival function satis�es the ODE{
F̄ ′(t) = −λ(t)F̄ (t), t ∈ (0, tmax)
F̄ (0) = 1.

The unique solution is given by

F̄ (t) = exp

(
−
∫ t

0

λ(s)ds

)
= exp(−Λ(t)).

Important quantities in life tables:

• kpx is the survival probability for k years of a person of age x.

• px is the survival probability for one year of a person of age x.

• kqx is the probability of death within k years of a person of age x.

• qx is the probability of death within one year of a person of age x.

• `x is the (expected) number of persons reaching age x; often on the basis `0 =
100.000.

• dx is the (expected) number of persons dying at age x.

• ex is the expected remaining lifetime of a person of age x.

Example 1.2.6 (Forces of mortality).

• De Moivre (1724):

λ(t) =
1

tmax − t
, t ∈ (0, tmax) with tmax = 86.

• Gompertz (1825):

λ(t) = bect with b, c > 0.

• Makeham (1860):

λ(t) = a+ bect with a, b, c > 0.

• Weibull (1939):

λ(t) = ktγ with k > 0 and γ > −1.
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1.2.2 Elements of a life insurance police

De�nition 1.2.7. A stochastic process is a family (Xt)t∈R+ of R-valued random vari-
ables.

De�nition 1.2.8. A random payment �ow is a stochastic process (Xt)t∈R+ such that
for every ω ∈ Ω the path t 7→ Xt(ω) belongs to Z .

De�nition 1.2.9. A payment spectrum is a non-negative, measurable function A :
R+ → R+.

De�nition 1.2.10. A premium function is a monotone increasing, right-continuous
function Π : R+ → R+.

For t ∈ R+ the quantity Π(t) denotes the sum of a premiums paid until time t.

De�nition 1.2.11. The quantities determining a life insurance police (LIP) are:

• F is the distribution function of the future lifetime T : Ω→ (0,∞).

• τ ∈ (0, tmax] is the terminal time of the police.

• Y := min{T, τ} is the (random) time of bene�t.

• The payment spectrum A. At time Y the amount A(Y ) is paid to the policy-
holder.

• The capital function K.

• The premium function Π.

All quantities with exception of T (and hence Y ) are assumed to be known and
deterministic.

De�nition 1.2.12.

(a) The (directed) bene�t �ow of a LIP is given by

ZL := A(Y )1[[Y,∞[[.

(b) The (undirected) premium �ow is given by

ZP := Π1[[0,Y [[ + Π(Y−)1[[Y,∞[[.

(c) The (undirected) payment �ow of a LIP is given by

Z := ZL − ZP .
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Examples 1.2.13. Special cases:

• τ =∞. Whole life insurance.

• τ <∞ and A(τ) = 0. Term insurance.

• τ <∞ and A(t) = 0 for t < τ as well as A(τ) > 0. Pure endowment.

• τ <∞ and A(t) ≥ 0 for t ≤ τ . Endowment.

De�nition 1.2.14. The (random) present value of a LIP in view of the policyholder
(PH) is

B = a(ZL)− a(ZP ).

De�nition 1.2.15.

(a) The (expected) present value of bene�t is given by E[a(ZL)].

(b) The (expected) present value of premium is given by E[a(ZP )].

(c) A premium function Π is called net premium function if E[B] = 0; that is
E[a(ZL)] = E[a(ZP )].

Remark 1.2.16. We have

a(ZL) =

∫
[0,∞)

1

K(s)
dZL(s) =

A(Y )

K(Y )

and

a(ZP ) =

∫
[0,∞)

1

K(s)
dZP (s) =

∫
[[0,Y [[

1

K(s)
dΠ(s).

Remark 1.2.17. We have

FY = F1[0,τ) + 1[τ,∞)

and

FY (ds) = 1[0,τ)(s)F (ds) + (1− F (τ−))δτ (ds).

Lemma 1.2.18.
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(a) The expected present value of bene�t is given by

E[a(ZL)] =

∫
[0,τ ]

A(s)

K(s)
dFY (s)

=

∫
[0,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−)).

The �rst term is the expected present value of bene�t in case of death, and the
second term is the expected present value of bene�t in case of survival.

(b) The expected present value of premium is given by

E[a(ZP )] =

∫
[0,τ)

1− F (s)

K(s)
dΠ(s).

Proof.

(a) We have

E[a(ZL)] = E
[
A(Y )

K(Y )

]
=

∫
R+

A(s)

K(s)
dFY (s)

=

∫
[0,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−)).

(b) We have

E[a(ZP )] = E
[ ∫

[[0,Y [[

1

K(s)
dΠ(s)

]
=

∫
R+

E[1{s<Y }]

K(s)
dΠ(s) =

∫
R+

P(Y > s)

K(s)
dΠ(s)

=

∫
R+

1− FY (s)

K(s)
dΠ(s) =

∫
[0,τ)

1− F (s)

K(s)
dΠ(s).

De�nition 1.2.19. A real number Π̃ ∈ R+ is called a net single premium (NSP) if
Π(t) = Π̃, t ∈ R+ is a net premium function.

Example 1.2.20. For Π(t) = Π̄, t ∈ R+ we have a(ZP ) = Π̃. Thus the NSP is given
by

Π̃ = E
[
A(Y )

K(Y )

]
.

In the special case A(t) ≡ A and K(t) = eδt we have

Π̃ = A · E
[
e−δY

]
.
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De�nition 1.2.21. A running constant premium in advance Π at time points 0 =
t0 < t1 < . . . < tN−1 < τ for some N ∈ N is given by

Π =
N−1∑
k=0

π1[tk,∞),

where π ∈ R+ sis chosen such that Π is a net premium function.

Remark 1.2.22. For N = 1 we have a NSP.

De�nition 1.2.23. The natural premium (payable at time points 0 = t0 < t1 < . . . <
tN−1 < tN = τ with N ∈ N) is given by

Π =
N−1∑
k=0

πk1[tk,∞),

where

πk = K(tk)E
[ ∫

(tk,tk+1]

1

K(s)
dZL(s)

∣∣∣T > tk

]
, k = 0, . . . , N − 1.

Proposition 1.2.24. The following statements are true:

(a) We have

πk =
K(tk)

1− F (tk)

∫
(tk,tk+1]

A(s)

K(s)
dFY (s), k = 0, . . . , N − 1.

(b) The natural premium is a net premium function.

Proof.

(a) We have P{T>tk} � P with

dP{T>tk}

dP
=

1{T>tk}

P(T > tk)
.

Therefore

πk = K(tk)EP{T>tk}

[ ∫
(tk,tk+1]

1

K(s)
dZL(s)

]
=

K(tk)

P(T > tk)
E
[ ∫

(tk,tk+1]

1

K(s)
dZL(s)1{T>tk}

]
=

K(tk)

1− F (tk)
E
[
A(Y )

K(Y )
1{Y ∈(tk,tk+1]}

]
=

K(tk)

1− F (tk)

∫
(tk,tk+1]

A(s)

K(s)
dFY (s).
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(b) Since F (0) = 0, we have

E[a(ZP )] =

∫
[0,τ)

1− F (s)

K(s)
dΠ(s) =

N−1∑
k=0

1− F (tk)

K(tk)
πk

=
N−1∑
k=0

1− F (tk)

K(tk)

K(tk)

1− F (tk)

∫
(tk,tk+1]

A(s)

K(s)
dFY (s)

=

∫
[0,τ ]

A(s)

K(s)
dFY (s) = E[a(ZL)].

1.2.3 Net premium reserves

We consider a LIP with net premium function Π.

De�nition 1.2.25. The (expected) prospective net premium reserve (NPR) V (t) of
a LIP at time t ∈ [0, tmax) is given by

V (t) = K(t)E
[
A(Y )

K(Y )
1{t≤Y } −

∫
[[t,Y [[

1

K(s)
dΠ(s)

∣∣∣T > t

]
.

Lemma 1.2.26. We have V (0) = 0.

Proof. Indeed, we have

V (0) = K(0)E
[
A(Y )

K(Y )
1{0≤Y } −

∫
[[0,Y [[

1

K(s)
dΠ(s)

∣∣∣T > 0

]
= E

[
A(Y )

K(Y )
−
∫

[[0,Y [[

1

K(s)
dΠ(s)

]
= E[a(ZL)]− E[a(ZP )] = 0.

Lemma 1.2.27.

(a) For all t ∈ [0, τ) we have

V (t) =
K(t)

1− F (t)

(∫
(t,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−))−

∫
[t,τ)

1− F (s)

K(s)
dΠ(s)

)
.
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(b) If τ < tmax, then we have

V (τ) = A(τ) and V (t) = 0 for all t ∈ (τ, tmax).

In particular, we have

lim
t↑τ

V (t)

K(t)
=
A(τ)

K(τ)
=
V (τ)

K(τ)
.

Proof.

(a) For t ∈ [0, τ) we have {T > t} = {Y > t}, and hence

V (t) =
K(t)

P(T > t)
E
[(

A(Y )

K(Y )
1{t≤Y } −

∫
[[t,Y [[

1

K(s)
dΠ(s)

)
1{T>t}

]
=

K(t)

1− F (t)

(∫
(t,τ ]

A(s)

K(s)
dFY (s)−

∫
[t,τ)

1− F (s)

K(s)
dΠ(s)

)
=

K(t)

1− F (t)

(∫
(t,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−))−

∫
[t,τ)

1− F (s)

K(s)
dΠ(s)

)
.

(b) We have τ < tmax. For t ∈ (τ, tmax) we have V (t) = 0, because Y ≤ τ < t. For
t = τ we have {T > t} = {T > τ} = {Y = τ}, and hence

V (τ) = K(τ)E
[
A(τ)

K(τ)
1{t≤τ}

∣∣∣T > τ

]
= A(τ).

Moreover, we have

lim
t↑τ

V (t)

K(t)
= lim

t↑τ

1

1− F (t)

A(τ)

K(τ)
(1− F (τ−)) =

A(τ)

K(τ)
=
V (τ)

K(τ)
.

Lemma 1.2.28. We have the retrospective representation

V (t) =
K(t)

1− F (t)

(
−
∫

[0,t]

A(s)

K(s)
dF (s) +

∫
[0,t)

1− F (s)

K(s)
dΠ(s)

)
.

for all t ∈ [0, τ).
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Proof. By Lemma 1.2.18 we have

0 = E[a(ZL)]− E[a(ZP )]

=

∫
[0,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−))−

∫
[0,τ)

1− F (s)

K(s)
dΠ(s)

=

∫
[0,t]

A(s)

K(s)
dF (s) +

∫
(t,τ)

A(s)

K(s)
dF (s) +

A(τ)

K(τ)
(1− F (τ−))

−
∫

[0,t)

1− F (s)

K(s)
dΠ(s)−

∫
[t,τ)

1− F (s)

K(s)
dΠ(s)

Therefore, by Lemma 1.2.27 we have

(1− F (t))
V (t)

K(t)
= −

∫
[0,t]

A(s)

K(s)
dF (s) +

∫
[0,t)

1− F (s)

K(s)
dΠ(s),

and hence the claimed retrospective representation.

1.2.4 The Thiele di�erential equation

We assume there exist non negative, continuous functions k, f, π : R+ → R+ such
that

K(t) = 1 +

∫ t

0

k(s)ds, t ∈ [0, τ),

F (t) =

∫ t

0

f(s)ds, t ∈ [0, τ),

Π(t) =

∫ t

0

π(s)ds t ∈ [0, τ).

Furthermore, we assume that A is continuous on [0, τ). Recall the force of interest

φ(t) =
k(t)

K(t)

and the force of mortality

λ(t) =
f(t)

1− F (t)
.

Theorem 1.2.29. The net premium reserve V satis�es the Thiele di�erential equation{
V ′(t) = φ(t)V (t) + π(t) + λ(t)(V (t)− A(t)), t ∈ [0, τ)
V (0) = 0.
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Proof. By Lemma 1.2.26 we have V (0) = 0, and by Lemma 1.2.28 we have

V (t) =
K(t)

1− F (t)

(
−
∫ t

0

A(s)

K(s)
f(s)ds+

∫ t

0

1− F (s)

K(s)
π(s)ds

)
.

For the function

W (t) :=
K(t)

1− F (t)
, t ∈ [0, τ)

we obtain

W ′(t) =
(1− F (t))k(t) +K(t)f(t)

(1− F (t))2
=

k(t)

1− F (t)
+

K(t)f(t)

(1− F (t))2

=
k(t)

K(t)
W (t) +

f(t)

1− F (t)
W (t) = φ(t)W (t) + λ(t)W (t).

Therefore

V ′(t) = φ(t)V (t) + λ(t)V (t) +
K(t)

1− F (t)

(
− A(t)

K(t)
f(t) +

1− F (t)

K(t)
π(t)

)
= φ(t)V (t) + λ(t)V (t)− λ(t)A(t) + π(t).

Proposition 1.2.30. The Thiele di�erential equation has the unique solution

V (t) =

∫ t

0

(π(s)− λ(s)A(s)) exp

(∫ t

s

(φ(u) + λ(u))du

)
ds.

Proof. Exercise.

De�nition 1.2.31.

(a) We call

πs(t) = V ′(t)− φ(t)V (t)

the savings component.

(b) We call

πr(t) = (A(t)− V (t))λ(t)

the risk component.
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Remark 1.2.32. Then we have the decomposition

π(t) = πs(t) + πr(t).

Remark 1.2.33. Suppose that A(τ) = 0. The continuous analogue of De�nition
1.2.23 is

πnat(s) := λ(s)A(s) =
f(s)

1− F (s)
A(s).

By Lemma 1.2.27 for all t ∈ [0, τ) we have

V (t) =
K(t)

1− F (t)

(∫ τ

t

A(s)

K(s)
f(s)ds−

∫ τ

t

1− F (s)

K(s)
πnat(s)ds

)
= 0.

Therefore V = V ′ = 0, and we obtain

πnat(t) = A(t)λ(t) = πr(t).

1.2.5 The Thiele integral equation

Recall the accumulated force of mortality

Λ(t) =

∫
[0,t]

1

1− F (s−)
dF (s).

Theorem 1.2.34. The net premium reserve V satis�es the Thiele integral equation

V (t)

K(t)
=

∫
[0,t)

1

K(s)
dΠ(s)−

∫
(0,t]

A(u)− V (u)

K(u)
dΛ(u), t ∈ [0, τ).

Proof. See [BOS17, Satz 2.83].

Remark 1.2.35. Under the assumption of the previous section we obtain the Thiele
di�erential equation from Theorem 1.2.29.

Proof. Exercise.



Chapter 2

Hattendorf's theorem

2.1 Net single premium and the variance of the present

value

Lemma 2.1.1. Let X be a random variable and let f, g : R→ R be two measurable,
increasing functions such that f(X), g(X) ∈ L 1. Then f(X)g(X) is quasi-integrable
and

E[f(X)]E[g(X)] ≤ E[f(X)g(X)] ∈ (−∞,∞].

Proof. By the monotonicity of f and g we have(
f(y)− f(x)

)(
g(y)− g(x)

)
≥ 0 for all x, y ∈ R.

Therefore

E
[(
f(y)− f(X)

)(
g(y)− g(X)

)]
≥ 0 for all y ∈ R.

Hence, we have

f(y)g(y)− f(y)E[g(X)]− g(y)E[f(X)] + E[f(X)g(X)] ≥ 0 for all y ∈ R.

This shows the quasi-integrability of f(X)g(X) with E[f(X)g(X)] ∈ (−∞,∞] and

f(X)g(X)− f(X)E[g(X)]− g(X)E[f(X)] + E[f(X)g(X)] ≥ 0,

and hence by taking expectation again

2E[f(X)g(X)]− 2E[f(X)]E[g(X)] ≥ 0.

19
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Proposition 2.1.2. Suppose the function A/K is decreasing. Then for a net premium
function Π the following statements are equivalent:

(i) Var[B] is minimal under all net premium functions.

(ii) Π is a net single premium.

Proof. Let Π be a net premium function. We de�ne

Ā(t) :=
A(t)

K(t)
, Π̄(t) :=

∫
[0,t)

1

K(s)
dΠ(s).

Since K(0) = 1, we have Ā(t) ≤ A(0) for all t ∈ R+. Hence Ā(Y ) is a bounded
random variable, and hence in particular Var[Ā(Y )] < ∞. Now we distinguish two
cases:

• Var[Π̄(Y )] =∞. Then we have

Var[B] = Var[Ā(Y )− Π̄(Y )] =∞.

Indeed, otherwise we would have B ∈ L 2, which leads to the contradiction
Π̄(Y ) ∈ L 2.

• Var[Π̄(Y )] <∞. Then we have

Var[B] = Var[Ā(Y )− Π̄(Y )]

= Var[Ā(Y )]− 2Cov(Ā(Y ), Π̄(Y )) + Var[Π̄(Y )].

If Π is a net single premium, then Π̄(Y ) = Π(0) is deterministic, and we obtain

Var[B] = Var[Ā(Y )].

Now, we suppose that Π is not a net single premium. The function Π̄ is increas-
ing, and by hypothesis the function −Ā is increasing as well. By Lemma 2.1.1
we obtain

Cov(Ā(Y ), Π̄(Y )) = E[Ā(Y )Π̄(Y )]− E[Ā(Y )]E[Π̄(Y )]

= E[−Ā(Y )]E[Π̄(Y )]− E[−Ā(Y )Π̄(Y )] ≤ 0.

Therefore, we have

Var[Ā(Y )] ≤ Var[B].

Remark 2.1.3. For a constant payment spectrum A the function A/K is decreasing.
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2.2 Martingales

Let (Ω,F ,P) be a probability space.

De�nition 2.2.1. A family F = (Ft)t∈R+ of sub-σ-algebras of F is called a �ltration
if Fs ⊂ Ft for all 0 ≤ s ≤ t <∞.

Let F = (Ft)t∈R+ be a �ltration.

De�nition 2.2.2. A stochastic process X is called adapted if for each t ∈ R+ the
random variable Xt is Ft-measurable.

De�nition 2.2.3. Let X be an adapted process such that Xt ∈ L 1 for all t ∈ R+.

(a) X is called a martingale if

E[Xt |Fs] = Xs P-almost surely for all 0 ≤ s ≤ t <∞.

(b) X is called a submartingale if

E[Xt |Fs] ≥ Xs P-almost surely for all 0 ≤ s ≤ t <∞.

(c) X is called a supermartingale if

E[Xt |Fs] ≤ Xs P-almost surely for all 0 ≤ s ≤ t <∞.

De�nition 2.2.4. A martingale M is called square-integrable if Mt ∈ L 2 for all
t ∈ R+.

Lemma 2.2.5. Let M be a square-integrable martingale. Then we have

Cov(Mt −Ms,Mv −Mu) = 0 for all 0 ≤ s ≤ t ≤ u ≤ v <∞.

Proof. We have

Cov(Mt −Ms,Mv −Mu) = E[(Mt −Ms)(Mv −Mu)]

= E[E[(Mt −Ms)(Mv −Mu) |Fu]]

= E[(Mt −Ms)E[Mv −Mu |Fu]︸ ︷︷ ︸
=0

] = 0.

Lemma 2.2.6. Let M be a square-integrable martingale. Then we have

E[(Mt −Ms)
2] = E[M2

t −M2
s ] for all 0 ≤ s ≤ t <∞.
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Proof. We have

E[(Mt −Ms)
2 |Fs] = E[M2

t − 2MtMs +M2
s |Fs]

= E[M2
t |Fs]− 2MsE[Mt |Fs] + E[M2

s |Fs]

= E[M2
t |Fs]− 2M2

s +M2
s = E[M2

t −M2
s |Fs],

and hence

E[(Mt −Ms)
2] = E[E[(Mt −Ms)

2 |Fs]] = E[E[M2
t −M2

s |Fs]] = E[M2
t −M2

s ].

2.3 Hattendorf's theorem

Recall that Y = min{T, τ}.

De�nition 2.3.1. We de�ne the process

N := 1[[Y,∞[[.

Remark 2.3.2. Then we have

Nt = 1[[Y,∞[[(t) = 1{Y≤t} = 1[0,t](Y )

for all t ∈ R+.

De�nition 2.3.3. We de�ne the canonical �ltration (Ft)t∈R+ as

Ft := σ(Ns : s ∈ [0, t]), t ∈ R+.

Remark 2.3.4. Then we have

Ft = σ({Y ≤ s} : s ∈ [0, t]) = σ(min{Y, t}) ∨ {Y = t}, t ∈ R+.

Hence, the �ltration contains at time t precisely the information, required in order to
decide whether (and, if applicable, when) Y has occurred until time t or not.

De�nition 2.3.5. The accumulated force of mortality for Y is given by

ΛY (t) :=

∫
(0,t]

1

1− FY (u−)
dFY (u).

If Y is absolutely continuous with density fY , then we de�ne the force of mortality

λY (t) :=
fY (t)

1− FY (t)
.
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Lemma 2.3.6. The following statements are equivalent:

(i) We have limt↑τ ΛY (t) =∞.

(ii) We have either τ =∞ or both τ <∞ and FY (τ−) = 1.

Proof. Exercise

Let us brie�y consider the situation τ < ∞ and FY (τ−) = 1. Then we have
τ = tmax. Indeed, since τ ∈ (0, tmax] we have τ ≤ tmax. Moreover, we have

P(T > τ) ≤ P(min{T, τ} = τ) = P(Y = τ)

= 1− P(Y < τ) = 1− FY (τ−) = 0,

and it follows

tmax = sup{t ∈ R+ : P(T > t) > 0} ≤ τ.

Therefore τ is the maximal future lifetime. Hence, it is intuitively clear that for t ↑ τ
the accumulated force of mortality at time t tends to ∞.

Remark 2.3.7. Recall that

FY = F1[0,τ) + 1[τ,∞)

and

FY (ds) = 1[0,τ)(s)F (ds) + (1− F (τ−))δτ (ds)

= 1[0,τ)(s)F (ds) + (1− FY (τ−))δτ (ds).

Lemma 2.3.8. If τ <∞, then we have

∆ΛY (τ) =

{
1, falls F (τ−) < 1,

0, falls F (τ−) = 1.

Proof. We have ∆FY (τ) = 1− F (τ−) and

∆ΛY (τ) = lim
h↓0

(
ΛY (τ)− ΛY (τ − h)

)
= lim

h↓0

∫
(τ−h,τ ]

1

1− FY (u−)
dFY (u)

=

∫
{τ}

1

1− FY (u−)
dFY (u).

Remark 2.3.9. From now on, we assume that F (τ−) < 1, provided that τ <∞.
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Lemma 2.3.10. Let A ⊂ (s,∞) be an interval for some s ∈ [0, τ). Then we have

P(Y ∈ A |Fs) =
P(Y ∈ A)

1− FY (s)
1{Y >s} P-almost surely.

Proof. The random variable on the right-hand side is Fs-measurable. The system

Gs = {{Y > r} : r ∈ [0, s]}

is a ∩-stable system such that Fs = σ(Gs). Moreover, for each r ∈ [0, s] we have

E
[
P(Y ∈ A)

1− FY (s)
1{Y >s}1{Y >r}

]
=

P(Y ∈ A)

P(Y > s)
P({Y > r} ∩ {Y > s})

= P(Y ∈ A) = E[1{Y ∈A}1{Y >r}],

since by hypothesis A ⊂ (s,∞) ⊂ (r,∞), and hence

{Y ∈ A} ∩ {Y > r} = {Y ∈ A}.

De�nition 2.3.11. We de�ne the process M as

Mt := Nt −
∫

[[0,t∧Y ]]

dΛY (u), t ∈ R+.

Here we call the process(∫
[[0,t∧Y ]]

dΛY (u)

)
t∈R+

=

(∫
[[0,t∧Y ]]

1

1− FY (u−)
dFY (u)

)
t∈R+

the compensator of N .

Within the general semimartingale theory of stochastic processes, this process is
the predictable compensator Np.

Remark 2.3.12. For all t ∈ R+ we have∫
[[0,t∧Y ]]

dΛY (u) =

∫
[0,t]

1[[0,Y ]](u)dΛY (u)

=

∫
[0,t]

1[u,∞)(Y )dΛY (u) =

∫
[0,t]

1{u≤Y }dΛY (u).

If Y is absolutely continuous with density fY , then we have∫
[[0,t∧Y ]]

dΛY (u) =

∫
[[0,t∧Y ]]

λY (u)du.
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Proposition 2.3.13.

(a) M is a right-continuous martingale with M0 = 0 and Mt = MY for all t ≥ Y .

(b) If τ <∞, then M is continuous at τ .

Proof.

(a) Since Y > 0 and F (0) = 0, we have

M0 = 1{0}(Y )− ΛY ({0}) = 0.

Moreover, for t ≥ Y we have

Nt = 1 = NY and∫
[[0,t∧Y ]]

dΛY (u) =

∫
[[0,Y ]]

dΛY (u),

and hence Mt = MY .

It is clear that M is an adapted process. Furthermore, we have Mt ∈ L 1 for all
t ∈ R+. Indeed, we have

E[|Mt|] ≤ E[1[0,t](Y )] + E[ΛY (Y ∧ t)]

= P(Y ∈ [0, t]) + E
[ ∫

[0,t]

1[[0,Y ]](u)dΛY (u)

]
= FY (t) +

∫
[0,t]

P(Y ≥ u)
1

1− FY (u−)
dFY (u)

= FY (t) + FY (t) = 2FY (t) ≤ 2.

If τ < ∞, then we have Mt = Mτ for all t ≥ τ . Hence, it su�ces to show that
E[Mt |Fs] = Ms P-almost surely for all 0 ≤ s < t < ∞ with t ≤ τ . Using
Fubini's theorem for conditional expectations we obtain P-almost surely

E[Mt |Fs] = E[Nt |Fs]− E
[ ∫

[[0,t∧Y ]]

dΛY (u)
∣∣∣Fs

]
= E[1[0,t](Y ) |Fs]−

∫
[0,t]

E[1[u,∞)(Y ) |Fs]dΛY (u)

= 1[0,s](Y )−
∫

[0,s]

1[u,∞)(Y )dΛY (u)

+ E[1(s,t](Y ) |Fs]−
∫

(s,t]

E[1[u,∞)(Y ) |Fs]dΛY (u)

= Ms + P(Y ∈ (s, t] |Fs)−
∫

(s,t]

P(Y ∈ [u,∞) |Fs)dΛY (u).
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Using Lemma 2.3.10 two times yields P-almost surely∫
(s,t]

P(Y ∈ [u,∞) |Fs)dΛY (u) =

∫
(s,t]

P(Y ∈ [u,∞))

1− FY (s)
1{Y >s}dΛY (u)

= 1{Y >s}

∫
(s,t]

1− FY (u−)

1− FY (s)

1

1− FY (u−)
dFY (u)

=
P(Y ∈ (s, t])

P(Y > s)
1{Y >s} = P(Y ∈ (s, t] |Fs).

The right-continuity of the martingale M immediately follows from De�nition
2.3.11.

(b) Suppose τ <∞. We set

Np
t :=

∫
[[0,t∧Y ]]

dΛY (u), t ∈ R+.

Then we have M = N − Np. By De�nition 2.3.1 we also have N = 1[[Y,∞[[. If
Y < τ , then we have ∆Nτ = ∆Np

τ = 0, and hence ∆Mτ = 0. If Y = τ , then
we have ∆Nτ = 1. Since FY (τ−) < 1, by Lemma 2.3.8 we obtain ∆ΛY (τ) = 1.
Therefore ∆Mτ = 0.

In the proof of Proposition 2.3.13 we have used:

Proposition 2.3.14 (Fubini's theorem for conditional expectations). Let (Ω,F ,P)
be a probability space, and let (X,X , µ) be a �nite measure space. Let f : (Ω×X,F⊗
X ) → R+ be a product-measurable, non-negative, bounded function. Furthermore,
let G ⊂ F be a sub-σ-algebra, and let g : (Ω × X,G ⊗ X ) → R+ be a product-
measurable, non-negative, bounded function such that for each x ∈ X the mapping
g(·, x) : (Ω,G ) → R+ is a version of the conditional expectation E[f(·, x) |G ]. Then
we have

E
[ ∫

X

f(·, x)µ(dx)

∣∣∣∣G ] =

∫
X

g(·, x)µ(dx) P-almost surely.

Proof. By Fubini's theorem the mapping∫
X

f(·, x)µ(dx) : Ω→ R+

is bounded and F -measurable, and the mapping∫
X

g(·, x)µ(dx) : Ω→ R+
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is bounded and G -measurable. Furthermore, for every non-negative G -measurable
random variable Z : Ω→ R+ we have by Fubini's theorem

E
[
Z

∫
X

f(·, x)µ(dx)

]
=

∫
X

E[Zf(·, x)]µ(dx)

=

∫
X

E[Zg(·, x)]µ(dx) = E
[
Z

∫
X

g(·, x)µ(dx)

]
.

Remark 2.3.15. In the proof of Proposition 2.3.13 we have used Fubini's theorem
for conditional expectations (Proposition 2.3.14) for 0 ≤ s < t <∞ with

(X,X , µ) = ((s, t],B((s, t]),ΛY (du)),

f(·, u) = 1[u,∞)(Y ),

G = Fs

g(·, u) =
P(Y ∈ [u,∞))

1− FY (s)
1{Y >s},

and so we have obtained

E
[ ∫

(s,t]

1[u,∞)(Y )dΛY (u) |Fs

]
=

∫
(s,t]

P(Y ∈ [u,∞))

1− FY (s)
1{Y >s}dΛY (u) P-almost surely.

Example 2.3.16. We assume that τ = ∞ and T ∼ Exp(1) (whole life insurance).
Then we also have Y ∼ Exp(1), and for all t ∈ R+ we have

FY (t) = 1− exp(−t),
fY (t) = exp(−t),

λY (t) =
fY (t)

1− FY (t)
=

exp(−t)
1− (1− exp(−t))

= 1.

Therefore, by Remark 2.3.12 we have

Mt = 1[[Y,∞[[(t)−
∫

[[0,t∧Y ]]

du

= 1[[Y,∞[[(t)−
(
t1[[0,Y [[(t) + Y 1[[Y,∞[[(t)

)
= −t1[[0,Y [[(t) + (1− Y )1[[Y,∞[[(t).
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In coincidence with Proposition 2.3.13 for each t ∈ R+ we have

E[Mt] = E
[
− t1[[0,Y [[(t) + (1− Y )1[[Y,∞[[(t)

]
= −tP(Y > t) + E[(1− Y )1[0,t](Y )]

= −t exp(−t) +

∫ t

0

(1− u) exp(−u)du

= −t exp(−t) +
(

1− exp(−t)
)

+
(
t exp(−t) + exp(−t)− 1

)
= 0.

Example 2.3.17. We assume that τ =∞ and that T has a discrete distribution with

P(T = 1) = P(T = 2) =
1

2
.

Then we have

FY =
1

2
1[1,2) + 1[2,∞),

and it follows

Mt = 1[[Y,∞[[(t)−
∫

[[0,t∧Y ]]

1

1− FY (u−)
dFY (u)

= 1[[Y,∞[[(t)−
(

1

2
1[1,∞)(t ∧ Y ) + 1[2,∞)(t ∧ Y )

)
= 1[[Y,∞[[(t)−

(
1

2
1[1,∞)(t) + 1[2,∞)(t)1{Y=2}

)
=

1

2

(
1{Y=1} − 1{Y=2}

)
1[1,∞)(t).

Here we also see that

E[Mt] = 0 for all t ∈ R+.

Proposition 2.3.18. M is a square-integrable martingale, and we have

E[(Mt −Ms)
2] =

∫
(s,t]

(1−∆ΛY (u))dFY (u) for all 0 ≤ s ≤ t <∞.

Proof. We have

Mt = 1{Y≤t} −
∫

(0,t]

1{u≤Y }dΛY (u).
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Hence, by Fubini's theorem we have

E[(Mt −Ms)
2] = E

[(
1{s<Y≤t} −

∫
(s,t]

1{u≤Y }dΛY (u)

)2
]

= E
[
1{s<Y≤t}

]
− 2E

[ ∫
(s,t]

1{s<Y≤t}1{u≤Y }dΛY (u)

]
+ E

[ ∫
(s,t]

∫
(s,t]

1{u≤Y }1{v≤Y }dΛY (u)dΛY (v)

]
= FY (t)− FY (s)− 2

∫
(s,t]

P(Y ∈ [u, t])dΛY (u)

+

∫
(s,t]

∫
(s,t]

P(Y ≥ max{u, v})dΛY (u)dΛY (v).

Using Fubini's theorem we obtain∫
(s,t]

∫
(s,t]

P(Y ≥ max{u, v})dΛY (u)dΛY (v)

=

∫
(s,t]

∫
(s,v]

P(Y ≥ v)dΛY (u)dΛY (v) +

∫
(s,t]

∫
(v,t]

P(Y ≥ u)dΛY (u)dΛY (v)

=

∫
(s,t]

∫
[u,t]

P(Y ≥ v)dΛY (v)dΛY (u) +

∫
(s,t]

∫
(v,t]

P(Y ≥ u)dΛY (u)dΛY (v)

=

∫
(s,t]

∫
[u,t]

P(Y ≥ v)dΛY (v)dΛY (u) +

∫
(s,t]

∫
[u,t]

P(Y ≥ v)dΛY (v)dΛY (u)

−
∫

(s,t]

∫
{u}

P(Y ≥ v)dΛY (v)dΛY (u)

= 2

∫
(s,t]

∫
[u,t]

(1− FY (v−))dΛY (v)dΛY (u)−
∫

(s,t]

(1− FY (u−))∆ΛY (u)dΛY (u).

Now, we show that both integrals are �nite. Since

ΛY (dv) =
1

1− FY (v−)
dFY (v),

we have ∫
(s,t]

∫
[u,t]

(1− FY (v−))dΛY (v)dΛY (u) =

∫
(s,t]

∫
[u,t]

dFY (v)dΛY (u)

=

∫
(s,t]

P(Y ∈ [u, t])dΛY (u) =

∫
(s,t]

FY (t)− FY (u−)

1− FY (u−)
dFY (u) ≤ 1.
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Since

∆ΛY (u) =
∆FY (u)

1− FY (u−)
=
FY (u)− FY (u−)

1− FY (u−)
≤ 1,

we also have∫
(s,t]

(1− FY (u−))∆ΛY (u)dΛY (u) =

∫
(s,t]

∆ΛY (u)dFY (u) ≤ 1.

Furthermore, it follows∫
(s,t]

P(Y ∈ [u, t])dΛY (u) =

∫
(s,t]

FY (t)− FY (u−)

1− FY (u−)
dFY (u),

showing in particular that this integral is �nite. We obtain E[(Mt −Ms)
2] <∞ with

E[(Mt −Ms)
2] = FY (t)− FY (s)− 2

∫
(s,t]

FY (t)− FY (u−)

1− FY (u−)
dFY (u)

+ 2

∫
(s,t]

FY (t)− FY (u−)

1− FY (u−)
dFY (u)−

∫
(s,t]

∆ΛY (u)dFY (u)

=

∫
(s,t]

(1−∆ΛY (u))dFY (u).

A continuous linear operator T ∈ L(X, Y ) between two normed spaces X and Y
is called an isometry if

‖Tx‖ = ‖x‖ for all x ∈ X.

If X and Y are Hilbert spaces, then T ∈ L(X, Y ) is an isometry if and only if

〈Tx, Ty〉 = 〈x, y〉 for all x, y ∈ X.

If E ⊂ X is a dense subspace and T ∈ L(X, Y ) is a continuous linear operator such
that

‖Tx‖ = ‖x‖ for all x ∈ E ,

then T is an isometry. Indeed, for all x ∈ X there exists a sequence (xn)n∈N ⊂ E such
that xn → x, and we obtain

‖Tx‖ =
∥∥∥T( lim

n→∞
xn

)∥∥∥ =
∥∥∥ lim
n→∞

Txn

∥∥∥ = lim
n→∞

‖Txn‖ = lim
n→∞

‖xn‖ = ‖x‖.
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Proposition 2.3.19. For every f ∈ L 2(R+,B(R+), (1−∆ΛY )dFY ) we have

E

[(∫
R+

f(u)dMu

)2
]

=

∫
R+

f(u)2(1−∆ΛY (u))dFY (u).

In other words, the linear mapping

I : L2(R+,B(R+), (1−∆ΛY )dFY )→ L2(Ω,F ,P), I(f) =

∫
R+

f(u)dMu

is an isometry between Hilbert spaces.

Proof. Let E be the space of all simple functions

f =
n∑
j=1

cj1(tj ,tj+1]

with n ∈ N, c1, . . . , cn ∈ R and 0 ≤ t1 < . . . < tn+1. Since E is dense in

L2(R+,B(R+), (1−∆ΛY )dFY ),

it su�ces to prove that I is an isometry on E . Thus, let f ∈ E be arbitrary. Using
Lemma 2.2.5 and Proposition 2.3.18 we obtain

E

[(∫
R+

f(u)dMu

)2
]

= E

[( n∑
j=1

cj(Mtj+1
−Mtj)

)2
]

=
n∑
j=1

n∑
k=1

cjckE[(Mtj+1
−Mtj)(Mtk+1

−Mkl)] =
n∑
j=1

c2
jE[(Mtj+1

−Mtj)
2]

=
n∑
j=1

c2
j

∫
(tj ,tj+1]

(1−∆ΛY (u))dFY (u) =

∫
R+

n∑
j=1

c2
j1(tj ,tj+1](u)(1− ΛY (u))dFY (u)

=

∫
R+

f(u)2(1−∆ΛY (u))dFY (u).

Remark 2.3.20. One can show that the predictable quadratic variation 〈M,M〉 is
given by

〈M,M〉t =

∫
(0,t]

(1−∆ΛY (u))dFY (u), t ∈ R+.

Hence, Proposition 2.3.19 con�rms the well-known Itô isometry

E

[(∫ t

0

HsdMs

)2
]

= E
[ ∫ t

0

H2
sd〈M,M〉s

]
, t ∈ R+.
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The present value of a LIP was de�ned as

B =
A(Y )

K(Y )
−
∫

[[0,Y [[

1

K(s)
dΠ(s),

and by the equivalence principle we have E[B] = 0. From now on, we always assume
that

E
[
A(Y )

K(Y )

]
<∞.

De�nition 2.3.21. The loss of the insurance company until time t ∈ R+ is de�ned
as

L(t) := E[B |Ft].

Remark 2.3.22. Hence, the loss is the conditional expected present value, given the
information whether the time of bene�t Y has occurred until time t or not.

Proposition 2.3.23. For every t ∈ R+ we have P-almost surely

L(t) =

(
A(Y )

K(Y )
−
∫

[[0,Y [[

1

K(s)
dΠ(s)

)
1{Y≤t} +

(
V (t)

K(t)
−
∫

[0,t)

1

K(s)
dΠ(s)

)
1{Y >t}.

Proof. Exercise.

Remark 2.3.24. Noting the de�nition of the present value, Proposition 2.3.23 pro-
vides an intuitive characterization of the loss until time t. More precisely:

• If t ≥ Y , which means that the time of bene�t has already occurred, then we
obtain the well-known de�nition of the present value.

• If t < Y , which means that the time of bene�t is in the future, then we obtain
an analogous representation where Y is replaced by t. Furthermore, the payment
spectrum A is replaced by the net premium reserve V . Intuitively, this is clear,
since the time of bene�t has not yet occurred, and has to be covered by the
insurance company.

Remark 2.3.25. L is a martingale with L(0) = 0 and limt→∞ L(t) = B P-almost
surely.

The martingale L according to De�nition 2.3.21 is determined P-almost surely for
every time point t. From the theory of stochastic processes it is known that L admits
a càdlàg (and hence in particular a right-continuous) version. In the current situation
we can explicitly write down such a version.
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Proposition 2.3.26. For every t ∈ R+ we have the representation

L(t) =

∫
(0,t]

A(u)− V (u)

K(u)
dMu P-almost surely.

In particular, L has a right-continuous version.

Proof. We have∫
(0,t]

A(u)− V (u)

K(u)
dMu =

∫
(0,t]

A(u)− V (u)

K(u)
dNu −

∫
]]0,t∧Y ]]

A(u)− V (u)

K(u)
dΛY (u)

=
A(Y )− V (Y )

K(Y )
1[[Y,∞[[(t)−

∫
]]0,t∧Y ]]

A(u)− V (u)

K(u)
dΛY (u)

=

(
A(Y )

K(Y )
− V (Y )

K(Y )
−
∫

]]0,Y ]]

A(u)− V (u)

K(u)
dΛY (u)

)
1{Y≤t}

−
(∫

(0,t]

A(u)− V (u)

K(u)
dΛY (u)

)
1{Y >t}.

Therefore, by Proposition 2.3.23 we have to show(
A(Y )

K(Y )
−
∫

[[0,Y [[

1

K(s)
dΠ(s)

)
1{Y≤t}

=

(
A(Y )

K(Y )
− V (Y )

K(Y )
−
∫

]]0,Y ]]

A(u)− V (u)

K(u)
dΛY (u)

)
1{Y≤t}

⇐⇒
(∫

[[0,Y [[

1

K(s)
dΠ(s)

)
1{Y≤t} =

(
V (Y )

K(Y )
+

∫
]]0,Y ]]

A(u)− V (u)

K(u)
dΛY (u)

)
1{Y≤t}

and (
V (t)

K(t)
−
∫

[0,t)

1

K(s)
dΠ(s)

)
1{Y >t} = −

(∫
(0,t]

A(u)− V (u)

K(u)
dΛY (u)

)
1{Y >t}

Thus, we have to show

V (Y ∧ t)
K(Y ∧ t)

=

∫
[[0,Y ∧t[[

1

K(s)
dΠ(s)−

∫
]]0,Y ∧t]]

A(u)− V (u)

K(u)
dΛY (u).

By the Thiele integral equation (Theorem 1.2.34) we have

V (t)

K(t)
=

∫
[0,t)

1

K(s)
dΠ(s)−

∫
(0,t]

A(u)− V (u)

K(u)
dΛ(u), t ∈ [0, τ).

In case τ <∞ we also notice:
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• By Proposition 2.3.13(b) the martingale M is continuous in τ . Therefore, the
right-hand side of the claimed equation is continuous in τ .

• L is continuous in τ . This follows from the representation in Proposition 2.3.23
as well as Lemma 1.2.27.

Finally, the claimed right-continuity follows from the right-continuity ofM ; see Propo-
sition 2.3.13(a).

De�nition 2.3.27. Let (ti)i∈N0 be a sequence with t0 = 0 and ti−1 < ti for all i ∈ N.
Here ti−1 < ti are the time points at the beginning and at the end of insurance periods.
We set

Li := L(ti)− L(ti−1), i ∈ N

for the loss at the ith period of insurance.

Theorem 2.3.28 (Hattendorf's theorem). For the loss of a LIP under the equivalence
principle we have

E[L(t)] = 0 for all t ∈ R+ and

E[Li] = 0 for all i ∈ N.

If furthermore∫
[0,t]

(
A(u)− V (u)

K(u)

)2

(1−∆ΛY (u))dFY (u) <∞ for all t ∈ R+,

then the following statements are true:

(a) We have E[Lj+1 |Ftj ] = 0.

(b) We have Cov(Lj, Lk) = 0 for all j, k ∈ N with j 6= k.

(c) For the variance of the loss we have

Var[L(t)] =

∫
[0,t]

(
A(u)− V (u)

K(u)

)2

(1−∆ΛY (u))dFY (u), t ∈ R+.

(d) For the variance of the present value we have

Var[B] =

∫
[0,∞)

(
A(u)− V (u)

K(u)

)2

(1−∆ΛY (u))dFY (u) ∈ [0,∞].
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Proof. By Remark 2.3.25 the process L is a martingale, and hence the �rst two
identities follow. Now assume that the integrability condition holds true as well.

(a) Follows, because L is a martingale.

(b) Follows with Lemma 2.2.5, because L is a square-integrable martingale.

(c) By Proposition 2.3.26 we have

L(t) =

∫
(0,t]

A(u)− V (u)

K(u)
dMu, t ∈ R+.

Hence, the claimed formula follows from Proposition 2.3.19 with the function

f(u) =
A(u)− V (u)

K(u)
1[0,t].

(d) By Proposition 2.3.26 and Remark 2.3.25 we have P-almost surely

B = lim
t→∞

L(t) =

∫
R+

A(u)− V (u)

K(u)
dMu.

Hence, the claimed formula follows from Proposition 2.3.19 with the function

f(u) =
A(u)− V (u)

K(u)
.

Remark 2.3.29. Hence the total variance of the loss can be decomposed as the sum
of the variances of the single insurance periods.



Chapter 3

Static models

When using static models, we model the total loss for a �xed period, say one year,
from the point of view of the insurance company.

3.1 Models for the total loss in an insurance period

Let (Ω,F ,P) be a probability space.

3.1.1 Individual model

We consider a portfolio with n ∈ N insured risks (insurance polices). Let Y1, . . . , Yn :
Ω→ R+ be independent, non-negative random variables. Here Yi is the (random) loss
of the i-th police.

De�nition 3.1.1. The total loss of the portfolio in the individual model is given by

Sind :=
n∑
i=1

Yi.

Remark 3.1.2. Because of the independence we have

P ◦ (Y1, . . . , Yn) = (P ◦ Y1)⊗ . . .⊗ (P ◦ Yn).

3.1.2 Collective model

Let (Xi)i∈N be a sequence of positive random variables Xi : Ω→ (0,∞). Furthermore,
let N : Ω→ N0 be an integer-valued random variable.

36
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De�nition 3.1.3. The total loss in the collective model is given by

Skoll :=
N∑
i=1

Xi.

Remark 3.1.4. The random variables X1, . . . , XN > 0 are the losses occurring in
the insurance period; the number N ∈ N0 of losses is now random. Here, the losses
are no longer associated to individual polices.

De�nition 3.1.5. We speak of a standard model of collective risk theory if the ran-
dom variables (Xi)i∈N are independent and identically distributed with X1 ∈ L 1 and
FX1(0) = 0, and the random variable N is independent of the sequence (Xi)i∈N.

3.1.3 Models for the loss distribution

In order to model the distributions of the losses Xi one frequently uses absolutely
continuous distributions with unimodal densities on (0,∞).

De�nition 3.1.6. A function f : (0,∞) → R+ is called unimodal with mode at
x ∈ (0,∞) if f is strictly increasing on (0, x), and strictly decreasing on (x,∞).

Here are some important loss distributions.

Example 3.1.7. The Gamma distribution Γ(α, β) for α, β > 0 has the density

f(x) =
βα

Γ(α)
xα−1e−βx, x > 0,

where

Γ(α) =

∫ ∞
0

tα−1e−tdt.

We have:

• For α ≤ 1 the density f is decreasing.

• For α > 1 the density f is unimodal with mode at

α− 1

β
.

• Γ(1, β) = Exp(β).

We call α the shape parameter and β the scale parameter.
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Example 3.1.8. The Weibull distribution WB(c, τ) for c, τ > 0 has the density

f(x) = cτxτ−1e−cx
τ

, x > 0.

We have:

• For τ ≤ 1 the density f is decreasing.

• For τ > 1 the density f is unimodal with mode at(
τ − 1

cτ

)1/τ

.

• WB(c, 1) = Exp(c).

We call τ the shape parameter and c the scale parameter.

Example 3.1.9. The Log-Normal distribution LN(µ, σ2) for µ ∈ R and σ2 > 0 has
the density

f(x) =
1√

2πσ2x
exp

(
− (lnx− µ)2

2σ2

)
, x > 0.

We have:

• f is always unimodal with mode at eµ.

• For X ∼ LN(µ, σ2) we have lnX ∼ N(µ, σ2).

Example 3.1.10. The Log-Gamma distribution LΓ(α, β) for α, β > 0 has the density

f(x) =
βα

Γ(α)
(lnx)α−1x−(β+1)

1(1,∞)(x), x > 0.

We have:

• For X ∼ LΓ(α, β) we have lnX ∼ Γ(α, β).

Example 3.1.11. The Burr distribution Burr(α, τ, σ) for α, τ, σ > 0 has the density

f(x) =
ατ

σ

(x
σ

)τ−1
(

1 +
(x
σ

)τ)−(α+1)

, x > 0.

We have:

• For τ ≥ 1 the density f is decreasing.
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• For τ < 1 the density f is unimodal.

• The distribution function is given by

F (x) = 1−
(

1 +
(x
σ

)τ)−α
, x > 0.

Example 3.1.12. The Pareto distribution (type I) Par(κ, α) for κ, α > 0 has the
density

f(x) =
ακα

xα+1
1[κ,∞)(x), x > 0.

We have:

• The distribution function is given by

F (x) =

(
1− κα

xα

)
1[κ,∞)(x), x > 0.

• For α > 1 and X ∼ Par(κ, α) we have

E[X] =
ακ

α− 1
.

3.1.4 Models for the distribution of the number of losses

The following models are popular for the distribution of the number N of losses.

Example 3.1.13. The Binomial distribution Bi(n, p) with parameters n ∈ N and
p ∈ [0, 1] is speci�ed by the stochastic vector

π(k) =

(
n

k

)
pk(1− p)n−k, k = 0, . . . , n.

We have Bi(1, p) = Ber(p).

Example 3.1.14. The Poisson distribution Pois(λ) with parameter λ > 0 is speci�ed
by the stochastic vector

π(k) = e−λ
λk

k!
, k ∈ N0.
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Remark 3.1.15. By the Poisson limit theorem we have

Bi
(
n,
λ

n

)
w→ Pois(λ) for every λ > 0.

Therefore, we have

Bi(n, p) ≈ Pois(np) for large n ∈ N and small p ∈ (0, 1).

Hence, the Poisson distribution is suitable for large portfolios with small probabilities
of losses.

Example 3.1.16. The negative Binomial distribution NB(β, p) with parameters β >
0 and p ∈ (0, 1) is speci�ed by the stochastic vector

π(k) =

(
β + k − 1

k

)
pβ(1− p)k, k ∈ N0,

where (
β + k − 1

k

)
:=

(β + k − 1)(β + k − 2) · . . . · β
k!

.

We have NB(1, p) = Geo(p).

If β ∈ N, then π(k) is the probability that for independent Bernoulli experiments
k failures occur before the �rst β successes.

3.2 Computation of the loss distribution

3.2.1 Convolutions and generating functions

De�nition 3.2.1. For two probability measures µ and ν on (R,B(R)) the convolution
µ ∗ ν is de�ned as

(µ ∗ ν)(B) :=

∫
R

∫
R
1B(x+ y)µ(dx)ν(dy), B ∈ B(R).

De�nition 3.2.2. Let F and G be two distribution functions. Then the function F ∗G
given by

(F ∗G)(x) =

∫
R
F (x− t)G(dt), x ∈ R

is called the convolution of F and G.
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Lemma 3.2.3. Let µ and ν be two probability measures on (R,B(R)) with distribution
functions F and G. Then the distribution function of µ ∗ ν is given by F ∗G.

Proof. We have

(µ ∗ ν)((−∞, t]) =

∫
R

∫
R
1(−∞,t](x+ y)F (dx)G(dy) =

∫
R

∫
R
1{x+y≤t}F (dx)G(dy)

=

∫
R

∫
R
1{x≤t−y}F (dx)G(dy) =

∫
R
F (t− y)G(dy).

Proposition 3.2.4. Let X and Y be two independent random variables with distri-
bution functions F and G.

(a) The distribution function of X + Y is given by F ∗G.

(b) If X is absolutely continuous with density f , then X+Y is absolutely continuous
with density

h : R→ R+, h(x) =

∫
R
f(x− t)G(dt).

(c) If X and Y are absolutely continuous with densities f and g, then we have

h(x) =

∫
R
f(x− t)g(t)dt =

∫
R
f(t)g(x− t)dt, x ∈ R.

Proof. Exercise.

De�nition 3.2.5. Let µ be a probability measure on (R,B(R)).

(a) We set µ∗0 := δ0.

(b) For every n ∈ N we set

µ∗n := µ ∗ . . . ∗ µ︸ ︷︷ ︸
n times

.

Accordingly we introduce:

De�nition 3.2.6. Let F be a distribution function.

(a) We set F ∗0 := 1R+.
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(b) For every n ∈ N we set

F ∗n := F ∗ . . . ∗ F︸ ︷︷ ︸
n times

.

De�nition 3.2.7. Let X be a random variable with distribution function F .

(a) The function de�ned on MX := {t ∈ R : E[etX ] <∞} and given by

ψX : MX → R+, ψX(t) := E[etX ] =

∫
R
etxF (dx)

is called the moment generating function of X and F respectively.

(b) The function de�ned on M p
X := {t > 0 : E[tX ] <∞} and given by

φX : M p
X → R+, φX(t) := E[tX ] =

∫
R
txF (dx)

is called the probability generating function of X and F respectively.

(c) The function

χX : R→ C, χX(t) := E[eitX ] =

∫
R
eitxF (dx)

is called the characteristic function of X and F respectively.

Remark 3.2.8.

(a) One also calls t 7→ ψX(−t) the Laplace transform of X and F respectively.

(b) The characteristic function is also frequently called the Fourier transform.

Proposition 3.2.9 (Uniqueness theorem).

(a) If MX has an inner point, then ψX uniquely determines F .

(b) If M p
X has an inner point, then φX uniquely determines F .

(c) χX uniquely determines F .

Proof. We prove part (b) in case that X is N0-valued. Then we have

φX(t) =
∞∑
k=0

tkP(X = k) for all t ∈ (0, 1).
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By the geometric series we can extend φX to the interval (−1, 1), and obtain

φ
(n)
X (0) = n!P(X = n) for all n ∈ N0,

and hence

P(X = n) =
φ

(n)
X (0)

n!
for all n ∈ N0,

proving the uniqueness of the distribution of X.

The proof shows why we call φX the probability generating function of X.

Proposition 3.2.10. Let X1, . . . , Xn be independent random variables, and set

Sn :=
n∑
k=1

Xk.

(a) We have

ψSn(t) =
n∏
k=1

ψXk(t), t ∈
n⋂
k=1

MXk .

(b) We have

φSn(t) =
n∏
k=1

φXk(t), t ∈
n⋂
k=1

M p
Xk
.

(c) We have

χSn(t) =
n∏
k=1

χXk(t), t ∈ R.

Proof.

(a) By the independence of the random variables X1, . . . , Xn we have

ψSn(t) = E[etSn ] = E
[ n∏
k=1

etXk
]

=
n∏
k=1

E[etXk ] =
n∏
k=1

ψXk(t).

(b) Exercise.

(c) Exercise.
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Proposition 3.2.11. For X ∼ Γ(α, β) we have

χX(t) =

(
β

β − it

)α
, t ∈ R.

Proposition 3.2.12. For independent random variables X ∼ Γ(α, β) and Y ∼
Γ(ᾱ, β) we have X + Y ∼ Γ(α + ᾱ, β).

Proof. By Proposition 3.2.10(c) and Proposition 3.2.11 we have for all t ∈ R+

χX+Y (t) = χX(t)χY (t) =

(
β

β − it

)α(
β

β − it

)ᾱ
=

(
β

β − it

)α+ᾱ

.

By the uniqueness theorem (Proposition 3.2.9(c)) we deduce X+Y ∼ Γ(α+ᾱ, β).

Proposition 3.2.13. Let N be a N0-valued random variable.

(a) If P ◦N = Bi(n, p), then we have M p
N = (0,∞) and

φN(t) = (1− p+ pt)n.

(b) If P ◦N = Pois(λ), then we have M p
N = (0,∞) and

φN(t) = e−λ(1−t).

(c) If P ◦N = NB(β, p), then we have M p
N = (0,∞) and

φN(t) =

(
1− (1− p)t

p

)−β
.

Proof. Exercise.

3.2.2 Formulas for the distribution of the total loss

We consider a standard model of collective risk theory. Thus, the random variables
(Xi)i∈N ⊂ L 1 are independent and identically distributed, and N is independent of
the sequence (Xi)i∈N. We denote by F the distribution function of X1. The total loss
is given by

Skoll =
N∑
i=1

Xi.

We denote by G the distribution function of Skoll.
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Lemma 3.2.14. We have

G(x) =
∞∑
n=0

F ∗n(x)P(N = n) for all x ∈ R.

Proof. By Proposition 3.2.4(a) we have

G(x) = P(Skoll ≤ x) = P
( N∑

i=1

Xi ≤ x

)
=
∞∑
n=0

P
( n∑

i=1

Xi ≤ x,N = n

)
=
∞∑
n=0

P
( n∑

i=1

Xi ≤ x

)
P(N = n) =

∞∑
n=0

F ∗n(x)P(N = n).

Corollary 3.2.15. If X1 ∼ Γ(α, β), then we have

G(x) =
∞∑
n=0

Γnα,β(x)P(N = n) for all x ∈ R,

where Γ0,β = 1R+ and Γnα,β denotes the distribution function of Γ(nα, β) for each
n ∈ N.

Proof. This is a consequence of Lemma 3.2.14 and Proposition 3.2.12.

Proposition 3.2.16. We have

ψSkoll
(t) = φN(ψX1(t)) for all t ∈Mkoll,

where

Mkoll := {t ∈ R : t ∈MX1 and ψX1(t) ∈M p
N}.

Proof. We set Sn :=
∑n

i=1Xi for all n ∈ N0. Using Proposition 3.2.10(a), we obtain

φN(ψX1(t)) = E
[
ψX1(t)

N
]

=
∞∑
n=0

ψX1(t)
nP(N = n) =

∞∑
n=0

ψSn(t)P(N = n)

=
∞∑
n=0

E[etSn ]E[1{N=n}] =
∞∑
n=0

E[etSn1{N=n}]

= E[etSN ] = E[etSkoll ] = ψSkoll
(t).
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Proposition 3.2.17. We have

φSkoll
(t) = φN(φX1(t)) for all t ∈M p

koll,

where

M p
koll := {t ∈ R : t ∈M p

X1
and φX1(t) ∈M p

N}.

Proof. Exercise.

The following result shows why we call ψX the moment generating function of X.

Proposition 3.2.18. Let X be a random variable such that the moment generating
function ψX exists on some neighborhood of 0.

(a) ψX is in�nitely often di�erentiable in 0, and we have

ψ
(n)
X (0) = E[Xn] for all n ∈ N0.

(b) We have E[X] = ψ′X(0).

(c) We have Var[X] = ψ′′X(0)− (ψ′X(0))2.

Proof.

(a) For all n ∈ N0 we have

ψ
(n)
X (0) =

dn

dtn
E[etX ]

∣∣∣∣
t=0

= E
[
dn

dtn
etX
]∣∣∣∣
t=0

= E[XnetX ]|t=0 = E[Xn],

where the interchange of di�erentiation and integration is valid by Lebesgue's
dominated convergence theorem.

(b) Follows from part (a).

(c) Follows from (a) and the identity Var[X] = E[X2]− E[X]2.

Lemma 3.2.19. Let N be a random variable with values in N0. Then we have

E[N ] =
∞∑
k=1

P(N ≥ k).

Proof. Exercise.
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Theorem 3.2.20 (First Wald's Equation). Let (Xk)k∈N ⊂ L 1 be independent, iden-
tically distributed random variables, and let N ∈ L 1 be a random variable with values
in N0. We assume that {N = n} and (Xk)k≥n+1 are independent for all n ∈ N0, and
set

Sn :=
n∑
k=1

Xk for all n ∈ N0.

Then we have SN ∈ L 1 and

E[SN ] = µE[N ],

where µ = E[X1].

Proof. For each k ∈ N the random variable Xk and the event {N ≥ k} are inde-
pendent. For this, we show that Xk and {N < k} are independent. Indeed, for every
Borel set B ∈ B(R) we have

P(Xk ∈ B,N < k) =
k−1∑
n=0

P(Xk ∈ B,N = n) =
k−1∑
n=0

P(Xk ∈ B)P(N = n)

= P(Xk ∈ B)P(N < k).

Next, we show that SN ∈ L 1. Indeed, by the monotone convergence theorem and
Lemma 3.2.19 we have

E[|SN |] = E

[∣∣∣∣ N∑
k=1

Xk

∣∣∣∣
]
≤ E

[ N∑
k=1

|Xk|
]

= E
[ ∞∑
k=1

|Xk|1{N≥k}
]

=
∞∑
k=1

E[|Xk|1{N≥k}]

=
∞∑
k=1

E[|Xk|]E[1{N≥k}] = E[|X1|]
∞∑
k=1

P(N ≥ k) = E[|X1|]E[N ] <∞.

Now, using Fubini's theorem and Lemma 3.2.19 we obtain

E[SN ] = E
[ N∑
k=1

Xk

]
= E

[ ∞∑
k=1

Xk1{N≥k}

]
=
∞∑
k=1

E[Xk1{N≥k}]

=
∞∑
k=1

E[Xk]E[1{N≥k}] = E[X1]
∞∑
k=1

P(N ≥ k) = E[X1]E[N ].

Lemma 3.2.21. Let F = (Fn)n∈N0 be a �ltration. Furthermore, let (Yk)k∈N be a F-
adapted process (that is Yk is Fk-measurable for each k ∈ N) and let (Zk)k∈N be a
F-predictable process (that is Zk is Fk−1-measurable for each k ∈ N) such that for
each k ∈ N we have:
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• Yk ∈ L 2 with E[Yk] = 0, and Yk and Fk−1 are independent.

• Zk is bounded.

We de�ne the process M = (Mn)n∈N0 as

Mn :=
n∑
k=1

YkZk.

Then M is a square-integrable F-martingale with M0 = 0 and

E[M2
n] =

n∑
k=1

E[(YkZk)
2] for all n ∈ N.

Proof. Exercise.

Theorem 3.2.22 (Second Wald's Equation). In addition to the hypotheses of Theo-
rem 3.2.20 we assume that (Xk)k∈N ⊂ L 2. Then we have SN −Nµ ∈ L 2 and

E[(SN −Nµ)2] = σ2E[N ],

where µ = E[X1] and σ2 = Var[X1].

Proof. We de�ne the �ltration F = (Fn)n∈N0 as

Fn := σ(X1, . . . , Xn,1{N=0}, . . . ,1{N=n}).

Furthermore, we de�ne the process M = (Mn)n∈N0 as

Mn :=
n∑
k=1

(Xk − µ)1{N≥k}.

Then M is a square-integrable F-martingale. Indeed, we set

Yk := Xk − µ and Zk := 1{N≥k} for all k ∈ N.

Then we have

Mn =
n∑
k=1

YkZk for all n ∈ N.

Moreover, for each k ∈ N we have:

(1) Yk is Fk-measurable. Thus (Yk)k∈N is a F-adapted process. Furthermore, we
have Yk ∈ L 2 with E[Yk] = 0. Moreover Yk and Fk−1 are independent, since by
assumption Xk and {N = n} are independent for each n ∈ {0, 1, . . . , k − 1}.
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(2) Zk is bounded. Furthermore, we have

{N < k} =
k−1⋃
j=0

{N = j} ∈ Fk−1,

and hence {N ≥ k} ∈ Fk−1. Therefore (Zk)k∈N is a F-predictable process.

Consequently, by Lemma 3.2.21 the process M is a square-integrable martingale, and
for all n ∈ N we have

E[M2
n] =

n∑
k=1

E[(YkZk)
2] =

n∑
k=1

E[(Xk − µ)2
1{N≥k}].

In the proof of Theorem 3.2.20 we have shown that for each k ∈ N the random variable
Xk and the event {N ≥ k} are independent. Therefore, we obtain for all n ∈ N

E[M2
n] =

n∑
k=1

E[(Xk − µ)2]E[1{N≥k}]

=
n∑
k=1

Var[Xk]P(N ≥ k) = σ2

n∑
k=1

P(N ≥ k).

Using Lemma 3.2.19, it follows

lim
n→∞

E[M2
n] = σ2E[N ].

Therefore, we obtian

sup
n∈N

E[M2
n] <∞,

and hence the martingale M is uniformly integrable. By the convergence theorem for

uniformly integrable martingales there exists a limit M∞ ∈ L 2 such that Mn
f.s.→ M∞

and Mn
L 2

→ M∞. Hence, P-almost surely we have

M∞ = lim
n→∞

Mn =
∞∑
k=1

(Xk − µ)1{N≥k} =
N∑
k=1

Xk −Nµ = SN −Nµ,

and hence SN −Nµ ∈ L 2. Since Mn
L 2

→ M∞, we obtain

E[(SN −Nµ)2] = E[M2
∞] = lim

n→∞
E[M2

n] = σ2E[N ].
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