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Chapter 1

Foundations of life insurance
mathematics

1.1 Elementary financial mathematics

1.1.1 Interest rates and capital functions

Definition 1.1.1. A monotone increasing, right-continuous function K : R, —
[1,00) with K(0) =1 is called a capital function (or accumulation function).

Definition 1.1.2. Let K be a capital function.
(a) We call r :== K(1) the accumulation factor (for the first year).

(b) We calli:=r — 1 the interest rate or the effective interest rate.

(¢c) We call v :=1/r the discount factor.

Example 1.1.3 (Discrete interest rates (with compound interest)). We set
K(t) =1+, teRy,

where [t] == max{k € Ny : k < t}. Here i is indeed the interest rate from Definition
1.1.2(b).

Example 1.1.4 (Continuous interest rates (with compound interest)). We set
K(t):=¢" teRy,

where § € R, denotes the so-called nominal interest rate. Here we have r = €°,
i=e—1andv=-e"?. In general we have § # i. Furthermore, note that

lim (1 + —) =e’.
n—oo n
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Definition 1.1.5. Let K be a capital function. If there is a non-negative, measurable
function k : Ry — R, such that

t
K(t)=1 —|—/ k(s)ds, teR,,
0

then ¢ : R, — R,
k
o) = s, teR

15 called the force of interest of K.
Example 1.1.6. For K(t) = ¢ we have

t
K(t) = 1+/ se%ds, te€R,.
0

Thus we have k(t) = 6e, and obtain
k(t)  de
t = — = — =
This is the reason for calling 0 from Fxample 1.1.4 the interest rate.

Lemma 1.1.7. Let K be a capital function as in Definition 1.1.5. Then we have

K(t) = exp (/Ot¢(s)ds>, ER,.

Proof. Suppose that k is continuous. Then we have K € C'(R,) with K’ = k, and it
follows

(K@) = 20 = o0

Since K(0) = 1, we deduce

an(t):/O o(s)ds.

]

Definition 1.1.8. Let K be a capital function. We define die accumulated force of
interest © : Ry — R, by

1
d(t) .= ——dK(s), teR,,
() 0.4 K(S—) ( ) +

where

K(s—):= 11%1 K (u).



Remark 1.1.9. Let K be a capital function as in Definition 1.1.5. Then we have

@@:A%@mzfﬁaw

With Lemma 1.1.7 it follows

K(t)=e* o ®t)=InK(t).
But in general, we do not have ®(t) = In K (t).

Example 1.1.10. Let K(t) = (1 + i)l as in Evample 1.1.3. Then K(s—) = 1 for
all s € [0, 1]. We obtain

1
(0,1] K(s—)

However In K (1) = In(1 + i).

o(1) = dMQ:AJM@:KM—K@:L

1.1.2 Payment flows
Definition 1.1.11.

(a) A directed payment flow is a right-continuous, monotone increasing function
Z . R+ — R+.

(b) We denote by Z, the set of all directed payment flows.

(¢c) A function Z : Ry — R is called an undirected payment flow (or simply
payment flow) if there are Zy, Zy € %, with Z = Zy — Zy such that Z1(00) :=
limy o0 Z1(t) < 00 01 Z3(00) 1= liny o Zo(t) < 0.

(d) We denote by Z the set of all undirected payment flows.

Example 1.1.12. If K is a capital function, then Z == K — 1 is a directed payment
flow, which we call interest payment flow.

Example 1.1.13. Let (2;)jen, C Ry be a sequence, and let (t;);en, be a strictly
increasing sequence with tg = 0 and lim;_,., t; = co. Then

o0

Z(t) =) zlpe0(t), teR,

J=0

s a directed payment flow, which we call a discrete annuity.




Definition 1.1.14. Let K be a capital function, and let Z € Z, be a discrete annuity.
Then we call

a(Z) = ZO sz) € [0, o0

the present value of the payment flow Z.

Remark 1.1.15. We can express the present value as

=\ AZ(t;) AZ(t)

>0

where
AZ(t) = Z(t) — Z(t—).

Remark 1.1.16. For every Z € %, there exists a unique measure my on (R, B(R,))
such that mz({0}) = Z(0) and

mz((s,t]) = Z(t) — Z(s), 0<s<t.
For every my-integrable function f: R, — R we define
f(s)dZ(s) ::/ fdmg.
R R

Definition 1.1.17. Let Z € % be a payment flow.

(a) The terminal value of Z until time t € Ry is given by

1

s(Z)(t) := K(t) on K

dZ(s).

(b) The present value of Z until time t is given by

1
a(Z)(t) == g T2

(c) The present value of the total payment flow Z is

o) = | Kts)dZ(s).




Remark 1.1.18. For Z € 2, we have a(Z) € [0,00], and for Z € 2, we have
a(Z2) € [—o0, 0].

Proposition 1.1.19. For a cadlag-function Z : R, — R with Zy = 0 the following
statements are equivalent:

(i) Z is locally of bounded variation.

(ii) There are increasing, right-continuous functions Zy, Zs : Ry — Ry with Z1(0) =
Z5(0) = 0 such that Z = Zy — Z,.

Proposition 1.1.20. Let Z : R, — R be a cadlag-function of locally bounded
variation with Z(0) = 0. Then there are unique increasing, right-continuous func-
tions Z1,7Zy : Ry — Ry with Z1(0) = Z3(0) = 0 such that Z = Z, — Zy and
Var(Z) = Z1 + Z5. They are given by

_ Z+ Var(Z)

Zy 5

and Z2 = Zl — 7.

1.1.3 Equivalence principle and premium reserve

Let K be a capital function.

Definition 1.1.21. Two payment flows Z1, Zy € Z are called equivalent (relative to
K) if a(Zy) = a(Z,) € R.

Definition 1.1.22. Let Z;, Zp € Z, be such that min{a(Z),a(Zp)} < 0.

(a) For every time t € R, the prospective premium reserve of (Zr,Zp) relative to
the capital function K is defined as

V(t) = K(t)[ /[1t . d[Z(L(S) - /[t . dIZ(IZS)}.

(b) If V(t) > 0 for all t € Ry, then we call (Z1, Zp) a savings plan.

(c) If V(t) <0 for allt € R, then we call (Z1, Zp) a credit agreement, and —V (t)
is the residual debt at time t.

Remark 1.1.23. Here P stands for premium (paid to a company) and L for benefit
(German: Leistung) (paid to the policyholder).



Example 1.1.24 (Savings account). Consider K (t) = € and Zp = A, Zj, = Bl o),
say with 6 = 0.05 and A = 10000. How do we choose B such that Zp and Z; are
equivalent? The equivalence a(Zp) = a(Zy) means

A B

K(0)  K(5)
Since K(0) = 1, it follows
B=K((5)A=¢c"A.

Furthermore, we have

V) = K055k~ ALw(0) = KO g7 Los()

Definition 1.1.25. Let Z,,Zp € %, be such that min{a(Z),a(Zp)} < oco. For
every time t € R the retrospective premium reserve of (Zr,, Zp) relative to the capital
function K s defined as

[0,t) K(s) [0,t) K(s)

Lemma 1.1.26. Let Z;, Zp € Z, be equivalent payment flows relative to the capital
function K. Then we have

V() =V(t) foralltecRy.

Proof. Since a(Z1) = a(Zp), we obtain

V(L) = K(t) /[ N d]Z(L(S) _ /[ } d}Z{iSW

dZL(S)
[0,) K(s)
. [ de(S) _ dZL(S)
_K(t)_ [0,) K(s) [0,t) K(s)

- CL(ZP) +

— k(t)]a(z,) - dZP(S)]

[0,) K(s)

} =M y(t).

[]

Definition 1.1.27. Let Z € Z be a payment flow with decomposition Z = Zp — Z,
for some Zp,Z;, € Z,. We call (provided it exists) the minimal i € Ry such that
a(Zp) = a(Zy) relative to the capital function K(t) = (1+1)" the rate of return of Z.



Example 1.1.28. Consider Zp = mljy,o) and Zy = Aly, oy with T, A € (0,00)
and tp,t;, € Ry. The equivalence a(Zp) = a(Z) means

T A

(14a)tr (141i)e

, (A)mltp
1= | — - 1.
m

Since 1 € Ry, one of the following two conditions has to be satisfied:

For ty # tp it follows

e iy >tpand A> .

ot <tp and A <.

1.2 Foundations of life insurance mathematics

1.2.1 Probabilities of death

Let (£2,.#,P) be a probability space. Furthermore, let 7, : Q@ — (0,00) die future
lifetime of a person of age x. We denote by F' = Fr, : R — [0, 1] its distribution
function, ans assume that F'(0) = 0. We set

¢ = P(T, <t) €[0,1], teRy
and ¢, := 1q,. Often, we agree to write T' = T,.

Definition 1.2.1. Das mazimal future lifetime is defined as

tmax ;= sup{t € R, : F(t) < 1} =sup{t e R, : P(T > t) > 0} € (0, 0.

Definition 1.2.2. We define the survival function F : R — [0, 1] as

F(t):=1-F(t) =P(T, > t).
Furthermore, we set ;p, = P(T, > t) and p, = 1px.

Definition 1.2.3. If T is absolutely continuous with density f : R — R, then we
define
f(@) f(@)

A (0 tmax) — Ry, A(E) := TR T R

We call \(t) the force of mortality at time t.




Definition 1.2.4. More generally, we define the accumulated force of mortality

1
[0,1]

F(u—)
Remark 1.2.5. If T is absolutely continuous with density f : R — R, then we have

t
A(t) = / Ns)ds, € (0, ).
0
The survival function satisfies the ODFE

F’(t) _ _)\(t)F(t), t € (0, tmax)
{F(O) = 1.

The unique solution is given by

t

F(t) = exp ( - / )\(s)ds) = exp(—A(t)).
0

Important quantities in life tables:

e ..p, is the survival probability for k years of a person of age x.

e p. is the survival probability for one year of a person of age z.

k(= 1s the probability of death within £ years of a person of age x.

¢ is the probability of death within one year of a person of age z.

(. is the (expected) number of persons reaching age z; often on the basis ¢y =
100.000.

e d, is the (expected) number of persons dying at age x.

e ¢, is the expected remaining lifetime of a person of age x.
Example 1.2.6 (Forces of mortality).
e De Moivre (1724):

A(t) = t € (0,tmax) with tya, = 86.

max — 1
o Gompertz (1825):
A(t) = be®  with b,c > 0.
o Makeham (1860):
At) = a+be®  with a,b,c > 0.
o Weibull (1939):
A(t) =kt with k>0 and v > —1.
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1.2.2 Elements of a life insurance police

Definition 1.2.7. A stochastic process is a family (X;)ier, of R-valued random vari-
ables.

Definition 1.2.8. A random payment flow is a stochastic process (X;)ier, such that
for every w € Q the path t — Xy(w) belongs to 2.

Definition 1.2.9. A payment spectrum is a non-negative, measurable function A :
R, - R,.

Definition 1.2.10. A premium function is a monotone increasing, right-continuous
function I1: Ry — R,

For t € R, the quantity I1(¢) denotes the sum of a premiums paid until time ¢.

Definition 1.2.11. The quantities determining a life insurance police (LIP) are:

o [ is the distribution function of the future lifetime T : Q@ — (0, c0).

o 7 € (0, tmax| @s the terminal time of the police.

Y :=min{T, 7} is the (random) time of benefit.

The payment spectrum A. At time Y the amount A(Y') is paid to the policy-
holder.

The capital function K.
o The premium function II.

All quantities with exception of T' (and hence Y') are assumed to be known and
deterministic.

Definition 1.2.12.
(a) The (directed) benefit flow of a LIP is given by

ZL = A(Y):ﬂ_[[ypo[[

(b) The (undirected) premium flow is given by

Zp = H]l[[()’y[[ + H(Y_)]l[[Y,oo[[-

(¢c) The (undirected) payment flow of a LIP is given by

ZZ: ZL_ZP-
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Examples 1.2.13. Special cases:
o 7 =o00. Whole life insurance.
o 7 < o0 and A(t) = 0. Term insurance.
o 7 <00 and A(t) =0 fort <7 as well as A(T) > 0. Pure endowment.
o 7 < oo and A(t) > 0 fort < 1. Endowment.

Definition 1.2.14. The (random) present value of a LIP in view of the policyholder
(PH) is

B = CL(ZL) — CL(ZP>.
Definition 1.2.15.

(a) The (expected) present value of benefit is given by Ela(Zy)].

(b) The (expected) present value of premium is given by Ela(Zp)].

(¢c) A premium function 11 is called net premium function if E[B] = 0; that is
Ela(ZL)] = Ela(Zp)].

Remark 1.2.16. We have

[ A
a(Z;) = /[ R = T

and

1 1
a(Zp) = /[0700) dep(s) = /[[o,y[[ mdﬂ(s).

Remark 1.2.17. We have
Fy = Fljpz) + 1700
and
Fy(ds) = L (s)F(ds) + (1 = F(7—))d-(ds).

Lemma 1.2.18.
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(a) The expected present value of benefit is given by

A(7)
K(7)

= dF(s) + (1—F(r—)).

The first term is the expected present value of benefit in case of death, and the
second term is the expected present value of benefit in case of survival.

(b) The expected present value of premium is given by

Ela(Zp)] :/[0 )1;(—i;§s)dﬂ(s).
Proof.

(a) We have

Ble(z0)) = E| 25| = | Rgan )

A e AT
o K(g)dF( )+ K(r)(l F(r=)).
(b) We have
Ela(Zp)] :E{ . Kts)dﬂ(s)} _ /R + %dﬂ(s): /]R + %m(s)

B 1 — Fy(s) g = 1—F(s) .
- / K ) /H O

Definition 1.2.19. A real number I1 € R, is called a net single premium (NSP) if
II(t) =11, t € Ry is a net premium function.

Example 1.2.20. For II(t) = II, t € Ry we have a(Zp) = II. Thus the NSP is given

by
ﬂ:E[%].

In the special case A(t) = A and K (t) = ° we have

I=A-E[e].
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Definition 1.2.21. A running constant premium in advance I1 at time points 0 =
lg <t <...<ty_1<T for some N € N is given by

N-1
H = Z ﬂ-]l[tk,ooﬁ
k=0

where m € R, sis chosen such that 11 is a net premium function.

Remark 1.2.22. For N = 1 we have a NSP.

Definition 1.2.23. The natural premium (payable at time points 0 =ty <t < ... <
ty_1 <ty =71 with N € N) is given by

N-1
II = Z Wk]l[tk,oo)a
k=0

where
1
wk:K(tk)EU —dZL(s)‘T>tk], k=0,...,N—1.
(tkvthrl] K('S)
Proposition 1.2.24. The following statements are true:
(a) We have

K(ty) / A(s)
T = ————— dFy(s), k=0,...,N—1.
’ 1 - F(tk) (st K(S> Y( )

(b) The natural premium is a net premium function.
Proof.
(a) We have PT>%} < P with

dP{T>tk} _ 1{T>tk}
dP P(T > t;)’

Therefore

tstrt]

BT 1y 0

K (ty) A(Y)
— 1 F(tk)E |:K(Y) :H-{Ye(tkytk+1]}:|

Kt As) e
S 1- F(tk) ‘/(tkythrl] K(S) dFY( )

T = K (b Epiron) [ /( ﬁd@(s)}
1
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(b) Since F(0) = 0, we have

—_

Eja(Zp)] = 4) )1 ;{g ;S)dﬂ(s) _ il}(—ﬁ;gk)ﬂ

e 1— F(ty) K(t) A(s)
=2 K@) 1o /<] K(s) )

= @ s) = Ela
= | Ry = Bz

1.2.3 Net premium reserves

We consider a LIP with net premium function II.

Definition 1.2.25. The (expected) prospective net premium reserve (NPR) V(t) of

a LIP at time t € [0,tax) s given by

A(Y) 1

V) = KOE | gprten - [ 705

K(Y) dIl(s)

T >t

Lemma 1.2.26. We have V(0) = 0.

Proof. Indeed, we have

V(0) = K(0) E{%ﬂ{oq} - /[[O’Y[[ Kts)dﬂ(s) ‘ T> o}
A(Y) 1
- [K(Y) - /[[o,yu mdn(s)}
] _

=Ela(Z.)] — E[a(Zp)] = 0.
Lemma 1.2.27.

(a) For allt € [0,7) we have

K(7)

v = 0 < @dF(sHA(T)a—F(T—))—/ G
(t,7) [t,7)

1—F(t) (s)
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(b) If T < tmax, then we have

V(r)=A(r) and V(t)=0 forallte (7, tmax)-

In particular, we have

Proof.
(a) Fort € [0,7) we have {T" >t} = {Y > t}, and hence

rr= | (R e~ KO0 e

K(1) A(s) 1— F(s)
o R0 [ )
_ K A(s) A(T) 1— F(s)
T 1-F(t) ( . K(S)dF(S) + —K(T)(1 - F(r-)) - LT) R0 dl'[(s)).

(b) We have T < tyax. For t € (7,tmax) We have V(t) = 0, because Y < 7 < t. For
t =7 we have {T' >t} = {T'> 7} = {Y = 7}, and hence

V(t) =

A(7)

) T>T} = A(7).

Vi(r) = K(T)E[

Li<ry

Moreover, we have

V) 1 A7) _
) = M= F K<T)( N (T_))—K(T) K(r)

Lemma 1.2.28. We have the retrospective representation

K(t) A(s) 1—F(s)
Vit)= =% (t)(— o mdF(s) + /[0 R dH(s)).

for allt € [0, 7).
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Proof. By Lemma 1.2.18 we have

0 = Ela(Zy)) - Ela(Zp)]

0 )ﬁ%gdff@-%§§5%0~—P%T—»——A;)lgég§im1@>
- Al S Als) s M — F(r—
“Jog BT o, kT T R )

B 1—F(s) 5 1—F(s) .
/M ") ) /H ") )

Therefore, by Lemma 1.2.27 we have

V(t) A(s) 1—F(s)
(1-F(t)—= = — ——=dF(s) + / ——=dI(s),
K(t) 0.4 K(s) oy  K(s)
and hence the claimed retrospective representation. O

1.2.4 The Thiele differential equation

We assume there exist non negative, continuous functions k, f,7 : R, — R, such
that

Kit)=1+ /tk(s)ds, te|0,7),
F(t) = /Otf(s)ds, te[0,7),
I1(¢t) :/0 n(s)ds te0,7).

Furthermore, we assume that A is continuous on [0, 7). Recall the force of interest

o) = 3r
and the force of mortality
[
A(t) = 1——F(t)

Theorem 1.2.29. The net premium reserve V' satisfies the Thiele differential equation

{V@ — SOV £ 7(t) +AO(V () — At)), telo,7)
V() = o0
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Proof. By Lemma 1.2.26 we have V' (0) = 0, and by Lemma 1.2.28 we have

K(t s "1-F(s)
R ( /z<s 0 K@)”@“)
For the function
_ K(1)
W) = =gy €0
we obtain
) (1= F(t)k(t) + K(t)f(t) k(t) K(t)f(t)
W =""0"Fnr  1-FO  0-FO)p
- %W(t) + f(tF)(t)W(t) — S(W () + ANOW (1),
Therefore

Vi) = SOV + MOV () + — ) (—£@f®+1_F®W®)

Proposition 1.2.30. The Thiele differential equation has the unique solution

V() = /Ot(W(S) — A(s)A(s)) exp (/St(cb(U) + A(U))dU> ds.

Proof. Exercise.
Definition 1.2.31.

(a) We call

the savings component.

(b) We call

the risk component.
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Remark 1.2.32. Then we have the decomposition
m(t) = 7°(t) + 7" (¢).

Remark 1.2.33. Suppose that A(t) = 0. The continuous analogue of Definition
1.2.23 is

T (s) := N(s)A(s) = &A(s).

By Lemma 1.2.27 for all t € [0,7) we have

K@) T A(s) T1-F(8) _
V(t>_1_—F<t)</t e = [ e (s)ds> _o.

Therefore V.=V’ =0, and we obtain

(L) = A()N(L) = 7" (t).

1.2.5 The Thiele integral equation

Recall the accumulated force of mortality

A(t) = /[0 ) %(S_)dlf(s).

Theorem 1.2.34. The net premium reserve V' satisfies the Thiele integral equation

m: ! s) — M u .
K@) Joy K(s)dH() /(M K(u) dA(u), te[0,7).

Proof. See [BOS17, Satz 2.83]. O

Remark 1.2.35. Under the assumption of the previous section we obtain the Thiele
differential equation from Theorem 1.2.29.

Proof. Exercise. m



Chapter 2

Hattendorf’s theorem

2.1 Net single premium and the variance of the present
value

Lemma 2.1.1. Let X be a random variable and let f,g: R — R be two measurable,
increasing functions such that f(X),g(X) € £*. Then f(X)g(X) is quasi-integrable
and

E[f(X)E[g(X)] <E[f(X)g(X)] € (=00, 00].
Proof. By the monotonicity of f and g we have

(fly) = f(2))(9(y) — g(x)) =0 forall z,y € R.

Therefore

E[(f(y) — f(X))(9(y) —g(X))] =0 forallyeR.

Hence, we have

FW)aly) — fFW)E[g(X)] — g()E[f(X)] + E[f(X)g(X)] = 0 forall y € R.
This shows the quasi-integrability of f(X)g(X) with E[f(X)g(X)] € (—o0, 0c] and
f(X)g(X) = fF(X)E[g(X)] — g(X)E[f(X)] + E[f(X)g(X)] = 0,
and hence by taking expectation again

2E[f(X)g(X)] — 2E[f(X)]E[g(X)] > 0.

19
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Proposition 2.1.2. Suppose the function A/ K is decreasing. Then for a net premium
function 11 the following statements are equivalent:

(i) Var[B] is minimal under all net premium functions.
(11) 11 is a net single premium.
Proof. Let Il be a net premium function. We define

Alt) = %7 1(t) = 0,0) Kts)

dIl(s).

Since K(0) = 1, we have A(t) < A(0) for all t € Ry. Hence A(Y) is a bounded

random variable, and hence in particular Var[A(Y)] < co. Now we distinguish two
cases:

e Var[[I(Y)] = oo. Then we have
Var[B] = Var[A(Y) — [I(Y)] = <.

Indeed, otherwise we would have B € £?, which leads to the contradiction
(YY) e £

e Var[[I(Y)] < oo. Then we have

Var[B] = Var[A(Y) — TI(Y)]

= Var[A(Y)] — 2Cov(A(Y),II(Y)) + Var[II(Y)].

If IT is a net single premium, then II(Y") = II(0) is deterministic, and we obtain

Var[B] = Var[A(Y)).

Now, we suppose that II is not a net single premium. The function II is increas-
ing, and by hypothesis the function —A is increasing as well. By Lemma 2.1.1
we obtain

@)
@]
=
,:—E'
=
J:ll
=
I
=
/D_>\|
=
=
=
|
=
/:Ji|
=
&
=

]

Remark 2.1.3. For a constant payment spectrum A the function A/K is decreasing.
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2.2 Martingales
Let (2,.%#,P) be a probability space.

Definition 2.2.1. A family F = (%,)icr, of sub-o-algebras of F is called a filtration
if Fs C Py forall)0<s<t<oo.

Let F = (%)cr, be a filtration.

Definition 2.2.2. A stochastic process X is called adapted if for each t € Ry the
random variable X, is F;-measurable.

Definition 2.2.3. Let X be an adapted process such that X, € £ for allt € R,.
(a) X is called a martingale if

E[X; | Z) = Xs P-almost surely for all 0 < s <t < 0.

(b) X is called a submartingale if

E[X; | Zs] > Xs P-almost surely for all 0 < s <t < 0.

(¢c) X is called a supermartingale if

E[X; | Z] < Xs P-almost surely for all 0 < s <t < 0.

Definition 2.2.4. A martingale M is called square-integrable if M, € £? for all
teR,.

Lemma 2.2.5. Let M be a square-integrable martingale. Then we have
Cov(My — Mg, M, — M,) =0 forall0<s<t<u<wv<oo.
Proof. We have

Cov(M, — My, M, — M,)

E[(My = My)(M, — M,)]
[E[(Mt - M?)( Mu
[(Mt - MS)EE[MU Mu

-~

=0

E
E

)[Zull
| Zu]] = 0.

Lemma 2.2.6. Let M be a square-integrable martingale. Then we have

E[(M; — M,)?*] = E[M} — M?] for all0 < s <t < oo.
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Proof. We have

E[(M, — M,)*|.Z,] = E[M? — 2M, M, + M? | Z]
[M?|.Z,) — 2ME[M, | F,| + E[M? | .Z,]

[M? | F] = 2M7 + MS = E[M? — MZ|Z],

E
E
and hence

E[(M; — M,)’] = E[E[(M; — M,)*| Z.]] = E[E[M} — M| .Z]] = E[M; — M.

2.3 Hattendorf’s theorem
Recall that Y = min{T, 7}.
Definition 2.3.1. We define the process
N = Ty,e0f-
Remark 2.3.2. Then we have
Ne = Tpyeef(t) = Lyy<iy = Tpog(Y)
forallt e R,.
Definition 2.3.3. We define the canonical filtration (F;)icr, as
Fi:=0(Ns:s€]0,t]), teRy.
Remark 2.3.4. Then we have
Fr=0{Y <s}:s€]0,t]) =c(min{Y,t}) V{Y =t}, teR,.

Hence, the filtration contains at time t precisely the information, required in order to
decide whether (and, if applicable, when)Y has occurred until time t or not.

Definition 2.3.5. The accumulated force of mortality for Y is given by

Ay(t) == /( 1 irw.

0,4] 1 — Fy(u—)
If Y is absolutely continuous with density fy, then we define the force of mortality
t
)\Y(t) e fY—()

1 Fy(t)
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Lemma 2.3.6. The following statements are equivalent:
(i) We have limy, Ay (1) = 0.
(ii) We have either T = oo or both T < 0o and Fy(7—) = 1.
Proof. Exercise O

Let us briefly consider the situation 7 < oo and Fy(7—) = 1. Then we have
T = tmax- Indeed, since 7 € (0, tyax] we have 7 < t... Moreover, we have

P(T>7) <Pmin{T,7} =7) =P =171)
=1-PY <7)=1-F(r—) =0,
and it follows
tmax =sup{t e R, : P(T'>t) >0} < 1.

Therefore 7 is the maximal future lifetime. Hence, it is intuitively clear that for ¢t 1 7
the accumulated force of mortality at time ¢ tends to oo.

Remark 2.3.7. Recall that
Fy = Flj ) + 170
and

Fy(ds) = Lo () F(ds) + (1 — F(7=))3,(ds)
= Lo (s)F(ds) + (1 — Fy(r—))d,(ds).

Lemma 2.3.8. If 7 < 0o, then we have

1, falls F(t—) < 1,

Alv(m) = {0, falls F(t—) = 1.

Proof. We have AFy (1) =1— F(7—) and

AAy (1) = lfiilg (Ay (1) = Ay (T — h)) = lim ;dFy(U)

hi0 (t—h,T] 1- FY(U_)
1
[ — 1 iR
/{T} 1 - Fy(u—)

Remark 2.3.9. From now on, we assume that F(1—) < 1, provided that T < 0.
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Lemma 2.3.10. Let A C (s,00) be an interval for some s € [0,7). Then we have

PYeA
P(Y € A| %) = ISTE}/(S;IL{YM} P-almost surely.

Proof. The random variable on the right-hand side is .%#,-measurable. The system
G ={{Y >r}:rel0,s]}
is a N-stable system such that %, = 0(%;). Moreover, for each r € [0, s] we have

PYed) _P¥ed),
T=Fy(s) 100 = By sy
=P € A) =E[1yyeayliysnls

E (Y >r}n{Y > s}

since by hypothesis A C (s,00) C (r,00), and hence
{Y e A}n{Y >r} ={Y € A}

Definition 2.3.11. We define the process M as
Mt = Nt_/ dAY(u), t€R+
[0,tAY]

Here we call the process

(/WH W“))@h - (/W T%Mm)t%

the compensator of N.

Within the general semimartingale theory of stochastic processes, this process is
the predictable compensator NP.

Remark 2.3.12. For allt € R, we have

[ dnvtw) = [ gy
[0,tAY] [0,¢]
[0,¢]

[0,¢]

If Y is absolutely continuous with density fy, then we have

/ dAy (u) = / Ay (u)du.
[04AY] [0,6AY]
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Proposition 2.3.13.
(a) M is a right-continuous martingale with My = 0 and M, = My for allt > Y.
(b) If T < oo, then M is continuous at T.
Proof.
(a) Since Y > 0 and F(0) = 0, we have
My =1 (Y) = Ay({0}) = 0.
Moreover, for t > Y we have

Nt:]-:NY and

/ dAy(U) _/ dAy(U),
[0,tAY] [0,Y]
and hence M; = My.

It is clear that M is an adapted process. Furthermore, we have M, € Z* for all
t € R,. Indeed, we have

E[[ M} < E[Lpy(Y)] + E[Ay (Y A1)]

—P(Y €[0,1]) +E[ / 1oy (u)dAy ()

[0,¢]

= Fy(t)+/[()t] P(Y > u)-— y(u—)dFY(u)

= Fy(t) + Fy(t) = 2Fy (1) < 2.

If 7 < oo, then we have M; = M, for all t > 7. Hence, it suffices to show that
E[M; | Zs] = M, P-almost surely for all 0 < s < t < oo with ¢t < 7. Using
Fubini’s theorem for conditional expectations we obtain P-almost surely
E[M,| %) = E[N, | Z.] - E[/ dAy (1) ‘ %1
[0

AAY]

FEQgY) [ F] = | Elljueo)(Y) [ F]dAy (u)
(s,t]

= M;+P(Y € (s,t]| F) — /( ) P(Y € [u,00) | Fs)dAy (u).
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Using Lemma 2.3.10 two times yields P-almost surely

_ L) = P(Y € [u,0))
/(s’t] P(Y € [u,0) | F)dAy (u) = /(s,t] = 5y (s)

= Liyss / dFy (u
{¥>s} (s,] 1-— Fy(S) 1-— FY(U—) Y( )

LiyssydAy (u)

P(Y € (s,t])
= ———— "y = PY S| Fs).
]P)(Y>S) {Y'>s} ( 6(8 ]| )
The right-continuity of the martingale M immediately follows from Definition
2.3.11.

Suppose T < oo. We set

Nf Z:/ dAy(U), t e R+.
[0,tAY]

Then we have M = N — NP. By Definition 2.3.1 we also have N = Iy, . If
Y < 7, then we have AN, = AN? = 0, and hence AM, = 0. If Y = 7, then
we have AN, = 1. Since Fy(7—) < 1, by Lemma 2.3.8 we obtain AAy(7) = 1.
Therefore AM, = 0.

]

In the proof of Proposition 2.3.13 we have used:

Proposition 2.3.14 (Fubini’s theorem for conditional expectations). Let (2, .7, P)
be a probability space, and let (X, 2", u) be a finite measure space. Let f : (Ax X,.Z ®
2) — Ry be a product-measurable, non-negative, bounded function. Furthermore,
let 9 C F be a sub-o-algebra, and let g : (2 x X, 9 @ ) — Ry be a product-
measurable, non-negative, bounded function such that for each x € X the mapping
g(,z) : (,9) — Ry is a version of the conditional expectation E[f(-,x)|¥]. Then
we have

]E[ /X £, 2)p(dz) g} - /X g0, 2)u(dz)  P-almost surely.

Proof. By Fubini’s theorem the mapping

/X fa)u(dn): Q> R,

is bounded and .#-measurable, and the mapping

/X g, 2)u(dz) : @ > R,
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is bounded and ¢-measurable. Furthermore, for every non-negative ¥-measurable
random variable 7 : 2 — R, we have by Fubini’s theorem

5|2 [ stomtan)| = [ Blzst )
- [ Bizgt o) =22 [ g.omian)].
Il

Remark 2.3.15. In the proof of Proposition 2.3.18 we have used Fubini’s theorem
for conditional expectations (Proposition 2.3.14) for 0 < s <t < oo with

(Xv %nu) = ((S7t]78((57t])7AY(du))7
fCu) = Ty (Y),

G = F,
_ P(Y € [u,00))
g(-u) = = Ry (s) Liyssy,

and so we have obtained

P(Y
E / Lju,00) (Y)dAy (u) | F :/ (V€ [u, OO)>]1{y>s}dAy(u) P-almost surely.
(s8] s L= Fy(s)

Example 2.3.16. We assume that 7 = oo and T ~ Exp(1) (whole life insurance).
Then we also have Y ~ Exp(1), and for all t € R, we have

FY(t) =1- exp(—t),
fY(t) = exp(—t),

Therefore, by Remark 2.3.12 we have

M, = ]l[ypo[[(t) — / du

[0,tAY]
= Tpeet(t) = (Fpoy1() + Y Ipyer(®))
= —Zf]l[[o,y[[@) -+ (1 — Y)IL[[Y,oo[(t)-
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In coincidence with Proposition 2.3.13 for each t € R, we have

E[M;] = E[ — tLioy(t) + (1 = Y)Ijyeeq(t)]
— —tP(Y > t) + E[(1 = Y)Tjq(Y)]

= —texp(—t) + /Ot(l — u) exp(—u)du
= —texp(—t) + <1 - exp(—t)) + (t exp(—t) + exp(—t) — 1> = 0.

Example 2.3.17. We assume that T = oo and that T has a discrete distribution with

1
P(T = 1):IP’(T:2):§.
Then we have
Fy = -T2 + 1),
and it follows
1
M, = Ly (£) — / iR
: et (f) fotry] 1 — Fy(u—) v()

1
= Lpyeoq(t) — (511[1,00)@ AY) 4 L)t A Y))

1
Vool (1) — (51[1,oo>(t) + ]1[2,oo>(t)]1{Y=2})

=

(Liy=1y — Liy=2}) Lj1,00)(2).

DO | —

Here we also see that
E[M] =0 forallteR,.

Proposition 2.3.18. M is a square-integrable martingale, and we have

E[(M, — M,)*] = / (1 = AAy(u))dFy(u) forall0<s<t< oc.

(s:t]

Proof. We have

M, = IL{Y<t}—/ Liu<yydAy (u).
(0,2]



29

Hence, by Fubini’s theorem we have

2
(]1{5<Y§t} —/ ﬂ{ugy}d/\Y(U)> ]
(s,t]

=E[ljcren] - QE{ /( ) 1{S<Yﬁt}1{USY}dAY(U)}

E[(M, — M, = E

+E[ / / ﬂ{uSY}ﬂ{vSY}dAY(U)dAY(’U)]
(s,t] J (s,]

— By(t) — Fy(s) — 2 /( t] P(Y € [u,])dAy (u)

P(Y > max{u,v})dAy(u)dAy (v).
+/(S,t} /(s,t] ¥z {u,v}) (u) (v)

Using Fubini’s theorem we obtain
/ / P(Y > max{u, v} )dAy (u)dAy (v)
(s,t] V (s,t]

/ / Y > 2} dAy dAy —f-/ / P Y > u dAy( )dAy(U)
(s,t] ¥ (s,0] (s,t]  (v,t]

/ PY > v)dAy (v)dAy(u +/ / P(Y > u)dAy (u)dAy (v)
(s,t] o/ [u,t] (s:]

s (v,¢]

//IP’Y>vdAy Ay (u +/ / P(Y > v)dAy (v)dAy ()
(s,t]  [u,t] it S u,t]

_ /St /{ B 2 0 )iy
_ /(St]/w (1 = Fy(0—))dAy (v)dAy (u /St] (1= Fy (u=)) DAy (u)dAy ().

Now, we show that both integrals are finite. Since

1
1-— Fy(U—)

// (1 — Fy (v—))dAy (0)dAy (u //dFy YdAy (1)
(s,t] J [u,t] St] Ut]

u-)
/(M]IP(YE [u, t])dAy (u) = /M 1_Fy( ) dFy (u) < 1.

Ay (dv) = dFy (v),

we have
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Since

AFy(u) _ Fy(u) = Fr(u=)

Ay () = 1— Fr(u—) 1-FR(u—) —

we also have

(s,t] (s,t]

Furthermore, it follows

Fy(t) — Fy(u—)
/M P(Y € [u, f])dAy (u) = /M e ),

showing in particular that this integral is finite. We obtain E[(M; — M,)?] < oo with

a2 CPo(s) — Fy (t) — Fy(u—) "
B[, — M) = Fr(t) ~ Fy(s) —2 | SO an ()
Fy(t) — Fy(u—) _ u w
v2 [ ORISR~ [ AN R )

_ /( (1= Aty ()R W,

]

A continuous linear operator 7' € L(X,Y’) between two normed spaces X and Y
is called an isometry if

|Tz|| = ||z|| forall xz € X.
If X and Y are Hilbert spaces, then T" € L(X,Y) is an isometry if and only if
(Tx, Ty) = (x,y) forall x,y € X.

If £ C X is a dense subspace and T' € L(X,Y’) is a continuous linear operator such
that

|Tz|| = ||z|| forall xz €&,

then T is an isometry. Indeed, for all z € X there exists a sequence (z,)neny C € such
that x,, — z, and we obtain

lim Tz,
n—oo

ITz| = HT( lim xn>
n—0o0

= lim [|Tz,[| = lim [z, = [lz]/
n—oo n—oo
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Proposition 2.3.19. For every [ € Z*(Ry,B(R,), (1 — AAy)dFy) we have

E

2
( f(u)dMu> ] = [ f(u)?(1—AAy(u))dFy(u).
Ry R,
In other words, the linear mapping
I:L*R,BR,), (1 —AAy)dFy) — L*(Q,.7,P), I(f)= [ f(u)dM,

is an isometry between Hilbert spaces.

Proof. Let &£ be the space of all simple functions

f= Z Cj]l(tj:tj+l]
j=1

withn €N, ¢p,...,cp, € Rand 0 <t < ... <t,41. Since £ is dense in
2Ry, B(R.), (1 - Ady)dFy),

it suffices to prove that I is an isometry on £. Thus, let f € £ be arbitrary. Using
Lemma 2.2.5 and Proposition 2.3.18 we obtain

( . f(u)dMu>2 (i ¢j (M, — Mtj)>2]

j=1
= Z Z Cjck]E[(Mtj+1 - Mtj)<Mtk+1 - M/ﬂz)] = Z C?E[<Mtj+l - Mtj)Q]

E =E

j=1 k=1 7j=1
_ye / (1= AAy(u)dFy (u) / S g, () (1 — Ay () dFy ()
j=1 (tj5tj+1] Rt j=1

= fu)?(1 — ANy (u))dFy (u).

Ry
O]
Remark 2.3.20. One can show that the predictable quadratic variation (M, M) is
given by
(M, M), = / (1 — AAy(u))dFy(u), teR,.
(0,2]

Hence, Proposition 2.3.19 confirms the well-known Ité isometry

([ 5o

t
E :E[/ Hfd(M,M)S], teR,.
0
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The present value of a LIP was defined as

A(Y) 1

SR oy KoM

and by the equivalence principle we have E[B] = 0. From now on, we always assume
that

K) < 0

£[A%)

Definition 2.3.21. The loss of the insurance company until time t € Ry s defined
as

L(t) := E[B| 7).

Remark 2.3.22. Hence, the loss is the conditional expected present value, given the
information whether the time of benefit Y has occurred until time t or not.

Proposition 2.3.23. For every t € R, we have P-almost surely

_(A(Y) 1 V() 1
L(t) = <m — o] mdﬂ(s)) l{ygt} + (m - 00 mdﬂ(S)) IL{Y>t}.

Proof. Exercise. m

Remark 2.3.24. Noting the definition of the present value, Proposition 2.53.23 pro-
vides an intuitive characterization of the loss until time t. More precisely:

e Ift > Y, which means that the time of benefit has already occurred, then we
obtain the well-known definition of the present value.

o Ift <Y, which means that the time of benefit is in the future, then we obtain
an analogous representation where Y is replaced by t. Furthermore, the payment
spectrum A s replaced by the net premium reserve V. Intuitively, this is clear,
since the time of benefit has not yet occurred, and has to be covered by the
INSuUTANce company.

Remark 2.3.25. L is a martingale with L(0) = 0 and lim;_,o, L(t) = B P-almost
surely.

The martingale L according to Definition 2.3.21 is determined P-almost surely for
every time point ¢. From the theory of stochastic processes it is known that L admits
a cadlag (and hence in particular a right-continuous) version. In the current situation
we can explicitly write down such a version.
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Proposition 2.3.26. For every t € R, we have the representation

Aly) —
L(t) :/ MdMu P-almost surely.
(0,4] K(u)

In particular, L has a right-continuous version.

Proof. We have

[ AV [ AV AV
0,t] K (u) h (0,4] K(u) b JOAY] K(u) i
A(Y) V() Alu) — V(w)
TR 1“’”’”““)‘/ﬂom Ky @)
(A V) [ Aw V),
- (K(Y) RY) /ﬂo,w RO >)1{Yﬁ”
)

— (/(O,t] WW\Y@LO Ly sy

Therefore, by Proposition 2.3.23 we have to show
A(Y) 1
A () )1y
(K(Y) v K(s) o=

( A(Y)) V(Y /]]0 y %d&z(@) Tiy<ny
1

KY) K

)
(Y) )
()i~ (0, A0 )

and
(% Lo Kts) (s)) Liysy = _</(0,t] —A(u;(?u‘)/(u) dAy(U)) Livsny

Thus, we have to show

VY Al PN Aw) =V,
R AD) /[[o,m[[ O /uo,mﬂ ORI

By the Thiele integral equation (Theorem 1.2.34) we have

w — 1 &) M . ]
K@) [0,6) K(s)dH( ) /(O,t] K (u) dA(u), tel0,7).

In case 7 < oo we also notice:
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e By Proposition 2.3.13(b) the martingale M is continuous in 7. Therefore, the
right-hand side of the claimed equation is continuous in 7.

e [ is continuous in 7. This follows from the representation in Proposition 2.3.23
as well as Lemma 1.2.27.

Finally, the claimed right-continuity follows from the right-continuity of M; see Propo-
sition 2.3.13(a). O

Definition 2.3.27. Let (t;)ien, be a sequence with to =0 and t;_y < t; for all i € N.
Heret; 1 < t; are the time points at the beginning and at the end of insurance periods.
We set

L':= L(t;) — L(t,_y), i€N
for the loss at the ith period of insurance.

Theorem 2.3.28 (Hattendorf’s theorem). For the loss of a LIP under the equivalence
principle we have

E[L(t)] =0 forallt € Ry and
E[L'] =0 foralli€ N.

If furthermore

AW) = VN | A B ) < s for
/[O,t]( K (u) )<1 AAy (u))dFy(u) < oo forallt € Ry,

then the following statements are true:
(a) We have E[L’*'|.%, ] =0.
(b) We have Cov(L?,L*) =0 for all j,k € N with j # k.

(¢) For the variance of the loss we have

(M>2(1 — ANy (0))dFy (u), teR,.

Var[L(t)] = / K (o)

(0¢]

(d) For the variance of the present value we have

[ (A=Y@
var[B]_/[Om)( D )(1 AAy (w))dFy (u) € [0, 50].
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Proof. By Remark 2.3.25 the process L is a martingale, and hence the first two
identities follow. Now assume that the integrability condition holds true as well.

(a) Follows, because L is a martingale.
(b) Follows with Lemma 2.2.5, because L is a square-integrable martingale.

(c) By Proposition 2.3.26 we have

_ [ Alw) = V()
L(t) = /M K () dM,, teRy.

Hence, the claimed formula follows from Proposition 2.3.19 with the function

Alu) = V(u)

]]_[0715] .

(d) By Proposition 2.3.26 and Remark 2.3.25 we have P-almost surely

B = lim L(t) = /R de.

Hence, the claimed formula follows from Proposition 2.3.19 with the function

O

Remark 2.3.29. Hence the total variance of the loss can be decomposed as the sum
of the variances of the single insurance periods.



Chapter 3

Static models

When using static models, we model the total loss for a fixed period, say one year,
from the point of view of the insurance company.

3.1 Models for the total loss in an insurance period

Let (£2,.#,P) be a probability space.

3.1.1 Individual model

We consider a portfolio with n € N insured risks (insurance polices). Let Y;,..., Y}, :
) — R, be independent, non-negative random variables. Here Y; is the (random) loss
of the ¢-th police.

Definition 3.1.1. The total loss of the portfolio in the individual model is given by

Sind = zn: }/;
i=1

Remark 3.1.2. Because of the independence we have

Po(Yy,....Y,) =PoY))®...® (PoY,).

3.1.2 Collective model

Let (X;)ien be a sequence of positive random variables X; : 2 — (0, 00). Furthermore,
let N : Q — Ny be an integer-valued random variable.

36



37

Definition 3.1.3. The total loss in the collective model is given by

N
Skoll 1= Z Xi.
i=1

Remark 3.1.4. The random variables Xq,..., Xy > 0 are the losses occurring in
the insurance period; the number N € Ny of losses is now random. Here, the losses
are no longer associated to individual polices.

Definition 3.1.5. We speak of a standard model of collective risk theory if the ran-
dom wvariables (X;);en are independent and identically distributed with X, € L and
Fx,(0) =0, and the random variable N is independent of the sequence (X;);en.

3.1.3 Models for the loss distribution

In order to model the distributions of the losses X; one frequently uses absolutely
continuous distributions with unimodal densities on (0, 00).

Definition 3.1.6. A function f : (0,00) — R, is called unimodal with mode at
x € (0,00) if f is strictly increasing on (0,x), and strictly decreasing on (x,00).

Here are some important loss distributions.

Example 3.1.7. The Gamma distribution I'(«, B) for o, 6 > 0 has the density

flx) = %xa_le_ﬁx, x>0,

where

We have:
e For a <1 the density f is decreasing.

e For a > 1 the density [ is unimodal with mode at

a—1

B
e I'(1,5) = Exp(p).

We call o the shape parameter and [ the scale parameter.
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Example 3.1.8. The Weibull distribution WB(c, 7) for ¢,7 > 0 has the density

f(x)=cra™ e, x>0.

We have:
o For 1 <1 the density f is decreasing.

o For > 1 the density f is unimodal with mode at

(7’ - 1)1/7.
o WB(c,1) = Exp(c).

We call T the shape parameter and c the scale parameter.

Example 3.1.9. The Log-Normal distribution LN(u,0?) for p € R and 0% > 0 has

the density

1 lnz — p1)?
f(x):—xexp(—%), x> 0.

vV 2mo?

We have:
o f is always unimodal with mode at e*.
e For X ~ LN(u,0?) we have In X ~ N(p, 0?).
Example 3.1.10. The Log-Gamma distribution LT («, 8) for a,, B > 0 has the density

f(z) = FB(Z) (Inz)* a1, (), 2 >0.

We have:
o For X ~ LI'(«, B) we have In X ~ I'(«, ).
Example 3.1.11. The Burr distribution Burr(a, 7,0) for o, 7,0 > 0 has the density

fla) = %(9” (1 + (g)f)(aﬂ), x> 0.

g

We have:

e For 1 > 1 the density f is decreasing.
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e For T <1 the density f is unimodal.

e The distribution function is given by

Flz)=1- (1 + (;)T)a z >0,

Example 3.1.12. The Pareto distribution (type I) Par(k,«) for k,a > 0 has the
density

ar®

flz) = Wﬂ[n,oo)<$), z > 0.
We have:
o The distribution function is given by

Ka

Flz) = <1 . —) Liooo)(z), > 0.

xa

e For a>1 and X ~ Par(k,a) we have

3.1.4 Models for the distribution of the number of losses

The following models are popular for the distribution of the number N of losses.

Example 3.1.13. The Binomial distribution Bi(n,p) with parameters n € N and
p € [0, 1] is specified by the stochastic vector

w0 = ()rra-pr k=0
We have Bi(1, p) = Ber(p).

Example 3.1.14. The Poisson distribution Pois(\) with parameter A > 0 is specified
by the stochastic vector

(k) =e =, keN,.
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Remark 3.1.15. By the Poisson limit theorem we have
AN w o
Bi <n, —) — Pois(\)  for every A > 0.
n
Therefore, we have
Bi(n,p) =~ Pois(np) for large n € N and small p € (0,1).

Hence, the Poisson distribution is suitable for large portfolios with small probabilities
of losses.

Example 3.1.16. The negative Binomial distribution NB(3, p) with parameters 5 >
0 and p € (0,1) is specified by the stochastic vector

w0 = (" T ra-at kem,

where

(5+k:—1) (B E-1)B+Ek=2)-...-p
k T k! '

We have NB(1,p) = Geo(p).

If 8 € N, then 7(k) is the probability that for independent Bernoulli experiments
k failures occur before the first 3 successes.

3.2 Computation of the loss distribution

3.2.1 Convolutions and generating functions

Definition 3.2.1. For two probability measures p and v on (R, B(R)) the convolution
w* v is defined as

(s )(B) = [ [ 1nla+puldnvian). B eBR).

Definition 3.2.2. Let F' and G be two distribution functions. Then the function FxG
given by

(F+G)(x) = / Flz —)G(dt), z€R

R

s called the convolution of F' and G.
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Lemma 3.2.3. Let 1 and v be two probability measures on (R, B(R)) with distribution
functions F' and G. Then the distribution function of p* v is given by F x G.

Proof. We have

et = [ [ Uewate + PG = [ [ 1 PlanGia)
~ [ [ tusnFanGan = [ Pe- i)

O

Proposition 3.2.4. Let X and Y be two independent random variables with distri-
bution functions F' and G.

(a) The distribution function of X +Y is given by F % G.

(b) If X is absolutely continuous with density f, then X +Y is absolutely continuous
with density

h:R—=Ry, h(x)= / flx—t)G(dt).
R
(¢c) If X and Y are absolutely continuous with densities f and g, then we have
h(z) = / Flo — )g(t)dt = / FBlgl —t)dt, zeR.
R R

Proof. Exercise. O
Definition 3.2.5. Let p be a probability measure on (R, B(R)).
(a) We set u*® := d,.

(b) For every n € N we set

Accordingly we introduce:
Definition 3.2.6. Let F' be a distribution function.

(a) We set F*0 .= 1g, .
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(b) For every n € N we set

Fr":=Fx.. . xF.
—_——

n times

Definition 3.2.7. Let X be a random variable with distribution function F.

(a) The function defined on Mx := {t € R : Ele!*] < oo} and given by

Ul > Rey Ux(0)i= Bl = [ o*F(da)

R

is called the moment generating function of X and F' respectively.

(b) The function defined on 4% = {t > 0: E[tX] < oo} and given by

bx MY SR, dx(t) = B[] = / £ F(dz)

R

15 called the probability generating function of X and F respectively.

(c) The function
xx :R—=C, xx(t):=E[e"] = / " F(dx)
R

is called the characteristic function of X and F respectively.

Remark 3.2.8.

(a) One also calls t — ¥x(—t) the Laplace transform of X and F respectively.

(b) The characteristic function is also frequently called the Fourier transform.

Proposition 3.2.9 (Uniqueness theorem).
(a) If #x has an inner point, then V¥x uniquely determines F.
(b) If A% has an inner point, then ¢x uniquely determines F.
(c) xx uniquely determines F'.

Proof. We prove part (b) in case that X is Ny-valued. Then we have

ox(t) =Y t"P(X =k) forallte (0,1).
k=0
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By the geometric series we can extend ¢x to the interval (—1,1), and obtain
W(0) = nIP(X =n) for all n € Ny,

and hence

0
P(X =n) = Xm for all n € N,

proving the uniqueness of the distribution of X.
The proof shows why we call ¢x the probability generating function of X.

Proposition 3.2.10. Let X4,..., X, be independent random variables, and set

k=1

(a) We have
s, () = [[vx.(®), te () A,
k=1 k=1
(b) We have
b5, (t) = [[oxi(t), te ()42,
k=1 k=1
(c) We have
Xs.(t) = [ [ xx(), teR
k=1
Proof.
(a) By the independence of the random variables X7, ..., X, we have

Vs, (£) = E[eS] = E[H x] — TTE) =TT éx (0).

(b) Exercise.

(c) Exercise.
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Proposition 3.2.11. For X ~ I'(«, 5) we have
/6 «
t) = teR.
wlt = (525) . te
Proposition 3.2.12. For independent random variables X ~ I'(«, ) and Y ~
I'(a, B) we have X +Y ~T'(a + &, B).

Proof. By Proposition 3.2.10(c) and Proposition 3.2.11 we have for all t € R,

vt =xo0 = (723) (75) = (25)

By the uniqueness theorem (Proposition 3.2.9(c)) we deduce X +Y ~ I'(a+a, 5). O

Proposition 3.2.13. Let N be a Ny-valued random variable.
(a) If Po N = Bi(n,p), then we have 4y = (0,00) and

on(t) = (1 —p+pt)".
(b) If Po N = Pois(\), then we have .4y = (0,00) and
on(t) = e M0,
(c) If Po N =NB(S,p), then we have 4% = (0,00) and
1—(1— p)t>5

p

ovlt) = (
Proof. Exercise. O

3.2.2 Formulas for the distribution of the total loss

We consider a standard model of collective risk theory. Thus, the random variables
(Xi)ien C Z" are independent and identically distributed, and N is independent of
the sequence (X;);en. We denote by F' the distribution function of X;. The total loss
is given by

N
Skoll = Z X;.
i=1

We denote by G the distribution function of Sy.
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Lemma 3.2.14. We have

G(z) = i F*(x)P(N =n) forallzeR.

n=0

Proof. By Proposition 3.2.4(a) we have

Corollary 3.2.15. If X; ~ I'(«a, ), then we have
G(z) = anavg(x)P(N =n) forallx € R,
n=0

where T'og = L, and I'yap denotes the distribution function of I'(na, B) for each
n € N.

Proof. This is a consequence of Lemma 3.2.14 and Proposition 3.2.12. O

Proposition 3.2.16. We have

QﬁSkon <t> = ¢N(¢X1 (t)) Jor all t € Mol

where
%koll = {t eR:te %Xl and le(t) € %]I\)f}

Proof. We set S, := > | X, for all n € Ny. Using Proposition 3.2.10(a), we obtain
on(Ux, (1) = E[ex, (DN = D ¢, ()"B(N =n) = )4, (NB(N =n)
n=0 n=0

= Z E[etsn]E[]l{N:n}] = Z ]E[etsnl{N:n}]
n=0 n=0

= E[etSN] = ]E[etskou] = 77b3k011 (t)
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Proposition 3.2.17. We have

D5 (t) = On(Px, (1)) for all t € Mgy,
where
My ={teR:te My and ¢x, (1) € Ay}
Proof. Exercise. O
The following result shows why we call 1x the moment generating function of X.

Proposition 3.2.18. Let X be a random variable such that the moment generating
function x exists on some neighborhood of 0.

(a) Vx is infinitely often differentiable in 0, and we have
WP(0) = E[X"] for all n € Ny.

(b) We have E[X]| = ¢/ (0).
(¢) We have Var[X] = % (0) — (¢ (0))?.
Proof.

(a) For all n € Ny we have

U5 (0) = Bl

T = E[X"™]|,=o = E[X"],

t=0

ofg
-0 dtm

where the interchange of differentiation and integration is valid by Lebesgue’s
dominated convergence theorem.

(b) Follows from part (a).

(¢) Follows from (a) and the identity Var[X] = E[X?] — E[X]?.

Lemma 3.2.19. Let N be a random variable with values in Ny. Then we have
E[N] =) P(N > k).
k=1

Proof. Exercise. m



47

Theorem 3.2.20 (First Wald’s Equation). Let (Xi)reny C £ be independent, iden-
tically distributed random variables, and let N € £ be a random variable with values
in No. We assume that {N = n} and (Xy)g>ns1 are independent for all n € Ny, and
set

Sui=Y_ Xi foralln € No.
k=1
Then we have Sy € £ and
E[Sy] = kE[N],
where p = E[X;].

Proof. For each k € N the random variable X} and the event {N > k} are inde-
pendent. For this, we show that X and {/NV < k} are independent. Indeed, for every
Borel set B € B(R) we have

k—1 k-1
P(Xy € BN <k)=)» P(X,€B,N=n)=>» P(X; € BP(N =n)
n=0 n=0

= P(X, € B)P(N < k).

Next, we show that Sy € £'. Indeed, by the monotone convergence theorem and
Lemma 3.2.19 we have

(|

= D BB o] = I POV 2 ) = EXIELN] < oo

E[[Sn] =

< E[Z |qu = E[i |Xk‘1{N2k}1 = iEHXkW{Nzk}]

k=1 k=1

Now, using Fubini’s theorem and Lemma 3.2.19 we obtain

E[Sy] = E[Z Xk] = E[i XkIL{NZk}} = iE[Xkﬂ{Nzk}]

k=1 k=1

WE

= E[XiJE[Lvsiy) =E[Xi] Y P(N > k) = E[X;]E[N].

B
Il
—
=

Il

1

]

Lemma 3.2.21. Let F = (%,))nen, be a filtration. Furthermore, let (Yy)ren be a F-
adapted process (that is Yy, is F-measurable for each k € N) and let (Zy)ren be a
F-predictable process (that is Zy is Fy_1-measurable for each k € N) such that for
each k € N we have:
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o Vi € L with E[Y;] =0, and Yy, and F,_1 are independent.
e 7 is bounded.

We define the process M = (M, )nen, as
M, => YiZ.
k=1
Then M 1is a square-integrable F-martingale with My = 0 and
E[M]] =Y E[(YiZ)?] for alln € N.
k=1

Proof. Exercise. m

Theorem 3.2.22 (Second Wald’s Equation). In addition to the hypotheses of Theo-
rem 3.2.20 we assume that (X3,)reny C ZL2. Then we have Sy — Nu € £? and

E[(Sy — Npu)?] = o*E[N],
where 1 = E[X;] and 0* = Var[X}].
Proof. We define the filtration F = (.%,,),en, as
j\n = O'(Xl, NP 7Xn7 ]1{]\/:0}, ceey 1{N:n}>
Furthermore, we define the process M = (M, )nen, as
k=1
Then M is a square-integrable F-martingale. Indeed, we set
Vi =Xy —p and Zj = lyn>p forallk € N.
Then we have
M, = Z Y. Z, foralln € N.
k=1
Moreover, for each k£ € N we have:

(1) Y is Fr-measurable. Thus (Yj)ren is a F-adapted process. Furthermore, we
have Y, € £ with E[Y;] = 0. Moreover Y}, and .%;,_; are independent, since by
assumption Xj and {N = n} are independent for each n € {0,1,...,k — 1}.
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(2) Zy is bounded. Furthermore, we have

k—1

(N<k}=J{N=j}eFi,

j=0
and hence {N > k} € .Z;_;. Therefore (Zy)ren is a F-predictable process.

Consequently, by Lemma 3.2.21 the process M is a square-integrable martingale, and
for all n € N we have

ZE Vi Zy)? ZE Xi — 1) Linsiy).

In the proof of Theorem 3.2.20 we have shown that for each £ € N the random variable
X}, and the event {/N > k} are independent. Therefore, we obtain for all n € N

ZE Xy, = )" JE[L{n>n)]
- ZV&I[Xk]]P’(N > k) = o’ anIP(N > k).

Using Lemma 3.2.19, it follows
lim E[M?] = o*E[N].

n—oo

Therefore, we obtian

sup E[M?] < oo,

neN

and hence the martingale M is uniformly integrable. By the convergence theorem for

uniformly integrable martingales there exists a limit M., € %2 such that M, E) M
2

and M, Z M. Hence, P-almost surely we have

N
My, = lim M, Zxk Wlnsky = > X — Np =Sy — Ny,
k=1

n—o0

and hence Sy — Nu € £2. Since M, Z, M., we obtain

E[(Sy — Np)*] = E[ML] = lim E[M;] = 0c"E[N].

n—oo
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