Übungen zur Vorlesung "Stochastische Prozesse"

Blatt 8

Abgabetermin: Freitag, 14.12.2018, bis 10.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen an.)

Aufgabe 1 (4 Punkte)

- a) Geben Sie einen stochastischen Prozess mit stetigen Pfaden an, dessen erzeugte Filtration nicht rechtsstetig ist.
- b) Sei $\mathcal{X} = (X_t)_{t \geq 0}$ ein stochastischer Prozess mit rechtsseitig stetigen Pfaden. Geben Sie eine Modifikation $\tilde{\mathcal{X}}$ von \mathcal{X} an, welche keine rechtsseitig stetige Pfade besitzt. Ist dann die Abbildung $t \mapsto \mathbb{E}[\tilde{\mathcal{X}}_t]$ rechtsseitig stetig?

Aufgabe 2 (4 Punkte)

Ein auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{F}, \mathbb{P})$ definierter stochastischer Prozess $\mathcal{X} = (X_t)_{t\geq 0}$ heißt Gaußscher Prozess, falls $(X_{t_1}, \dots, X_{t_n})$ für alle $n\geq 1,\ 0\leq t_1<\dots< t_n$ n-dimensional normalverteilt ist. Seien nun $\mu:[0,\infty)\to\mathbb{R}$ und $\Gamma:[0,\infty)\times[0,\infty)\to\mathbb{R}$ messbare Funktionen mit den folgenden Eigenschaften:

- a) $\Gamma(s,t) = \Gamma(t,s)$ für alle $s,t \geq 0$
- b) für $0 \le t_1 < \cdots < t_n$ ist $(\Gamma(t_i, t_j))_{i,j=t_1,\dots,t_n}$ nichtnegativ definit.

Zeigen Sie, dass ein Gaußscher Prozess $\mathcal{X} = (X_t)_{t \geq 0}$ existiert mit $\mathbb{E}[X_t] = \mu(t)$ und $\text{Cov}(X_s, X_t) = \Gamma(s, t)$ für alle $s, t \geq 0$.

HINWEIS: Verwenden Sie den Satz von Kolmogorov 1.4

Aufgabe 3 (4 Punkte)

Es sei $(\Omega, \mathcal{F}, (\mathbb{P}_x)_{x \in E}, (X_t)_{t \geq 0}, E, \mathcal{B}(E))$ ein schwacher Markov-Prozess. Zeigen Sie, dass $(\Omega, \mathcal{F}, \mathbb{P}_x, (X_t)_{t \geq 0}, E, \mathcal{B}(E))$ für festes $x \in E$ ein elementarer Markov-Prozess ist.

HINWEIS: Verwenden Sie: $\mathbb{P}_{X_s}(X_t \in B) = \mathbb{E}_x(\mathbb{P}_{X_s}(X_t \in B)|X_s) \mathbb{P}_x$ -fast sicher. Warum gilt das?

Aufgabe 4 (4 Punkte)

Seien $Q \in \mathbb{R}^{n \times n}$ und $\mu \in \mathbb{R}^n$ derart, dass $\mu_j \geq 0$, $Q_{ij} \geq 0$ für alle i, j und $\sum_{j=1}^n \mu_j = 1$, $\sum_{j=1}^n Q_{ij} = 1$ für alle i. Sei ferner $(\Omega, \mathcal{F}, \mathbb{P}, (X_t)_{t \in \mathbb{N}}, \{1, 2, \dots, n\}, \mathcal{B}(\{1, 2, \dots, n\}))$ ein elementarer Markov-Prozess mit

$$\mathbb{P}(X_0 = j) = \mu_i$$

und

$$\mathbb{P}(X_{t+1} = j|X_t) = Q_{X_t,j}$$

für alle $j=1,\ldots,n,\,t\in\mathbb{N}$. Zeigen Sie, dass für alle $j=1,\ldots,n,\,s,t\in\mathbb{N}$ gilt:

$$\mathbb{P}(X_{t+s} = j|X_t) = (Q^s)_{X_t, j}$$

und

$$\mathbb{P}(X_t = j) = (\mu Q^t)_j.$$