Übungen zur Vorlesung "Stochastische Prozesse"

Blatt 5

Abgabetermin: Freitag, 23.11.2018, bis 10.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1. (Geben Sie auf jedem Lösungsblatt Ihren Namen an.)

Aufgabe 1 (4 Punkte)

Seien X ein quadratintegrierbares Martingal mit quadratischem Variationsprozess $\langle X \rangle$ und T eine Stoppzeit. Zeigen Sie, dass der gestoppte Prozess X^T den Variationsprozess $\langle X^T \rangle = (\langle X \rangle_{T \wedge n})_{n \geq 1}$ hat.

Aufgabe 2 (5 Punkte)

a) Die symmetrische Dreiecksverteilung T(a) mit a > 0 hat die Dichte

$$f_{T(a)}(x) = \frac{1}{a} \left(1 - \frac{|x|}{a} \right) \cdot \mathbb{1}_{\{|x| \le a\}}(x).$$

Berechnen Sie die zugehörige charakteristische Funktion $\varphi_{T(a)}(t)$ und begründen Sie anhand dieser, dass die Dreiecksverteilung T(a) nicht unbegrenzt teilbar sein kann.

b) Zeigen Sie die folgende Aussage:

Sei X eine unbegrenzt teilbare, reelle Zufallsvariable. Ist X beschränkt, d.h. existiert ein $0 \le K < \infty$ mit $\mathbb{P}(|X| \le K) = 1$, dann ist X fast sicher konstant.

BEMERKUNG: Daraus folgt, dass es außer den Einpunktmassen δ_a keine unbegrenzt teilbaren Wahrscheinlichkeitsmaße auf $(\mathbb{R}, \mathcal{B})$ mit beschränktem Träger geben kann. Insbesondere sind also z.B. sämtliche Binomialverteilungen B(n,p) und Gleichverteilungen über Intervallen [a,b] nicht unbegrenzt teilbar.

Aufgabe 3 (4 Punkte)

Sei X eine geometrisch verteilte Zufallsvariable mit Parameter p, d.h. $X \sim \text{Geom}(p)$ mit $\mathbb{P}(X=k)=p(1-p)^{k-1}$ für $k\in\mathbb{N}$. Berechnen Sie die zugehörige charakteristische Funktion φ_X und zeigen Sie durch Betrachtung und Umformung ihres Logarithmus $\log (\varphi_X(t))$, dass X (in Verteilung) die Gestalt $X\stackrel{d}{=}a+Y$ mit $Y\sim \text{CPois}(\nu)$ hat (wie sehen a und ν genau aus?). Folgern Sie, dass die geometrische Verteilung unbegrenzt teilbar ist.

HINWEIS: Verwenden Sie bei der Umformung von $\log(\varphi_X(t))$ die aus der Vorlesung bekannte Reihenentwicklung des komplexen Logarithmus für $z \in \mathbb{C}$ mit |z| < 1: $\log(1+z) = \sum_{n \geq 1} \frac{(-1)^{n-1}}{n} z^n$.

Aufgabe 4 (3 Punkte)

Für $\alpha \in (0,2]$ ist die symmetrisch- α -stabile Verteilung $S_{\alpha}(\mu,\sigma)$ mit Parametern $\mu \in \mathbb{R}, \sigma > 0$ definiert durch deren charakteristische Funktion $\varphi_{S_{\alpha}(\mu,\sigma)}(t) = e^{-\sigma^{\alpha}|t|^{\alpha} + i\mu t}$. Zeigen Sie:

- a) Die Normalverteilungen $N(\bar{\mu}, \bar{\sigma}^2)$ sind symmetrisch- α -stabil (mit welchen Parametern α , μ , σ ?).
- b) Wenn $(X_n)_{n\geq 1}$ eine Folge unabhängiger, identisch $S_{\alpha}(\mu, \sigma)$ -verteilter Zufallsvariablen ist, dann existieren reelle Folgen $(c_n)_{n\geq 1}$, $(d_n)_{n\geq 1}$ (welche genau?), so dass für alle $n\geq 1$ gilt

$$\mathcal{L}\left(\frac{X_1 + \ldots + X_n - c_n}{d_n}\right) = \mathcal{L}(X_1),$$

- d.h. X_1 und die obige "standardisierte" Summe haben die gleiche Verteilung.
- c) Symmetrisch- α -stabile Verteilungen sind unbegrenzt teilbar.