## Übungen zur Vorlesung "Mathematische Statistik"

## Blatt 10

**Abgabetermin:** Mittwoch, 09.01.2019, bis 12.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1.

(Geben Sie auf jedem Lösungsblatt Ihren Namen an.

Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Sei  $(\Omega, \mathscr{F}, (\mathbb{P}_{\vartheta} : \vartheta \in \{0,1\}))$  ein statistisches Modell mit genau zwei verschiedenen Wahrscheinlichkeitsmaßen  $\mathbb{P}_0$  und  $\mathbb{P}_1$ . Für  $\alpha \in [0,1]$  sei  $G^*(\alpha) := G_{\varphi_{\alpha}^*}(1) = \mathbb{E}_1[\varphi_{\alpha}^*]$  die Güte des (gleichmäßig) besten Tests  $\varphi_{\alpha}^*$  zum Irrtumsniveau  $\alpha$  für  $H_0 = \{0\}$  (d.h.  $\mathbb{P}_0$  liegt vor) gegen  $H_1 = \{1\}$  auf der Alternative. Zeigen Sie:

- a) Die Funktion  $G^*(\alpha)$  ist konkav auf [0,1].
- b) Für alle  $\alpha \in (0,1)$  gilt  $\alpha \leq G^*(\alpha)$ .
- c)  $\mathbb{P}_1$  wird genau dann durch  $\mathbb{P}_0$  dominiert (d.h.  $\mathbb{P}_1 \ll \mathbb{P}_0$ ), wenn  $G^*(0) = 0$ .
- d) Die Abbildung  $\alpha \mapsto \frac{G^*(\alpha)}{\alpha}$  ist fallend und stetig auf (0,1].

HINWEIS: In dieser Aufgabe soll ein Test  $\varphi$  in Verallgemeinerung von Definition 3.1.2 der Vorlesung als eine Abbildung  $\varphi:\Omega\to[0,1]$  aufgefasst werden. Für eine Beobachtung x gibt dann  $\varphi(x)$  die Wahrscheinlichkeit an, sich für die Alternative  $H_1$  zu entscheiden, d.h. Testentscheidungen sind hier nicht mehr notwendigerweise deterministisch. Insbesondere ist damit z.B. auch  $\varphi(x)\equiv c$  ein zulässiger Test zum Irrtumsniveau  $c\in[0,1]$ .

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass im n-fachen Gaußmodell  $\mathcal{M}^{\otimes n}$ ,  $\mathcal{M} = (\mathbb{R}, \mathcal{B}(\mathbb{R}), (\mathbb{P}_{\vartheta} = N(\mu, \sigma_0^2) : \vartheta = \mu \in \Theta = \mathbb{R}))$  mit unbekanntem Mittelwert  $\vartheta$  und bekannter Varianz  $\sigma_0^2 > 0$  für das Testproblem  $\Theta_0 = \{\vartheta_0\}$  gegen  $\Theta_1 = \mathbb{R} \setminus \{\vartheta_0\}$  und  $\alpha \in (0,1)$  kein gleichmäßig bester Test zum Irrtumsniveau  $\alpha$  existiert.

HINWEIS: Verwenden Sie auch hier die allgemeinere Testdefinition aus Aufgabe 1 mit  $\varphi(x) \equiv c$  als zulässigem Test. Die Aussage des Neyman-Pearson-Lemmas ändert sich dadurch nicht, der Beweis funktioniert genauso für allgemeinere Tests  $\psi$ .

Aufgabe 3 (4 Punkte)

Ein zulässiger Test  $\varphi$  zum Irrtumsniveau  $\alpha$  heißt unverfälscht, wenn  $G_{\varphi}(\vartheta) \geq \alpha$  für alle  $\vartheta \in \Theta_1$ . Zeigen Sie für das Testproblem aus Aufgabe 2 mit  $\sigma_0 = 1$ :

a) Jeder unverfälschte Level- $\alpha$ -Test  $\varphi$  für das Testproblem  $\Theta_0 = \{\vartheta_0\}$  gegen  $\Theta_1 = \mathbb{R} \setminus \{\vartheta_0\}$  erfüllt die Bedingungen

1) 
$$\mathbb{E}_{\vartheta_0}[\varphi] = \alpha$$
, 2)  $\mathbb{E}_{\vartheta_0}[\overline{X}\,\varphi] = \alpha\vartheta_0$ ,

wobei  $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$  das arithmetische Mitel der Beobachtungen sei.

HINWEIS: Schauen Sie sich für 2) einmal die Ableitung der Gütefunkion an.

b) Der Test  $\varphi_c$  aus Satz 3.1.10 der Vorlesung mit  $c = \frac{z_{1-\alpha/2}}{\sqrt{n}}$  löst das Minimierungsproblem

$$\begin{cases} \underset{\varphi \text{Level-}\alpha\text{-Test}}{\text{min}} (1 - \mathbb{E}_{\vartheta}[\varphi]), \ \vartheta \in \Theta_1, \\ \text{es gelten die Bedingungen 1) und 2).} \end{cases}$$

und ist damit ein gleichmäßig bester unverfälschter Level- $\alpha$ -Test.

HINWEIS: Minimieren Sie für  $\lambda_1 \in \mathbb{R}$  und  $\lambda_2 > 0$  den Ausdruck  $\lambda_1 \alpha + \lambda_2 \mathbb{E}_{\vartheta_0}[(\overline{X} - \vartheta_0)\varphi] + (1 - \mathbb{E}_{\vartheta_1}[\varphi])$  für beliebiges, aber festes  $\vartheta_1 \in \Theta_1$ .

Aufgabe 4 (4 Punkte)

a) Gegeben sei das n-fache Exponentialverteilungsmodell  $\mathcal{M}^{\otimes n}$  mit  $\mathcal{M} = (\mathbb{R}_+, \mathcal{B}(\mathbb{R}_+), (\mathbb{P}_{\vartheta} = \operatorname{Exp}(\vartheta) : \vartheta \in (0, \infty)))$ , wobei mit  $\mathbb{E}_{\vartheta}[X_i] = \frac{1}{\vartheta} =: \mu$  der Erwartungswert der Beobachtungen bezeichnet werde und  $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ . Betrachtet werden soll das Testproblem  $\Theta_0 = (0, \mu_0]$  gegen  $\Theta_1 = (\mu_0, \infty)$ . Bestimmen Sie ein c, so dass der Test

$$\varphi_c = \mathbb{1}_{\{\overline{X} \ge \frac{c\mu_0}{2n}\}}$$

ein Level- $\alpha$ -Test ist, und geben Sie (ähnlich wie beim Gauß-Test) die Gütefunktion  $G_{\varphi}(\vartheta)$  (oder  $G_{\varphi}(\mu)$ ) mit Hilfe einer geeignet gewählten Verteilungsfunktion explizit an.

b) Geben Sie für das n-fache Poissonmodell  $\mathcal{M}^{\otimes n}$  mit  $\mathcal{M} = (\mathbb{N}_0, \mathfrak{P}(\mathbb{N}_0), (\mathbb{P}_{\vartheta} = \text{Pois}(\vartheta) : \vartheta \in (0, \infty)))$  einen gleichmäßig besten Test zum Irrtumsniveau  $\alpha$  für das Testproblem  $\Theta_0 = (0, \vartheta_0]$  gegen  $\Theta_1 = (\vartheta_0, \infty)$  an.



Wir wünschen Ihnen frohe Weihnachten und einen guten Start ins neue Jahr!