Übungen zur Vorlesung "Mathematische Statistik"

Blatt 7

Abgabetermin: Mittwoch, 5.12.2018, bis 12.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1.

(Geben Sie auf jedem Lösungsblatt Ihren Namen an.

Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

In der Vorlesung haben Sie gesehen, dass $s^2(X)$ der gleichmäßig beste Schätzer für σ^2 im n-fachen Gaußmodell mit unbekanntem Mittelwert μ und unbekannter Varianz σ^2 ist. Zeigen Sie, dass $s^2(X)$ kein gleichmäßig bester Schätzer für σ^2 im n-fachen Gaußmodell ist, falls der Mittelwertparameter $\mu = \mu_0$ bekannt ist.

Aufgabe 2 (4 Punkte)

Betrachten Sie für $n \geq 2$ das n-fache Gaußmodell $\mathscr{M}^{\otimes n}$ mit unbekanntem Mittelwert μ und unbekannter Varianz σ^2 , d.h. $\mathscr{M} = (\mathbb{R}, \mathcal{B}(\mathbb{R}), (\mathbb{P}_{\vartheta} = N(\mu, \sigma^2) : \vartheta = (\mu, \sigma^2) \in \Theta = \mathbb{R} \times (0, \infty))$.

a) Berechnen Sie $\mathbb{E}_{\vartheta}[(cS_n^2 - \sigma^2)^2]$ für beliebiges c > 0, wobei

$$S_n^2 := \sum_{k=1}^n \left(X_k - \frac{1}{n} \sum_{i=1}^n X_i \right)^2.$$

b) Betrachten Sie nun speziell die Fälle $c_1 = \frac{1}{n-1}$, $c_2 = \frac{1}{n}$ und $c_3 = \frac{1}{n+1}$. Was fällt Ihnen auf? Interpretieren Sie das erhaltene Ergebnis.

HINWEIS: Zur Berechnung des Erwartungswertes in Teil a) benötigen Sie die χ_n^2 -Verteilung, vgl. dazu S. 17/18 im Vorlesungsskript.

Aufgabe 3 (4 Punkte)

Sie $\mathcal{M} = (\Omega, \mathcal{F}, (\mathbb{P}_{\vartheta} : \vartheta \in \Theta))$ ein statistisches Modell, $\tau : \Theta \to \mathbb{R}$ eine zu schätzende Kenngröße und T' ein erwartungstreuer Schätzer für $\tau(\vartheta)$ mit $\mathrm{Var}_{\vartheta}[T'] < \infty$ für alle $\vartheta \in \Theta$. Zeigen Sie die Äquivalenz der folgenden Aussagen:

- a) $\operatorname{Var}_{\vartheta}[T'] \leq \operatorname{Var}_{\vartheta}[T]$ für alle $\vartheta \in \Theta$ und alle erwartungstreuen Schätzer T von $\tau(\vartheta)$, d.h. T' ist gleichmäßig bester Schätzer für $\tau(\vartheta)$.
- b) $\mathbb{E}_{\vartheta}[T'S] = 0$ für alle $\vartheta \in \Theta$ und alle Nullschätzer S, d.h. für alle Schätzer S mit $\mathbb{E}_{\vartheta}[S] = 0$ und $\operatorname{Var}_{\vartheta}[S] < \infty$. für alle $\vartheta \in \Theta$.

Aufgabe 4 (4 Punkte)

Gegeben sei eine Menge mit einer bekannten Zahl N von Elementen (Population), durchnummeriert von 1 bis N. Jedes Mitglied j der Population wird mit einer Eigenschaft a_j aus einer Menge V in Beziehung gesetzt (z.B. Einkommen, Fehlzeiten wegen Krankheit, gesammelte

Punkte in Übungsaufgaben...). Der Vektor $((1,a_1),(2,a_2),\ldots,(N,a_N))$ ist unbekannt. Ziel ist es, Kenngrößen $\tau(a_1,\ldots,a_N)$ zu schätzen. Dazu werden n Elemente ohne Zurücklegen gezogen, und es wird angenommen, dass alle möglichen gezogenen n-Tupel gleich wahrscheinlich sind. Sei (I_j,Y_j) mit $Y_j=a_{I_j}$ das Ergebnis im j-ten Zug.

- a) Zeigen Sie, dass das arithmetische Mittel $\overline{Y} = \frac{1}{n} \sum_{j=1}^{n} Y_j$ ein gleichmäßig bester Schätzer für $\bar{a} = \frac{1}{N} \sum_{i=1}^{N} a_i$ ist.
- b) Verifizieren Sie die Gleichung

$$\operatorname{Var}[\overline{Y}] = \frac{N-n}{n(N-1)} \tau_2, \text{ mit } \tau_2 := \frac{1}{N} \sum_{i=1}^{N} (a_i - \bar{a})^2,$$

und bestimmen Sie einen gleichmäßig besten Schätzer für τ_2 .

HINWEIS: Sie dürfen ohne Beweis verwenden, dass ein erwartungstreuer Schätzer der Form $T(Y_1, \ldots, Y_n)$, der symmetrisch in den Y_i ist und für den $Var[T] < \infty$ gilt, ein gleichmäßig bester Schätzer ist.