Übungen zur Vorlesung "Wahrscheinlichkeitstheorie"

Wintersemester 2017/18, Zusatzblatt

Aufgabe 1

Es seien ν, μ, λ drei σ -endliche Maße auf dem Messraum (Ω, \mathcal{A}) mit $\nu \ll \mu \ll \lambda$. Beweisen Sie die Kettenregel für Radon-Nikodym-Ableitungen:

$$\lambda \text{-fast sicher gilt} \quad \frac{d\nu}{d\mu} \cdot \frac{d\mu}{d\lambda} = \frac{d\nu}{d\lambda}.$$

Aufgabe 2

Sei $F: \mathbb{R} \to [0,1]$ eine Verteilungsfunktion, d.h. rechtsseitig stetig und monoton wachsend mit $\lim_{x \to -\infty} F(x) = 1 - \lim_{x \to \infty} F(x) = 0$. Wir definieren die *verallgemeinerte Inverse* $F^{-1}(u) := \inf\{x \in \mathbb{R} \mid F(x) \geq u\}$. Zeigen Sie

- a) F^{-1} ist monoton wachsend,
- b) $F \circ F^{-1}(u) \ge u$ für alle $u \in [0, 1]$,
- c) $F^{-1} \circ F(x) \le x$ für alle $x \in \mathbb{R}$ und
- d) für $u \in [0,1]$ und $x \in \mathbb{R}$ gilt $F(x) \ge u$ genau dann, wenn $x \ge F^{-1}(u)$.

Aufgabe 3

Zeigen Sie, dass

$$e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!} \xrightarrow[n \to \infty]{} \frac{1}{2}.$$

HINWEIS: Zentraler Grenzwertsatz.

Aufgabe 4

Es seien $(X_k)_{k\in\mathbb{N}}$ unabhängige zum Parameter $\lambda=1$ Poisson-verteilte Zufallsvariablen und $S_n:=\sum_{k=1}^n X_k$. Berechnen Sie für $n\to\infty$ den Grenzwert von

$$q_n := \mathbb{E}\Big[\Big(\frac{S_n - n}{\sqrt{n}}\Big)^-\Big].$$

Aufgabe 5

Es sei Y_{λ} eine zum Parameter λ Poisson-verteilte und N eine standardnormalverteilte Zufallsvariable. Zeigen Sie, dass für $\lambda \to \infty$

$$\frac{Y_{\lambda}}{\lambda} \xrightarrow{\mathcal{D}} 1$$
 und $\frac{Y_{\lambda} - \lambda}{\sqrt{\lambda}} \xrightarrow{\mathcal{D}} N$.

Aufgabe 6

Auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$ sei eine Folge von unabhängigen, identisch verteilten Zufallsvariablen $(X_i)_{i \in \mathbb{N}}, \ X_i \geq 0, \forall i, \ \text{mit} \ 0 < \mu := \mathbb{E}[X_1] < \infty$ gegeben. Sei $S_n := \sum_{i=1}^n X_i \ \text{und} \ N_t := \max\{n \in \mathbb{N} : S_n \leq t\}$. Zeigen Sie:

a)
$$N_t \xrightarrow[t\to\infty]{} \infty [\mathbb{P}].$$

b)
$$\frac{N_t}{t} \xrightarrow[t \to \infty]{} \frac{1}{\mu} [\mathbb{P}].$$

Aufgabe 7

Es seien X und Y zwei Zufallsvariablen auf einem Wahrscheinlichkeitsraum $(\Omega, \mathcal{A}, \mathbb{P})$, wobei $X : \Omega \to \mathbb{R}$ und $Y : \Omega \to \mathbb{N}$. Seien weiterhin

$$\mathbb{P}_n: \mathcal{A} \to [0, 1], \ A \mapsto \mathbb{P}(A|Y=n) = \frac{\mathbb{P}(A \cap \{Y=n\})}{\mathbb{P}(Y=n)}$$

für alle $n \in \mathbb{N}$ und

$$e(n): \mathbb{N} \to \mathbb{R}, n \mapsto \int_{\mathbb{R}} x \, d\mathbb{P}_n(x).$$

Zeigen Sie, dass $\mathbb{E}[X|Y] = e(Y)$.