Übungen zur Vorlesung "Mathematische Statistik"

Blatt 13

Abgabetermin: Montag, 29.1.2018, bis 14:00 Uhr im Briefkasten im UG Eckerstraße 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen an. Sie dürfen maximal zu zweit abgeben.)

Wir setzen unsere Analyse des Minimax-Risikos $\mathcal{M}_n(\mathbb{P})$ von Übungsblatt 12 fort. Unser Ziel ist es, eine untere Schranke der Ordnung $l \circ \omega_H(n^{-1/2})$ zu erhalten, wobei für $\varepsilon \geq 0$,

$$\omega_H(\varepsilon) := \sup\{|\theta(P_0) - \theta(P_1)| : H(P_0, P_1) \le \varepsilon, P_0, P_1 \in \mathbb{P}\},\$$

der Stetigkeitsmodul des interessierenden Funktionals $\theta: \mathbb{P} \to \mathbb{R}$ bezüglich der Hellinger-Distanz ist. Eine Charakterisierung der Konvergenzrate von $\mathcal{M}_n(\mathbb{P})$ durch einen Stetigkeitsmodul von θ ist einleuchtend, da dieser die lokale Variation von θ auf \mathbb{P} , und somit die 'Schwere' des Schätzproblems, beschreibt. Im Kontext von Aufgabe 12.3, definiere man analog zu $\eta_A^{(n)}(\Delta)$ und $\Delta_A^{(n)}(\eta)$, die Größen

$$\eta_2^{(n)}(\Delta) := \sup_{t \in \mathbb{R}} \pi \left(\mathbb{P}_{\leq t}^{(n)}, \mathbb{P}_{\geq t + \Delta}^{(n)} \right)$$

und

$$\Delta_2^{(n)}(\eta) := \sup\{\Delta \ge 0 : \eta_2^{(n)}(\Delta) > \eta\}.$$

Aufgabe 1 (4 Punkte)

Zeigen Sie, dass für $\eta \in (0,1)$ und $n \in \mathbb{N}$ gilt,

$$\Delta_A^{(n)}(\eta) \geq \Delta_2^{(n)}(\eta) \geq \omega_H(g_H(\eta)^-),$$

wobei g_H wie in Aufgabe 12.4 definiert ist.

Aufgabe 2 (4 Punkte)

Zeigen Sie, dass für $\varepsilon \in (0,1)$ und $x \in [0,1]$, $1-\varepsilon^x \ge \varepsilon |\log \varepsilon| x$ gilt, und schließen Sie damit, und mit den vorhergehenden Aufgaben, dass für $\eta \in (0,1)$, $n \in \mathbb{N}$ und $\varepsilon := \eta(2-\eta)$ gilt

$$\mathcal{M}_n(\mathbb{P}) \ \geq \ rac{\eta}{2} \cdot l \left(\left[rac{1}{2} \omega_H \left(\left[\sqrt{rac{arepsilon |\log arepsilon|}{n}}
ight]^-
ight)
ight]^-
ight).$$

Bemerkung: Falls \mathbb{P} konvex ist, $\theta: \mathbb{P} \to \mathbb{R}$ linear und beschränkt ist und $\omega_H(\varepsilon) \simeq \varepsilon^r$, für $\varepsilon \to 0$ und für ein $r \in (0,1]$, so lässt sich zeigen, dass die eben erhaltene untere Schranke auch nicht zu klein ist, es also immer einen Schätzer $\hat{\theta}_n$ gibt, so dass $\sup_{P \in \mathbb{P}} \mathbb{E}_P[l(|\hat{\theta}_n - \theta(P)|)] \lesssim l \circ \omega_H(n^{-1/2})$.

Aufgabe 3 (4 Punkte)

Betrachten Sie die nicht-parametrischen Regressionsprobleme aus Aufgabe 11.4 und Aufgabe 12.1. Geben Sie jeweils die Menge \mathbb{P} der datengenerierenden Verteilungen und das interessierende Funktional $\theta: \mathbb{P} \to \mathbb{R}$ an. Finden Sie weiter für jedes der beiden Probleme eine "geeignete" untere Schranke an $\omega_H(\varepsilon)$, zumindest für alle kleinen $\varepsilon > 0$. Sind die hier auftretenden Funktionale θ linear?

Aufgabe 4 (4 Punkte)

Gegeben seien i.i.d. Zufallsvariablen X_1, \ldots, X_n mit Dichte $p \in \mathcal{P}(\beta, L), \ \beta > 0, \ L > 0$, wobei $\mathcal{P}(\beta, L)$ die Klasse aller $\ell := \lfloor \beta \rfloor$ mal differenzierbaren Lebesgue Dichten p auf [0,1] bezeichnet, so dass $p^{(\ell)}$ Hölder-stetig ist, mit Exponent $\beta - \ell$ und Konstante L. Finden Sie mit Hilfe der in der Vorlesung präsentierten 'fuzzy hypotheses' eine untere Schranke an das Minimax-Risiko der Schätzung des quadratischen Funktionals $\theta(p) = \int_0^1 p^2(x) \, dx$, welche von der Ordnung

$$\psi_n = \max\left(n^{-\frac{4\beta}{4\beta+1}}, n^{-1/2}\right)$$

ist.