

Wahrscheinlichkeitstheorie

WS 2016/2017

Vorlesung: Prof. Dr. Thorsten Schmidt Übung: Wahid Khosrawi-Sardroudi

http://www.stochastik.uni-freiburg.de/lehre/ws-2016-17/vorlesung-wahrscheinlichkeitstheorie-ws-2016-17

Übung 6

Abgabe: 02.12.2016 in den Briefkästen.

Aufgabe 1 (4 Punkte). Seien (X_n) eine Folge reellwertiger Zufallsvariablen und X eine weitere \mathbb{R} -wertige Zufallsvariable, so gilt

 $(1) X_n \overset{f.s.}{\to} X \Leftrightarrow \forall \epsilon > 0: \lim_{n \to \infty} P\left(\bigcup_{m=n}^{\infty} \{|X_m - X| \ge \epsilon\}\right) = 0 \Leftrightarrow \sup_{m \ge n} |X_m - X| \overset{P}{\to} 0$

- (2) konvergiert $X_n \stackrel{f.s.}{\to} X$, so auch stochastisch $(X_n \stackrel{P}{\to} X)$.
- (3) Stochastisches Cauchy-Kriterium. Sind die (X_n) P-fast sicher konvergent, so ist das äquivalent dazu, dass für alle $\epsilon > 0$ folgendes gilt:

$$\lim_{n \to \infty} P\left(\bigcup_{m=1}^{\infty} \{|X_{m+n} - X_n| \ge \epsilon\}\right) = 0$$

Aufgabe 2 (3 Punkte + 1 Bonuspunkt). Beweisen Sie die folgende Version des schwachen Gesetzes der großen Zahlen:

Seien (X_n) unabhängige und identisch verteilte (i.i.d) \mathbb{R} -wertige Zufallsvariablen. Ferner sei $\mathbb{E}\left[X_1^2\right] < \infty$. Dann gilt:

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{n} \xrightarrow{P} \mathbb{E}\left[X_1\right] < \infty.$$

Den Bonuspunkt bekommen Sie für $\mathbb{E}[X_1] < \infty$.

Aufgabe 3 (4 Punkte). Es seien $(X_n)_{n\in\mathbb{N}}$, $(Y_n)_{n\in\mathbb{N}}$ und $(Z_n)_{n\in\mathbb{N}}$ Folgen reeller, integrierbarer Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) mit $X_n \leq Y_n \leq Z_n$ für alle $n \in \mathbb{N}$ sowie $X_n \to_P X$, $Y_n \to_P Y$ und $Z_n \to_P Z$. Zeigen Sie:

- a) $X_n + Y_n \rightarrow_P X + Y$.
- b) Gilt zusätzlich $E[X_n] \to E[X]$ und $E[Z_n] \to E[X]$, so folgt $E[Y_n] \to E[Y]$

Aufgabe 4 (4 Punkte). Auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) sei eine Folge von unabhängigen, identisch zum Parameter $\alpha > 0$ exponentialverteilten Zufallsvariablen $(X_n)_{n \in \mathbb{N}}$ gegeben. Zeigen Sie

- a) $P(\limsup_{n\to\infty} \frac{X_n}{\ln n} = \frac{1}{\alpha}) = 1$
- b) $P(\liminf_{n\to\infty} \frac{X_n}{\ln n} = 0) = 1.$

Aufgabe 5 (Zusatzaufgabe). Auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{A}, P) wird ein Zufallsexperiment unabhängig wiederholt. Es sei A_n das Ereignis, im nten Versuch einen Erfolg zu erzielen, wobei $P(A_n) = p, \forall n \in \mathbb{N}$. Das Ereignis

$$A_{n,m} := \bigcap_{n \le k < n+m} A_k$$

bezeichnet eine mit dem nten Versuch beginnende Erfolgsserie der Länge m. Zeigen Sie für $\alpha>0$:

$$P(\limsup_{n\to\infty} A_{n,\lceil\alpha\ln n\rceil}) = \left\{ \begin{array}{ll} 0, & \text{falls } \frac{1}{\alpha} < \ln\frac{1}{p}, \\ 1, & \text{falls } \frac{1}{\alpha} > \ln\frac{1}{p}. \end{array} \right.$$

Hinweis: Wählen Sie ein geeignetes $\delta > 0$ und zeigen Sie, dass die Folge $(A_{\lceil k^{1+\delta} \rceil, \lceil \alpha \ln \lceil k^{1+\delta} \rceil \rceil})_{k \geq k_0}, k_0 \in \mathbb{N}$, unabhängig ist.

Aufgabe 6 (Zusatzaufgabe). Beweisen Sie die beiden Korollare aus der Vorlesung. Diese Beweise können Sie im Pfaffelhuber Skript finden, aber versuchen Sie es zunächst selber!