Übungen zur Vorlesung "Stochastische Prozesse"

Wintersemester 2016/17, Blatt 14

Abgabetermin: 06.02.2017, bis 12:00 Uhr in Fach Nr. 3.16., UG Eckerstr. 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Bitte nur maximal zu zweit abgeben.)

Aufgabe 51 (4 Bonus - Punkte)

Seien Y_1, Y_2, \ldots identisch verteilte Zufallsvariablen mit $\mathbb{E} Y_1 = 0$, $\operatorname{Var} Y_1 = 1$, $\operatorname{Cov}(Y_i, Y_j^3) = 0$ $\forall i \neq j \text{ und } \mathbb{E} Y_1^4 < \infty$. Zeigen Sie, dass $\{(X_n(t))_{0 \leq t \leq 1} | n \in \mathbb{N}\}$ als Folge in $\mathcal{C}[0, 1]$ straff ist für

$$X_n(t) = \frac{1}{\sqrt{n}}(Y_1 + \ldots + Y_{[nt]} + (nt - [nt])Y_{[nt]+1}).$$

Aufgabe 52 (4 Bonus - Punkte)

Seien Y_1,Y_2,\ldots unabhängige, identisch verteilte Zufallsvariablen mit $\mathbb{E}Y_i=0$ und $\mathrm{Var}\,Y_i=1$. Sei $S_n=\sum_{i=1}^n Y_i$. Zeigen Sie für r>0, dass

$$\lim_{n\to\infty}\mathbb{P}\left(\max_{1\leq k\leq n}S_k>r\sqrt{n}\right)=2\mathbb{P}(Z>r)\,,$$

wobei $Z \sim N(0,1)$.

Aufgabe 53 (4 Bonus - Punkte)

Angenommen, für jedes n sind $Y_{1n},\ldots,Y_{n,n}$ unabhängig mit $\mathbb{E}Y_{kn}=0$ und $\mathrm{Var}\,Y_{kn}=1$ für $1\leq k\leq n$. Gelte weiter für alle $\varepsilon>0$, dass

$$\lim_{n\to\infty}\sum_{i=1}^n\mathbb{E}\left(\frac{Y_{in}^2}{n}\mathbb{1}_{\{Y_{in}^2>\varepsilon n\}}\right)=0\,.$$

Sei $X_n(\cdot)$ die stetig linear interpolierte Version von S_n mit $S_n(t) := \frac{1}{\sqrt{n}} \sum_{i=1}^{[nt]} Y_{in}$, $t \in [0,1]$, wie im Satz von Donsker.

Zeigen Sie, dass $X_n \to_{\mathcal{D}} B$ in $\mathcal{B}(C[0,1])$, wobei B eine stBB ist.

Aufgabe 54 (4 Bonus - Punkte)

Sei $S_n = \sum_{i=1}^n Y_i$, Y_i iid mit $\mathbb{E}Y_i = 0$ und $\operatorname{Var}Y_i = 1$, ein symmetrischer Random Walk. Sei $k \in \mathbb{N}$.

- a) Zeigen Sie, dass $n^{-1-\frac{k}{2}} \sum_{m=1}^{n} S_m^k \to_{\mathcal{D}} \int_0^1 B_t^k dt$.
- b) Was ist an der Konvergenz in a) bemerkenswert?
- c) Welche Verteilung hat $\int_0^1 B_t dt$?
- d) Zeigen Sie, dass $n^{-\frac{3}{2}} \sum_{m=1}^{n} (n+1-m) Y_m \to_{\mathcal{D}} N\left(0, \frac{1}{3}\right)$.

HINWEIS: Betrachten Sie für $\omega \in \mathcal{C}[0,1]$ das Integralfunktional $\Psi(\omega) := \int_{[0,1]} \omega(t)^k \ \mathrm{d}\lambda(t)$.

Die Übungsaufgaben sowie weitere Informationen zur Vorlesung finden Sie auf der Internetseite: https://www.stochastik.uni-freiburg.de/lehre/ws-2016-17/vorlesung-stochastische-prozesse-ws-2016-17