
Lecture notes on SPDEs

Philipp Harms

February 10, 2017

Contents

1 Introduction 2
1.1 Stochastic evolution equations . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivating examples . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Random motion of a string . . . . . . . . . . . . . . . . . 3
1.2.2 Zakai equation in non-linear filtering . . . . . . . . . . . . 3
1.2.3 Equations of population genetics . . . . . . . . . . . . . . 4

1.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Integration in Banach spaces 4
2.1 Strong measurability . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Lebesgue-Bochner Lp spaces . . . . . . . . . . . . . . . . . . . . . 7
2.3 Bochner integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Other notions of integrals . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Gaussian random variables 9
3.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Series representations . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Gaussians on Hilbert spaces . . . . . . . . . . . . . . . . . . . . . 14
3.5 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Tensor products and operator ideals 15
4.1 Tensor products and tensor norms . . . . . . . . . . . . . . . . . 16
4.2 Operator ideals and bilinear forms . . . . . . . . . . . . . . . . . 17
4.3 Trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Some further tensor norms and operator ideals . . . . . . . . . . 18
4.5 Operator ideals on Hilbert spaces . . . . . . . . . . . . . . . . . . 20
4.6 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Stochastic integration 20
5.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Brownian motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Construction of the stochastic integral . . . . . . . . . . . . . . . 23
5.4 Properties of the stochastic integral . . . . . . . . . . . . . . . . . 26
5.5 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



6 Stochastic evolution equations with Lipschitz coefficients 30
6.1 Solution concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 32
6.3 Existence of continuous modifications . . . . . . . . . . . . . . . 36
6.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Heath–Jarrow–Morton equation 38
7.1 Bond prices and interest rates . . . . . . . . . . . . . . . . . . . . 38
7.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 38
7.3 Absence of arbitrage . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.5 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Stochastic evolution equations with unbounded coefficients 44
8.1 Interpolation spaces . . . . . . . . . . . . . . . . . . . . . . . . . 44
8.2 Smoothing effect of the semigroup . . . . . . . . . . . . . . . . . 45
8.3 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Stochastic heat equation 48
9.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 48
9.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

10 Stochastic wave equation 50
10.1 Overview of wave equations . . . . . . . . . . . . . . . . . . . . . 50
10.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 51
10.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

11 Stochastic Schrödinger equation 52
11.1 Quantum mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 52
11.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 53
11.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

12 Stochastic linearized Korteweg–de Vries equation 55
12.1 History of the Korteweg–de Vries equation . . . . . . . . . . . . . 55
12.2 Existence and uniqueness . . . . . . . . . . . . . . . . . . . . . . 55
12.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

1 Introduction

1.1 Stochastic evolution equations

These lectures concentrate on stochastic partial differential equations (SPDEs)
of evolutionary type. These are equations of the general form

dXt = A(t,Xt)dt+B(t,Xt)dWt,

where X, A, and B are processes with values in some Banach space, and W is
Brownian motion on a Hilbert space.
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1.2 Motivating examples

1.2.1 Random motion of a string

A random evolution of a string in Rd can be modeled as a process X with values
in E := C([0, 1];Rd) solving

dXt(u) =
(

∆Xt(u) + f
(
Xt(u)

))
dt+ b

(
Xt(u)

)
dWt(u),

where the Laplace operator ∆ models elastic forces within the string, the func-
tion f : Rd → Rd models an external forcing field acting on the string, the
function b : Rd → Rd models the intensity of a random external force, and W
is a cylindrical Wiener process on L2([0, 1]) with the identity covariance opera-
tor. This equation is the limit of the following system of N = 1/h interacting
particles at positions ui ∈ [0, 1]:

dXt(ui) =

(
1

2

Xt(ui−1)− 2Xt(ui) +Xt(ui+1)

h2
+ f

(
X(ui)

))
dt

+
√
hb
(
X(ui)

)
dW i

t ,

where W 1, . . . ,WN are independent scalar Brownian motions.
Many other examples of a similar flavor can be constructed by adding noise

to physically motivated deterministic evolution equations such as Navier–Stokes,
Korteweg de Vries, Schödinger, etc.

1.2.2 Zakai equation in non-linear filtering

There is an unobserved process U and an observed process Y given by

dUt = b(Ut)dt+ σ(Ut)dW
1
t ,

dYt = h(Ut)dt+ dW 2
t ,

where all coefficients are in C∞b (R). Then U is a Markov process with generator

Af(u) = b(u)
∂f(u)

∂u
+

1

2

(
σ(u)σ(u)>

) ∂2f(u)

∂u2
.

Under an ellipticity assumption on σσ> and a regularity assumption on the law
of U0, the conditional law of Ut given {Ys, s ∈ [0, t]} can be expressed in terms
of an unnormalized density Xt with respect to the Legesgue measure, which
solves

dXt(u) = A∗Xt(u)dt+ h(u)Xt(u)dYt,

where Xt takes values in a Sobolev space E = Hk(R), A∗ is the (formal) adjoint
of A, and Y is Brownian motion under an equivalent probability measure. This
stochastic evolution equation is studied in [Roz90].

The SPDE treatment has two advantages: first, it allows one to deduce and
study regularity properties of the density, and second, it allows one to make use
of numerical schemes for SPDEs.
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1.2.3 Equations of population genetics

Let X(t, u) denote the density of a population at time t and location u ∈ Rd.
A model for unnormalized densities is the Dawson process

dX(t, u) = a∆X(t, u)dt+ b
√
X+(t, u)dWt(u),

and a model for normalized densities is the Fleming–Viot process

dX(t, u) =
(
∆X(t, u) + aX(t, u)− b

)
dt+ b

√
1

2
X+(t, u)

(
1−X+(t, u)

)
dWt(u),

In these equations X is a process with values in L2(Rd), a and b are positive
constants, and W is cylindrical Brownian motion on some Hilbert space. The
motivation behind these equations is a similar limiting procedure as in the ex-
ample involving a random string.

1 Reflection. What processes does one get if the state space Rd of u is replaced
by a finite set {u1, . . . , uN}?

• CIR and Jacobi processes with interaction in the drift, if ∆ is discretized
as in the random string example.

Measure-valued processes can be used in many other applications such as
stochastic portfolio theory, interest rate models with credit risk, energy delivery
prices, etc.

1.3 Literature

We will use the following books and lecture notes as our main sources:

• G. Da Prato and J. Zabczyk. Stochastic equations in infinite dimensions.
Cambridge university press, 2014

• J. Van Neerven. Stochastic evolution equations. ISEM lecture notes.
2007–2008

• A. Jentzen. Stochastic Partial Differential Equations: Analysis and Nu-
merical Approximations. Lecture Notes, ETH Zürich. 2016

• C. Prévôt and M. Röckner. A concise course on stochastic partial differ-
ential equations. Vol. 1905. Springer, 2007

The motivating examples are taken from [DZ14].

2 Integration in Banach spaces

2 Reflection. Our aim is to define
∫
fdµ for measures µ on (A,A) and functions

f : A → E, where E is a Banach space. What structural properties of the
function space do we need?

• Functions can be approximated by simple functions.

• The space is closed under addition and scalar multiplication.

These issues will be addressed in the sequel.
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2.1 Strong measurability

3 Setting. Let (A,A, µ) be a finite measure space, let E and F be Banach
spaces, and let f, g : A→ E.

4 Definition.

• f is called measurable if f−1(B) ∈ A, for all B ∈ B(E).

• f is called weakly measurable if 〈f, x∗〉 is measurable, for each x ∈ E∗.

• f is called simple if it is measurable and the range of f is finite.

• f is called strongly measurable if it is measurable and the range of f is
separable.

5 Reflection. Is there a σ-algebra on A such that f is strongly measurable iff
f is measurable with respect to this σ-algebra?

• No. Indeed, it is easy to see that the σ-algebra generated by the strongly
measurable functions is all of A.

6 Theorem (Pettis measurability theorem). The following are equivalent:

(i) f is strongly measurable;

(ii) f is weakly measurable and has separable range;

(iii) f is the point-wise limit of a sequence of simple functions;

(iv) f is the point-wise limit of a sequence of strongly measurable functions.

7 Reflection. What can go wrong if f is only measurable instead of strongly
measurable?

• If f is a measurable function with non-separable range, then f cannot be
approximated by simple functions. This follows from Theorem 6.

• If f and g are measurable, it does not necessarily follow that f + g is
measurable:

A
(f,g) // B(E)⊗ B(E) B(E × E)

Ioo + // B(E)

Writing I = (π1, π2) for the identity and noting that the projections
π1, π2 : E × E → E are continuous, one sees that the mapping I in
the above diagram is measurable. Thus, B(E)⊗B(E) ⊆ B(E×E). If the
inclusion is strict, f + g might not be measurable (see [Els11, III.5.9–11]
and [Gra16] for a discussion).

The proof of Theorem 6 requires some auxiliary lemmas.

8 Lemma. The following are equivalent:

(i) f is measurable;

(ii) f is the pointwise limit of measurable functions.
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Proof. (i)⇒ (ii) is trivial. (ii)⇒ (i). Let φ ∈ C(E). Then φ◦f is the pointwise
limit of φ ◦ fn. Thus, φ ◦ f is measurable, as can be seen from

{φ ◦ f ≥ c} =
{

lim
n→∞

φ ◦ fn ≥ c
}

=

{
lim sup
n→∞

φ ◦ fn ≥ c
}

=

{
lim
n→∞

sup
m≥n

φ ◦ fm ≥ c
}

=
⋂
n≥0

{
sup
m≥n

φ ◦ fm ≥ c
}
∈ A.

Thus, f is Baire measurable, i.e., measurable with respect to the initial σ-
algebra with respect to continuous functions on E. On metric spaces, the Baire
and Borel algebras coincide. To see this, note that any open set B can be
written as φ−1({0}), where φ ∈ C(E) is given by φ(x) = dist(x,Bc).

9 Lemma. The following properties hold:

(i) If E is separable, then each subset A ⊆ E is separable.

(ii) If A ⊆ E is separable, then the closure of A is separable.

(iii) If A ⊆ E is separable, then the linear span of A is separable.

Proof. (i): Let xn, n ∈ N, be a dense sequence in E. Then there is a sequence
yn in A such that

‖yn − xn‖ ≤ 2−n + inf
y∈A
‖y − xn‖.

Then the sequence yn is dense in A because one has for each x ∈ A

inf
n∈N
‖x− yn‖ ≤ inf

n∈N

(
‖x− xn‖+ ‖xn − yn‖

)
≤ inf
n∈N

(
‖x− xn‖+ 2−n + inf

y∈A
‖y − xn‖

)
≤ inf
n∈N

(
2‖x− xn‖+ 2−n

)
= 0.

This shows (i). (ii) and (iii) are trivial.

10 Lemma. If E is separable, then there exists a norming sequence x∗n ∈ E∗,
i.e., for every x ∈ E one has

‖x‖ = sup
n
|〈x, x∗n〉|.

Proof. Let xn be a dense sequence in E, and let εn be a sequence of positive
numbers converging to zero. For each n,

‖xn‖ = sup
‖x∗‖≤1

|〈xn, x∗〉|.

Therefore, there is a unit vector in x∗n ∈ E∗ such that

(1− εn)‖xn‖ ≤ |〈xn, x∗n〉|.

We claim that the sequence x∗n is norming. To see this, let x ∈ E and let xnk
be a subsequence converging to x. Then

(1− εnk)‖x‖ ≤ (1− εnk)(‖xnk‖+ ‖x− xnk‖)

6



≤ |〈xnk , x∗nk〉|+ (1− εnk)‖x− xnk‖
≤ |〈x, x∗nk〉|+ (2− εnk)‖x− xnk‖

Taking the limes superior yields

‖x‖ ≤ lim sup
k→∞

|〈x, x∗nk〉| ≤ sup
n
|〈x, x∗n〉|.

Proof of Theorem 6. (i) ⇒ (ii) is trivial.
(ii) ⇒ (iii). Let f be weakly measurable with separable range. Then the

set E0 = span f(A) is separable by Lemma 9. Let xi be a dense sequence in
E0, and let x∗j ∈ E∗0 be the norming sequence provided by Lemma 10. For each
n let fn be the function mapping a ∈ A to the point in {x1, . . . , xn} which is
closest to f(a); if several points xi have the same distance to f(a), choose the
point xi with the lowest index i. Note that

Dn(a) := ‖f(a)− xn‖ = sup
k
|〈f(a)− xn, x∗k〉|

is measurable in a, for each n. Therefore,

f−1
n (xk) =

(
k−1⋂
l=1

{Dk < Dl}

)
∩

(
n⋂
l=1

{Dk ≤ Dl}

)
∈ A.

Thus, fn is measurable. Moreover, fn has finite range, and the sequence fn
converges pointwise to f . This shows (ii).

(iii) ⇒ (iv) is trivial.
(iv)⇒ (i). Let gn be a sequence of strongly measurable functions converging

pointwise to a function f . Then f is measurable by Lemma 8. Moreover,
the range of f is contained in the set closure of the set

⋃
n∈N gn(A), which is

separable by Lemma 9. This proves (iv).

2.2 Lebesgue-Bochner Lp spaces

11 Definition. We call two functions f, f̃ versions of each other if f = g holds
µ-almost everywhere; this defines an equivalence relation to be used in the
sequel. For 0 ≤ p < ∞ we define Lp(A;E) as the set of all equivalence classes
of functions f : A→ E having a strongly measurable version f̃ and satisfying

‖f‖Lp(A;E) :=

(∫
A

‖f̃‖p
)1/p

<∞.

The topology on L0(A;E) is that of convergence in measure. Moreover, we
define L∞(A;E) as the set of all equivalence classes of functions f : A → E
having a strongly measurable version and satisfying

‖f‖L∞(A;E) := inf {r ≥ 0 : µ(‖f‖ ≥ r) = 0} <∞.

12 Theorem. For each 1 ≤ p ≤ ∞ the space Lp(A;E) is a Banach space. For
1 ≤ p <∞ the simple functions are dense in Lp(A;E).
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Proof. Let f, g be strongly measurable, let F be a Banach space, and let φ ∈
C(E;F ). Then Theorem 6.(iii) implies that (f, g) : A → E × E and φ ◦ f are
strongly measurable. In particular, f + g and λf are strongly measurable, for
each λ ∈ R.

The remaining part works as in the finite-dimensional case: one verifies that
‖ · ‖Lp is a norm and that Lp is complete under this norm. The approximations
constructed in Theorem 6 converge uniformly outside of sets of arbitrarily small
measure by Egorov’s theorem. This proves the density of simple functions. See
[Lan93, Chapters VI and VII] for full proofs.

2.3 Bochner integral

13 Definition. For each simple function f =
∑N
n=1 1Anxn set∫

A

fdµ :=

N∑
n=1

µ(An)xn.

14 Theorem. There is a unique bounded linear operator∫
A

dµ : L1(A;E)→ E

extending the linear mapping in Definition 13 such that for each f ∈ L1(A;E),∥∥∥∥∫
A

fdµ

∥∥∥∥ ≤ ∫
A

‖f‖dµ =: ‖f‖L1(A;E).

This operator is called the Bochner integral.

Proof. The inequality is easy to see for simple functions:∥∥∥∥∫
A

fdµ

∥∥∥∥ =

∥∥∥∥∥
N∑
n=1

µ(An)xn

∥∥∥∥∥ ≤
N∑
n=1

µ(An)‖xn‖ =

∫
A

‖f‖dµ.

It implies that the integral in Definition 13 is a bounded operator with operator
norm ≤ 1. The set of simple functions is dense in L1(A;E) by Theorem 12.
Therefore, the integral has a unique extension to L1(A;E) with the same oper-
ator norm.

15 Reflection. Is there a dominated convergence theorem for Bochner inte-
grals, and how would you prove it?

• If fn → f a.s. and ‖fn‖ ≤ g ∈ L1(µ), then
∫
‖fn−f‖dµ→ 0 by the scalar

dominated convergence theorem, and
∫

(fn − f)dµ→ 0 by the continuity
of the integral.

16 Reflection. What are some examples of separable and non-separable Ba-
nach spaces?

• If (A,A, µ) is countably generated and E is separable, then Lp(µ;E) is
separable for each p ∈ [1,∞), but L∞(µ;E) is in general not separable.

• L(E;F ) is in general not separable, even if E and F are separable Hilbert
spaces. See exercises.
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• If K is a compact topological space, then C(K) is separable. If K is a
locally compact Polish space, then C0(K) is separable, but C(K) is in
general not separable.

• For any Polish space E, D(R+;E) with ‖ · ‖∞ is a non-separable Banach
space, and D(R+;E) with the Skorokhod J1 metric is a Polish space, but
addition is discontinuous.

• There are non-separable Hilbert spaces, but they do not appear often in
practice.

2.4 Other notions of integrals

17 Definition. Let f : A→ E be weakly measurable.

• The Pettis integral of f over A, if it exists, is an element x ∈ E satisfying

〈x, x′〉 =

∫
〈f, x′〉dµ, ∀x′ ∈ E′.

Let PI1(A;E) be the space of Pettis-integrable functions, and let P̂ I1(A;E)
be the completion of this space with respect to the norm

‖f‖PI1(A;E) = sup

{∫
A

|〈f, x∗〉|dµ : x∗ ∈ E∗, ‖x∗‖ ≤ 1

}
.

• The Gelfand integral is another name for the Pettis integral in the case
where E is the dual of a Banach space and carries the weak-* topology.

• The Dunford integral of f over A, if it exists, is an element x′′ ∈ E′′

satisfying

〈x′′, x′〉 =

∫
〈f, x′〉dµ, ∀x′ ∈ E′.

18 Remark. One always has

Bochner integrability⇒ Pettis integrability⇒ Dunford integrability.

In general these implications are strict: there are functions which are Dunford
but not Pettis integrable [Rya02, p. 52] and functions which are Pettis but not
Bochner integrable [Rya02, p. 53].

2.5 Literature

Most of this section is taken from [Van08] and [Jen16]. Integration of Banach-
space valued functions is treated in detail in [Lan93] and [AB06].

3 Gaussian random variables

19 Setting. Let (Ω,F ,P) be a probability space, let E be a Banach space, and
let X : Ω → E be strongly measurable. More generally, all random variables
are assumed to have a strongly measurable version.
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20 Reflection. Our aim is to define Gaussian random variables with values in
a Banach space. What are our options?

• Densities are not helpful because there is no Lebesgue measure on the
Banach space.

• We could require all finite-dimensional projections to be Gaussian.

• We could require all one-dimensional projections to be Gaussian. (This
turns out to be equivalent.)

• We could use some limiting procedure, where we build up vector-valued
Gaussians from scalar ones.

21 Definition. X is called centered Gaussian if for every x∗ ∈ E∗ there exists
q ≥ 0 such that

E
[
exp

(
− iξ〈X,x∗〉

)]
= exp

(
− 1

2ξ
2q
)
, ξ ∈ R.

22 Reflection. Can we write 〈X,x∗〉 ∼ N(0, σ2) for some σ?

• If q = 0 then 〈X,x∗〉 ∼ δ0;

• If q > 0 then 〈X,x∗〉 ∼ N(0, q), i.e., q = σ2.

3.1 Moments

23 Theorem (Moments). Let X be centered Gaussian.

(i) Covariance: the law of X is determined uniquely by the bilinear form

q(x∗1, x
∗
2) = E[〈X,x∗1〉〈X,x∗2〉], x∗1, x

∗
2 ∈ E∗.

(ii) Fernique’s theorem: there exists β > 0 such that

E
[
exp

(
β‖X‖2

)]
<∞.

(iii) Covariance operator: there exists Q ∈ L(E∗, E) such that

q(x∗1, x
∗
2) = 〈Qx∗1, x∗2〉.

(iv) Kahane-Khintchine inequality: for all p, q ∈ [1,∞) there is a universal
constant Kp,q such that ‖X‖Lp(Ω;E) ≤ Kp,q‖X‖Lq(Ω;E).

We need some auxiliary lemmas.

24 Lemma (Injectivity of the Fourier transform). If

E
[
exp

(
− i〈X1, x

∗〉
)]

= E
[
exp

(
− i〈X2, x

∗〉
)]
, x∗ ∈ E∗,

then X1 is identically distributed to X2.
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Proof. As X1 and X2 have strongly measurable versions, there is no loss of
generality in assuming E to be separable. Denote by Cyl(E) the algebra of
cylinder sets on E, i.e., the initial algebra with respect to E∗. The laws of X1

and X2 agree on Cyl(E) because the Fourier-transform on the space of measures
on Rn is injective. (It is even bijective on the much larger space of tempered
distributions.) By Dynkin’s Lemma it remains to show σ(Cyl(E)) = B(E).
As B(E) is generated by open sets, it is sufficient to show that open sets are
contained in σ(Cyl(E)). As open sets are countable unions of closed balls, it
is sufficient to show that closed balls are contained in σ(Cyl(E)). This can be
seen by taking a norming sequence x∗ ∈ E∗ and writing

BR(x0) =
⋂
n∈N

{
x : |〈x− x0, x

∗
n〉| ≤ R

}
∈ σ(Cyl(E)).

25 Lemma (Rotations). If X1 and X2 are iid centered Gaussian, then Y1 :=
(X1 +X2)/

√
2 and Y2 := (X1 −X2)/

√
2 are iid and have the same distribution

as X1 and X2.

Proof. We check that (X1, X2) and (Y1, Y2) have the same Fourier transforms.
Setting q(x∗) = E[〈X1, x

∗〉2] we have

E
[
exp

(
− i〈Y1, x

∗
1〉 − i〈Y2, x

∗
2〉
)]

= E
[
exp

(
− i〈X1 +X2, x

∗
1〉/
√

2− i〈X1 −X2, x
∗
2〉/
√

2
)]

= E
[
exp

(
− i〈X1, x

∗
1 + x∗2〉/

√
2
)]

E
[
exp

(
− i〈X2, x

∗
1 − x∗2〉/

√
2
)]

= exp
(
− 1

4q(x
∗
1 + x∗2)

)
exp

(
− 1

4q(x
∗
1 − x∗2)

)
= exp

(
− 1

2q(x
∗
1)− 1

2q(x
∗
2)
)

= E
[
exp

(
− i〈X1, x

∗
1〉 − i〈X2, x

∗
2〉
)]
.

Proof of Theorem 23.
(i): This follows from Lemma 24.
(ii): We follow [Van08, Theorem 4.3]. By the triangle inequality, one has for

each x, y ∈ E that

min{‖x‖, ‖y‖} ≥ 1
2

(
‖x+ y‖ − ‖x− y‖

)
.

Therefore, one has for each 0 < s ≤ t that(
‖x− y‖ ≤

√
2s, ‖x+ y‖ ≥

√
2t
)
⇒
(
‖x‖ ≥ (t− s)/

√
2, ‖y‖ ≥ (t− s)/

√
2
)
.

Let Y be an iid copy of X, possibly on an extended probability space. By
Lemma 25 we have for each s, t > 0 that

P [‖X‖ ≤ s]P [‖Y ‖ > t] = P
[
‖(X − Y )/

√
2‖ ≤ s, ‖(X + Y )/

√
2‖ > t

]
≤ P

[
‖X‖ > (t− s)/

√
2, ‖Y ‖ > (t− s)/

√
2
]

= P
[
‖X‖ > (t− s)/

√
2
]2
.

Choose r > 0 such that P[‖X‖ ≤ r] ≥ 2/3. For each n ∈ N set

t0 = r, tn+1 = r +
√

2tn, αn =
P[‖X‖ > tn]

P[‖X‖ ≤ r]
.
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The above inequality with s = r and t = tn yields

αn ≤ α2
n−1 ≤ · · · ≤ α2n

0 ≤
(

1− 2
3

2
3

)2n

= 2−2n .

Moreover, one can check that explicitly,

tn =
(

1 +
√

2 + · · ·+ (
√

2)n
)
r =

(
√

2)n+1 − 1√
2− 1

r ≤ (
√

2)n+4r.

Set γ = (log 2)/26. For any t ≥ r and n ∈ N such that r ∈ [tn, tn+1),

P[‖X‖ > t] ≤ P[‖X‖ > tn] ≤ 2−2n ≤ 2−(tn+1/r)
2/32

= exp
(
− 2γt2n+1/r

2
)
≤ exp

(
− 2γt2/r2

)
.

Integration by parts shows that for each β ≤ γ/r2

E[exp(β‖X‖2)] ≤ E[exp(γ‖X‖2/r2)]

= P[‖X‖ ≤ r] exp(γ) +

∫ ∞
r

P[‖X‖ > t]d
(

exp(γt2/r2)
)

≤ exp(γ) +

∫ ∞
r

exp
(
− 2γt2/r2

)
d
(

exp(γt2/r2)
)

= exp(γ) +

∫ ∞
1

exp
(
− 2γs2

)
d
(

exp(γs2)
)

= exp(γ) + 2γ

∫ ∞
1

s exp
(
− γs2

)
ds =: K <∞.

(1)

(iii): The operator

Q : E∗ → E, x∗ 7→ E[〈X,x∗〉X],

has the desired properties because X ∈ L2(Ω;E).
(iv): By Jensen’s inequality suffices to show that ‖ · ‖L2n(Ω;E) ≤ K2n,1‖ ·

‖L1(Ω;E) for each n ∈ N. Set r = 3‖X‖L1(Ω;E). By Chebychev,

P[‖X‖ ≤ r] = 1− P[‖X‖ > r] ≥ 1− E[‖X‖]/r ≥ 2/3.

Therefore, the choice of r is admissible in the proof of Fernique’s theorem, and
we get from (1) that E[exp(γ/r2‖X‖2)] ≤ K. For each x ∈ R+ one has

eγ
x2

r2 ≥ γn

n!

x2n

r2n
, x2n ≤ r2nn!γ−neγ/r

2x2

.

Therefore,

‖X‖L2n(Ω;E) ≤ r
(
n!γ−nr2nE

[
eγ/r

2‖X‖2
])1/(2n)

≤ ‖X‖L1(Ω;E) 3
(
n!γ−nr2nK

)1/(2n)︸ ︷︷ ︸
K2n,1

.

12



3.2 Convergence

26 Theorem (Convergence). Let Xn be centered Gaussian E-valued random
variables in E, let Yn be symmetric independent E-valued random variables, let
Sn =

∑n
i=1 Yi, and let S and X be E-valued random variables.

(i) Itō-Nisio theorem: the following are equivalent:

• for all x∗ ∈ E∗ we have 〈Sn, x∗〉 → 〈S, x∗〉 almost surely;

• for all x∗ ∈ E∗ we have 〈Sn, x∗〉 → 〈S, x∗〉 in probability;

• Sn → S almost surely;

• Sn → S in probability.

If S ∈ Lp(Ω;E) for some p ∈ [1,∞) then Sn → S in Lp(Ω;E).

(ii) If 〈Xn, x
∗〉 → 〈X,x∗〉 in probability for each x∗, then X is Gaussian.

(iii) If Xn → X in probability, then Xn → X in Lp(Ω;E) for each p ∈ [1,∞).

Proof. (i): See [Van08, Theorem 2.17].
(ii): If for each x∗ ∈ E∗, 〈Xn, x

∗〉 → 〈X,x∗〉 in probability, then a subse-
quence converges almost surely, then by dominated convergence

E[exp(−iξ〈X,x∗〉)] = lim
n→∞

E[exp(−iξ〈Xn, x
∗〉)] = lim

n→∞
exp(− 1

2ξ
2〈Qnx∗, x∗〉)

= exp(− 1
2ξ

2q(x∗)),

where q(x∗) := limn→∞〈Qnx∗, x∗〉 exists because left-hand side converges.
(iii): See [Van08, Theorem 4.15].

3.3 Series representations

27 Definition. Let X be centered Gaussian. A reproducing kernel Hilbert
space of X is a Hilbert space H together with continuous embedding i : H → E
such that

E[〈X,x∗〉〈X, y∗〉] = 〈i∗x∗, i∗y∗〉, x∗, y∗ ∈ E∗.

28 Lemma. Let X be centered Gaussian with covariance operator Q. The
following are reproducing kernel Hilbert spaces of X:

• HX is the closure of the subspace {〈X,x∗〉 : x∗ ∈ E∗} of L2(Ω), and
iX(〈X,x∗〉) = E[〈X,x∗〉X].

• HQ is the completion of ran(Q) with respect to the scalar product
〈Qx∗, Qy∗〉HQ := 〈Qx∗, y∗〉E,E∗ , and iQ(Qx∗) = Qx∗.

• Assume that E is a Hilbert space, and set Σ = Q1/2. HΣ is the range of
Σ with 〈·, ·〉HΣ = 〈Σ−1·,Σ−1·〉, where Σ−1 is the pseudo-inverse of Σ, and
iΣ(Σx) = Σx.

The spaces are separable and isomorphic, and iX(HX) = iQ(HQ) = iΣ(HΣ).

29 Remark.
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• The notations HQ and HΣ will not create any ambiguity because we will
always use the letters Q and Σ to denote the covariance operator and its
square root.

• The spacesHQ andHΣ can be constructed for any non-negative symmetric
linear operators Q and Σ, regardless of whether they correspond to the
covariance of a Gaussian random variable or not.

Proof. We only show the statements for HX , leaving the remaining statements
as an exercise. Let µX be the law of X on E, and let E0 be a separable closed
subspace of E containing the essential range of X. Then L2(E0, µX) is separable
because B(E0) is countably generated. As every X∗ ∈ E∗ can be seen as an
element of L2(E,µX), we have

L2(E0, µX) ∼= L2(E,µX) ⊇ E∗L
2(E,µX) ∼= HX ,

where the right-most isomorphism maps x∗ ∈ E∗ to 〈X,x∗〉 ∈ HX . Therefore,
HX is separable. The mapping iX is continuous because X ∈ L2(Ω;E). The
relation 〈iXh, x∗〉 = E[h〈X,x∗〉] shows that its adjoint is given by i∗X(x∗) =
〈X,x∗〉. Moreover, iX i

∗
X(x∗) = E[〈X,x∗〉X] = Qx∗, and iX is injective because

i∗X has dense range.

30 Theorem (Karhunen-Loève expansion). Let X be centered Gaussian, and
let (γn)n≥1 be an orthonormal basis of HX . Then (γn)n≥1 is an iid standard
Gaussian sequence and

X =
∑
n≥1

γniXγn,

where convergence holds almost surely and in Lp for each p ∈ [1,∞).

Proof. HX consists of Gaussian random variables because L2-limit of Gaussians
are Gaussian by Theorem 26.(ii). The L2-orthogonality of (γn)n≥1 implies (via
the injectivity of the Fourier transform) that γn are mutually independent. For
every x∗ ∈ E∗,

〈X,x∗〉 =
∑
n≥1

γnE[γn〈X,x∗〉] =
∑
n≥1

γn〈ixγn, x∗〉,

where the first equality is the expansion of 〈X,x∗〉 with respect to the basis
(γn)n≥1 of HX . The Itō-Nisio Theorem 26.(i) turns this weak convergence into
L2(Ω;E)-convergence.

3.4 Gaussians on Hilbert spaces

31 Theorem (Gaussians on Hilbert spaces). Let H be a separable Hilbert space.

(i) Sazanov’s theorem: Q ∈ L(H) is the covariance operator of a centered
Gaussian H-valued random variable X if and only if Q is symmetric,
non-negative definite, and Q is nuclear.1

1See Section 4 below.
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(ii) In this case the Karhunen-Loève expansion of X is

X =
∑
n≥1

〈
X, en/

√
λn
〉
H︸ ︷︷ ︸

γn

en
√
λn︸ ︷︷ ︸

iXγn

,

where (en)n≥1 is an orthonormal basis of (kerQ)⊥ satisfying Qen = λnen
for eigenvalues λn ∈ (0,∞).

Proof. (i): Let X be centered Gaussian with covariance operator Q. Then Q is
symmetric and non-negative, and

Tr(Q) =
∑
n≥1

〈Qen, en〉H =
∑
n≥1

E[〈X, en〉2H ] = E[‖X‖2H ] <∞.

Conversely, assume that Q ∈ L1(H) is symmetric and non-negative. As Q is
compact, there is an orthonormal basis (en)n≥1 of H such that Qen = λnen.
Set

X =
∑
n≥1

γn
√
λnen.

This series converges in L2(Ω;E) because∑
n≥1

‖γn
√
λnen‖2L2(Ω;H) =

∑
n≥1

λnE[γ2
n] ‖en‖2H =

∑
n≥1

λn <∞,

and the limit is Gaussian by Theorem 26.(ii).
(ii): The random variables γn are orthonormal because

E[γmγn] =
〈Qem, en〉H√

λmλn
= 1m=n.

Let (fn)n≥1 be a basis of kerQ. By the definition of HX , the span of the random
variables 〈X, en〉 and 〈X, fn〉 is dense in HX . But 〈X, fn〉 = 0 in L2(Ω) because
E[〈X, fn〉2] = 〈Qfn, fn〉H = 0, which implies that the span of 〈X, en〉H is dense
in HX . Therefore, (γn)n≥1 is an orthonormal basis. One has iXγn =

√
λnen

because

〈iXγn, em〉H = E[γn〈X, em〉H ] = E[〈X, en/
√
λn〉H〈X, em〉H ]

= 〈Qen, em〉H/
√
λn = 1m=n

√
λn = 〈

√
λnen, em〉H .

3.5 Literature

This section is a rearrangement of results in [Van08] and [Hai09].

4 Tensor products and operator ideals

32 Setting. Let D, E, F , and G be Banach spaces, let M ⊆ E and N ⊆ F be
finite-dimensional subspaces, let H, H1, and H2 be Hilbert spaces, let K be a
compact topological space, let 1 ≤ p ≤ ∞, and let 1/p+ 1/p′ = 1.

15



4.1 Tensor products and tensor norms

33 Definition (Algebraic tensor products).

• Let L(E,F ;G) denotes the space of bounded bilinear mappings from E×F
to G with norm

‖T‖L(E,F ;G) = sup{‖T (x, y)‖ : x ∈ E, y ∈ F, ‖x‖ ≤ 1, ‖y ≤ 1}.

• The algebraic tensor product E ⊗ F is the linear span of the functionals
x⊗ y ∈ L(E,F ;R)∗ given by (x⊗ y)(T ) := T (x, y), T ∈ L(E,F ;G).

34 Definition (Tensor norms).

• A tensor norm α assigns to each pair of Banach spaces (E,F ) a norm on
the algebraic tensor product E ⊗ F (shorthand: E ⊗α F and E⊗̂αF for
the completion) such that the following properties hold:

(i) α is reasonable, i.e., one has for all x ∈ E, y ∈ F , x∗ ∈ E∗, y∗ ∈ F ∗
that

‖x⊗ y‖E⊗αF ≤ ‖x‖E‖y‖F , ‖x∗ ⊗ y∗‖(E⊗αF )∗ ≤ ‖x∗‖E∗‖y∗‖F∗ .

(ii) α satisfies the metric mapping property, i.e., for any T1 ∈ L(E1;F1)
and T2 ∈ L(E2;F2) one has

‖T1 ⊗ T2‖L(E1⊗αE2;F1⊗αF2) ≤ ‖T1‖‖T2‖.

(iii) α is finitely generated, i.e.,

‖u‖E⊗αF = inf {‖u‖M⊗αN : u ∈M ⊗N, dimM,dimN <∞} .

• For any tensor norm α, the dual norm α′ is the tensor norm

‖u‖E⊗α′F = inf
M,N

sup
v∈M∗⊗N∗
‖v‖M∗⊗αN∗≤1

|〈u, v〉|,

where the infimum is taken over all finite-dimensional spaces M and N
such that u ∈M ⊗N , and 〈·, ·〉 denotes the pairing (trace) of M ⊗N and
M∗ ⊗N∗.

• The projective tensor norm is given by

‖u‖E⊗πF := inf

{
n∑
i=1

‖xi‖‖yi‖ : u =

n∑
i=1

xi ⊗ yi, xi ∈ E, yi ∈ F, n ∈ N

}
.

• The injective tensor norm is given by

‖u‖E⊗εF := sup {|〈u, x∗ ⊗ y∗〉| : x ∈ X∗, y ∈ Y ∗, ‖x∗‖ ≤ 1, ‖y∗‖ ≤ 1} .

35 Remark.
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• Class exercise. A norm α on E ⊗ F is reasonable if and only if it is
sandwiched between the injective and projective norms, i.e.,

‖ · ‖E⊗εF ≤ ‖ · ‖E⊗αF ≤ ‖ · ‖E⊗πF .

See [Rya02, Proposition 6.1].

• Class exercise. Any reasonable norm α satisfies

‖x⊗ y‖E⊗αF = ‖x‖E‖y‖F , ‖x∗ ⊗ y∗‖(E⊗αF )∗ = ‖x∗‖E∗‖y∗‖F∗ .

See [Rya02, Proposition 6.1].

• Class exercise. The projective tensor product linearizes bilinear map-
pings in the sense that [Rya02, Theorem 2.9]

L(E,F ;G) ∼= L(E⊗̂πF ;G).

• One has ε′ = π, π′ = ε, and α′′ = α for each tensor norm α.

• The following are embeddings of norm at most one: [Rya02, Chapter 7.1]

E⊗̂αF ↪→ (E∗⊗̂α′F ∗)∗, E∗⊗̂αF ∗ ↪→ (E⊗̂α′F )∗.

4.2 Operator ideals and bilinear forms

36 Definition (Operator ideals and bilinear forms).

• An operator ideal is an assignment to each pair of Banach spaces E,F
of Banach spaces A(E;F ) ⊆ L(E;F ) such that the following properties
hold:

(i) for every x∗ ∈ E and y∗ ∈ F one has x∗ ⊗ y∗ ∈ A(E;F ) and ‖x∗ ⊗
y∗‖A(E;F ) ≤ ‖x∗‖‖y∗‖, and

(ii) for every T ∈ L(D;E), S ∈ A(E;F ), and R ∈ L(F ;G) one has
RST ∈ A(D;G) and ‖RST‖A(D;G) ≤ ‖T‖L(D;E)‖S‖A(E;F )‖R‖L(F ;G).

• For any tensor norm α, the set of α-nuclear forms is

Nα(E,F ;R) := range
(
Jα : E∗⊗̂αF ∗ → L(E,F ;R)

)
⊆ L(E,F ;R),

and the operator ideal of α-nuclear operators is

Nα(E;F ) := range
(
Jα : E∗⊗̂αF → L(E;F )

)
⊆ L(E;F ).

The nuclear norms are defined such that the mappings Jα are metric
surjections onto their range. Forms/operators in Nα are called nuclear for
α = π and approximable for α = ε.

• For any tensor norm α, the set of α-integral forms is

Iα(E,F ;R) := (E⊗̂α′F )∗ ⊆ L(E,F ;R) = L(E;F ∗),

and the operator ideal of α-integral operators is

Iα(E;F ) := Iα(E;F ∗∗) ∩ L(E,F ) ⊆ Iα(E;F ∗∗) := (E⊗̂α′F ∗)∗.

Forms/operators in Iα are called integral for α = π and bounded for
α = ε.
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37 Remark.

• If α dominates β, there are continuous embeddings Nα ↪→ Nβ , Iα ↪→ Iβ .

• For any tensor norm α, there is a continuous embedding Nα ↪→ Iα; see
[Rya02, Section 8.1].

4.3 Trace

38 Definition (Trace).

• The trace is the continuous linear mapping of norm one given by

E∗⊗̂πE → R, x∗ ⊗ x 7→ 〈x∗, x〉.

If the mapping Jπ of Definition 36 is injective, then the trace is also defined
for nuclear operators Nπ(E;E).

39 Remark.

• The mappings Jα of Definition 36 are injective for each tensor norm α if
either E∗ or F have the approximation property [Rya02, Proposition 8.7].

• A Banach space E has the approximation property if for every compact
subset K ⊂ E and every ε > 0 there exists a finite-rank operator S ∈ L(E)
such that

sup
x∈K
‖x− Sx‖ < ε.

All Hilbert spaces and all Banach spaces with a Schauder basis have the
approximation property [Rya02, Section 4.1].

• Approximable operators are compact, i.e., there is an embedding Nε ↪→ K,
because approximable operators are the closure of finite-rank operators
under a stronger topology than L; see [Rya02, Section 4.1]. The converse
holds, i.e., all compact operators from E to F are approximable, if either
E∗ or F has the approximation property; see [Rya02, Corollary 4.13].

4.4 Some further tensor norms and operator ideals

40 Definition (Some sequence spaces).

• Let `p(E) be the set of sequences (xn) in E such that

‖(xn)‖p :=

( ∞∑
n=1

‖xn‖pE

)1/p

<∞.

Then `p(E) with this norm is a Banach space. We write `p for `p(R).

• Let `wp (E) be the set of sequences (xn) in E such that 〈x∗, xn〉 ∈ `p for
each x∗ ∈ E∗, and set

‖(xn)‖wp := sup {‖(〈x∗, xn〉)‖p : x∗ ∈ E∗, ‖x∗‖ ≤ 1} .

Then `wp (E) is a Banach space because it is isomorphic to L(c0, E) for
p = 1, to L(`p′ , E) for 1 < p <∞, and to `∞(E) for p =∞.
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• Let c0(E) be the set of sequences (xn) ∈ `∞(E) s.t. limn→∞ ‖xn‖ = 0.

41 Definition (More tensor norms and operator ideals).

• The Chevet-Saphar tensor norms are given by

‖u‖E⊗dpF = inf

{
‖(xi)‖wp′‖(yi)‖p : u =

n∑
i=1

xi ⊗ yi, xi ∈ E, yi ∈ F, n ∈ N

}
,

‖u‖E⊗gpF = inf

{
‖(xi)‖p‖(yi)‖wp′ : u =

n∑
i=1

xi ⊗ yi, xi ∈ E, yi ∈ F, n ∈ N

}
.

Here g stands for gauche and d for droite. Forms/operators in Idp =: Pp
are called p-summing, and in Ngp =: Lp p-nuclear

• The Hilbertian tensor norms is given by

‖u‖E⊗wpF = inf

{
‖(xi)‖wp ‖(yi)‖wp′ : u =

n∑
i=1

xi ⊗ yi, xi ∈ E, yi ∈ F, n ∈ N

}
.

Forms/operators in Iwp are called p-Hilbertian, in Iw2 Hilbertian, and in
Iw′p p-dominated.

• The operator ideal HS(H1;H2) of Hilbert-Schmidt operators is defined
for Hilbert spaces H1 and H2 and consists of all T ∈ L(H1;H2) such that

‖T‖2HS(H1;H2) :=
∑
b∈B

‖Tb‖2H2
<∞,

for some (and hence all) orthonormal bases B of H1.

42 Remark.

• One has d1 = g1 = π. Moreover, for p ≤ q one has dp ≥ dq and gp ≥ gq.
See [Rya02, Proposition 6.6]. Furthermore, d′2 = g2 and g′2 = d2 by
[Rya02, Equation 7.7].

• Class exercise. If H1 and H2 are Hilbert spaces with orthonormal bases
(ei) and (fj), respectively, then H1⊗̂w2H2 is a Hilbert space with or-
thonormal basis (ei ⊗ fj).

• If H1 and H2 are Hilbert spaces, then the following are isometries: [DF92,
Proposition 11.6 and Section 26.6]

HS(H1;H2) ∼= P2(H1;H2) ∼= L2(H1;H2) ∼= H1⊗̂w2
H2.

• There are isomorphisms

L1(A;E) ∼= L1(A)⊗̂πE, [Rya02, Example 2.19]

P̂ I1(A;E) ∼= L1(A)⊗̂εE, [Rya02, Proposition 3.13]

L2(A;H) ∼= L2(A)⊗̂w2
H, Class exercise.

C(K)⊗̂εE ∼= C(K;E) [Rya02, Section 3.2].
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4.5 Operator ideals on Hilbert spaces

43 Lemma. Let H be a Hilbert space with orthonormal basis B, let λ : B→ R
be a function, and let T : D(T ) ⊆ H → H be the diagonal linear operator given
by

Tb = λbb, D(T ) =

{
h ∈ H :

∑
b∈B
|λb|2〈b, h〉2H <∞

}
.

We consider B as a measure space with the counting measure #. Then the
following statements hold:

(i) T ∈ L(H) iff λ ∈ L∞(B), and ‖T‖L(H) = ‖λ‖L∞(B).

(ii) T ∈ L1(H) iff λ ∈ L1(B), and ‖T‖L1(H) = ‖λ‖L1(B).

(iii) T ∈ L2(H) iff λ ∈ L2(B), and ‖T‖L2(H) = ‖λ‖L2(B).

Proof. See exercises.

4.6 Literature

A good introduction to topological tensor products is [Rya02]. Further details
can be found in [DF92]. Lemma 43 is taken from [Jen16].

5 Stochastic integration

44 Setting. Let (Ω,F , (Ft)t∈R+
) be a filtered probability space satisfying the

usual conditions, let E be a Banach space, let H and U be separable Hilbert
spaces, let P be the predictable σ-algebra on R+×Ω, letQ ∈ L(U), let Σ = Q1/2,
let UΣ be the Hilbert space ΣU with scalar product 〈u, v〉ΣU = 〈Σ−1u,Σ−1v〉U ,
where Σ−1 is the pseudo-inverse of Σ, and let iΣ : UΣ → U be given by iΣ(Σu) =
Σu.

5.1 Martingales

45 Lemma (Conditional expectation). For any σ-algebra G contained in F ,
there exists a unique bounded linear operator of norm one,

L1(F ;E)→ L1(G;E), X 7→ E[X|G],

such that one has for each A ∈ G that

E[1AX] = E[1AE[X|G]].

Proof. We use the fact that the conditional expectation of scalar random vari-
ables is a bounded linear operator of norm at most one,

E[·|G] : L1(F)→ L1(G).

Recall that L1(F ;E) = L1(F)⊗̂πE. We claim that the desired operator is

T := E[·|G]⊗̂πIE : L1(F)⊗̂πE → L1(G)⊗̂πE.
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By the metric mapping property of tensor products,

‖T‖ ≤ ‖E[·|G]‖L(L1(F);L1(G))‖IE‖L(E;E) ≤ 1.

For each A ∈ G and X = 1B ⊗ x ∈ L1(F)⊗ E one has

E[1AX] = E[1A1B ]x = E[1AE[1B |G]]x = E[1AE[1B |G]x] = E[1ATX].

By continuity, this relation holds for all X ∈ L1(F)⊗̂πE. Therefore, T satisfies
the properties stated in the lemma. Moreover, the last calculation shows that T
is determined uniquely on simple tensors and by continuity on all tensors.

46 Definition. Let M : R+ × Ω → E be an (Ft)-adapted process, and let
p ∈ [1,∞].

• M is called a martingale if Mt ∈ L1(Ft;E) and E[Mt|Fs] = Ms holds for
all 0 ≤ s ≤ t. If in addition Mt ∈ Lp(Ft;E) for all t ∈ R+, then we call
M a Lp-martingale.

• We write Mp for the space of uniformly integrable Lp-martingales, i.e.,
all martingales of the form Mt = E[M∞|Ft] for some M∞ ∈ Lp(Ω;E),
endowed with the norm ‖M‖Mp := ‖M∞‖Lp . The subspace of continuous
martingales is denoted by Mp

c .

47 Lemma (Doob’s maximal inequality). Let M be a right-continuous E-valued
(Ft)-martingale. Then the following statements hold.

(i) For each p ∈ [1,∞), ‖Mt‖p is a real-valued (Ft)-submartingale.

(ii) For each p ∈ [1,∞) and ε > 0,

P
[
‖M‖L∞(R+;E) > ε

]
≤ 1

εp
‖M‖pL∞(R+;Lp(Ω;H)).

(iii) For each p ∈ (1,∞),

‖M‖Lp(Ω;L∞(R+;E)) ≤
p

p− 1
‖M‖L∞(R+;Lp(Ω;E)).

Proof. As the essential range of M is separable, we assume without loss of
generality that E is separable. Let (x∗n) be a norming sequence in E∗. Then

E
[
‖Mt‖

∣∣Fs] ≥ sup
n

E
[
〈Mt, x

∗
n〉
∣∣Fs] = sup

n

〈
E[Mt|Fs], x∗n

〉
= sup

n
〈Ms, x

∗
n〉 = ‖Ms‖.

This shows that ‖Mt‖ is a submartingale. By Jensen’s inequality, ‖Mt‖p is
a submartingale for each p ∈ [1,∞). The remaining statements are Doob’s
maximal inequalities for non-negative real-valued submartingales.
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5.2 Brownian motion

48 Definition (Brownian motion). Let Q ∈ L1(U).

• A Q-Brownian motion is a continuous process W : R+ × Ω → U with
independent increments satisfying W0 = 0 and Wt −Ws ∼ N(0, (t− s)Q)
for all 0 ≤ s ≤ t.

• A Q-Brownian motion with respect to (Ft) is a Q-Brownian motion W
such that Wt is Ft-measurable and Wt −Ws is independent of Fs, for all
0 ≤ s ≤ t.

49 Definition (Cylindrical Brownian motion). Let Q ∈ L(U).

• A cylindrical Q-Brownian motion is a bounded linear mapping
W : L2(R+;U)→ L2(Ω), whose values are centered Gaussians such that

E[W (1[0,s] ⊗ u)W (1[0,t] ⊗ v)] = min(s, t)〈Qu, v〉U ,

for each s, t ∈ R+ and u, v ∈ U . We put

Wtu := W (1[0,t] ⊗ u), t ∈ R+, u ∈ U.

• A cylindrical Q-Brownian motion with respect to (Ft) is a Q-Brownian
motion W such that Wtu is Ft-measurable and Wtu−Wsu is independent
of Fs, for all 0 ≤ s ≤ t ≤ T and u ∈ U .

50 Remark.

• If W is a Q-Brownian motion, then (the extension of) the linear mapping

1[0,t] ⊗ u 7→ 〈u,Wt〉U (2)

is a cylindrical Q-Brownian motion.

• Conversely, let W be a cylindrical Q-Brownian motion with Q ∈ L1(U).
Then for each t ≥ 0 the mapping

Wt : U → L2(Ω), u 7→W (1[0,t] ⊗ u)

satisfies

‖Wt‖2HS(U ;L2(Ω)) =
∑
b∈B

‖Wtb‖2L2(Ω) = t2
∑
b∈B

〈Qb, b〉U ≤ t2‖Q‖L1(U) <∞,

where B is an orthonormal basis of H. Therefore, Wt ∈ HS(U ;L2(Ω)) =
L2(Ω)⊗̂w2U = L2(Ω;U). Selecting a continuous version of (Wt)t∈R+ using
the Kolmogorov continuity theorem gives a Q-Brownian motion, which
represents W as in (2).
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5.3 Construction of the stochastic integral

51 Definition.

• The set E of elementary processes is the linear span of the set of predictable
processes X : R+ × Ω→ L(U,H) of the form

X = 1(t1,t2] ⊗ 1A ⊗ u⊗ h, (3)

where 0 ≤ t1 ≤ t2, A ∈ Ft1 , u ∈ U , and h ∈ H.

• If W is Q-Brownian motion with respect to (Ft) for some Q ∈ L1(U) and
X ∈ E is as in (3), we define the stochastic integral∫ ∞

0

XsdWs := 1A〈u,Wt2 −Wt1〉Hh.

• If W is cylindrical Q-Brownian motion with respect to (Ft) for some Q ∈
L(H) and X ∈ E is as in (3), we define the stochastic integral∫ ∞

0

XsdWs := 1A(Wt2u−Wt1u)h.

• The Hilbert space N 2
W of stochastically square integrable processes con-

sists of all predictable processes X : R+ × Ω→ L2(UΣ;H) such that

‖X‖N 2
W

:= ‖X‖L2((R+×Ω,P,dt⊗P);L2(UΣ;H)) <∞.

• The complete metric space NW of stochastically integrable processes con-
sists of all predictable processes X : R+ × Ω→ L2(UΣ;H) such that

P[‖X‖L2(R+;L2(UΣ;H)) <∞] = 1,

endowed with the Ky Fan metric

(X,Y ) 7→ E[‖X − Y ‖L2(R+;L2(UΣ;H)) ∧ 1],

which induces the topology of convergence in probability.

52 Remark. Note that the integral with respect to cylindrical Brownian motion
extends the integral with respect to Brownian motion.

53 Lemma (Density). The following statements holds.

(i) E is dense in N 2
W .

(ii) N 2
W is dense in NW .

Proof. (i): E is interpreted as a subspace ofN 2
W via the (not necessarily injective)

mapping

E → N 2
W , 1(t1,t2] ⊗ 1A ⊗ u⊗ h 7→ 1(t1,t2] ⊗ 1A ⊗ i∗Σu⊗ h,

where i∗Σu ∈ UΣ acts on UΣ via 〈·, ·〉UΣ
. We have

N 2
W = L2(R+ × Ω,P, dt⊗ P)⊗̂w2

UΣ⊗̂w2
H.
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The span of the functions 1(t1,t2] ⊗ 1A is dense in L2(R+ × Ω,P, dt ⊗ P), and
i∗Σ(U) is dense in UΣ because iΣ is injective. Therefore, E is dense in N 2

W .
(ii): N 2

W is dense in NW . To see this, let X ∈ NW . For each n ∈ N set
Tn = inf{t ≥ 0 : ‖1(0,t]X‖N2

W
> n}. By the right-continuity of (Ft), Tn is a

stopping time for each n. Moreover, Xn := 1(0,Tn]X ∈ N 2
W and ‖Xn‖N 2

W
≤ n.

Let B be the set of probability one where ‖X‖L2(R+;L2(UΣ;H)) < ∞. Then
limn→∞ Tn =∞ on B and limn→∞Xn = X on R+×B. By dominated conver-
gence, limn→∞ ‖Xn−X‖L2(R+;L2(UΣ;H)) = 0 on B. As almost sure convergence
implies convergence in probability, Xn converges to X in probability. Therefore,
N 2
W is dense in NW .

54 Theorem (Stochastic integral). Let Q ∈ L(U) and let W be cylindrical
Q-Brownian motion.

(i) The stochastic integral of Definition 51 has a unique extension to an isom-
etry

N 2
W → L2(Ω;H), X 7→

∫ ∞
0

XsdWs.

(ii) The stochastic integral of Definition 51 has a unique extension to a uni-
formly continuous linear mapping

NW → L0(Ω;H), X 7→
∫ ∞

0

XsdWs.

Proof. (i): We have to show that the stochastic integral of Definition 51 is an
isometry on the subspace E of N 2

W . Any X ∈ E can be written as a finite sum
of the form

X =
∑
k,i

1(tk,tk+1] ⊗ 1Ak,i ⊗ uk,i ⊗ hk,i,

where (tk) are non-negative and strictly increasing, Ak,i ∈ Ftk , uk,i ∈ U , and
hk,i ∈ H. Then

E
[∥∥∫∞

0
XsdWs

∥∥2

H

]
=
∑
k,l,i,j

E
[〈
1Ak,iW (1(tk,tk+1] ⊗ uk,i)hk,i,1Al,jW (1(tl,tl+1] ⊗ ul,j)hl,j

〉
H

]
.

Conditioning on Ftk ∨ Ftl shows that

E
[∥∥∫∞

0
XsdWs

∥∥2

H

]
=
∑
k,l,i,j

E[1Ak,i1Al,j ]〈1(tk,tk+1],1(tl,tl+1]〉L2(R+)〈Quk,i, ul,j〉U 〈hk,i, hl,j〉H .

By the reproducing property of the Hilbert space UΣ (see Definition 27) one has
〈Quk,i, ul,j〉 = 〈i∗Σuk,i, i∗Σul,j〉UΣ

, and therefore

E
[∥∥∫∞

0
XsdWs

∥∥2

H

]
= E[1Ak,i1Al,j ]〈1(tk,tk+1],1(tl,tl+1]〉L2(R+)〈i∗Σuk,i, i∗Σul,j〉UΣ

〈hk,i, hl,j〉H
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= ‖X‖2N 2
W
.

Therefore, the stochastic integral of Definition 51 is an isometry on the subspace
E of N 2

W . As E is dense in N 2
W by Lemma 53, there is a unique extension to an

isometry N 2
W → L2(Ω;H). This shows (i).

(ii): This follows from Theorem 55.(ii) below.

55 Theorem (Integral process). Let Q ∈ L(U) and let W be cylindrical Q-

Brownian motion. For each t ≥ 0 set
∫ t

0
XsdWs =

∫∞
0

1(0,t](s)XsdWs.

(i) The stochastic integral has a unique extension to an isometry

N 2
W →M2

c , X 7→
∫ ·

0

XsdWs.

(ii) The stochastic integral has a unique extension to a uniformly continuous
linear mapping

NW → L0(Ω;C(R+;H)), X 7→
∫ ·

0

XsdWs.

Proof. (i): Let X ∈ E be given by (3). Then the scalar process (Wtu)t∈R+
is

mean-square continuous and has a continuous version by Kolmogorov’s conti-
nuity theorem. Thus, the process (Mt)t∈R+

has a continuous version because

Mt = 1A(Wt2∧tu−Wt1∧tu)h.

Moreover, setting M∞ =
∫∞

0
XsdWs, one has E[M∞|Ft] = Mt, as can be seen

from

E[M∞|Ft] = E[1A(Wt2u−Wt1u)h|Ft] =


0, if t ∈ [0, t1],

1A(Wtu−Wt1u)h, if t ∈ [t1, t2],

1A(Wt2u−Wt1u)h, if t ∈ [t2,∞).

As M∞ ∈ L2(Ω;H), we have shown that M has a version inM2
c . The stochastic

integral of (i) defines an isometry E →M2
c thanks to Theorem 54.(i). The space

M2
c is complete because it is a closed subspace ofM2 thanks to Doob’s maximal

inequality (Lemma 47). Therefore, the stochastic integral has a unique extension
to an isometry N 2

W →M2
c . This establishes (i).

(ii): Let X ∈ N 2
W , let ε, δ > 0, and let

T = inf

{
t ∈ [0,∞) :

∫ t

0

‖Xs‖2L2(UΣ;H)ds > δ

}
.

Then one has by Chebychev’s inequality, Doob’s maximal inequality, and Itō’s
isometry, that

P

[
sup

t∈[0,∞]

∥∥∥∥∫ t

0

XsdWs

∥∥∥∥
H

> ε

]

= P

[
sup

t∈[0,∞]

∥∥∥∥∫ t

0

XsdWs

∥∥∥∥
H

> ε,

∫ ∞
0

‖Xs‖2L2(UΣ;H)ds > δ

]
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+ P

[
sup

t∈[0,∞]

∥∥∥∥∫ t

0

XsdWs

∥∥∥∥
H

> ε,

∫ ∞
0

‖Xs‖2L2(UΣ;H)ds ≤ δ

]

≤ P
[∫ ∞

0

‖Xs‖2L2(UΣ;H)ds > δ

]
+ P

[
sup

t∈[0,∞]

∥∥∥∥∫ t

0

1(0,T ](s)XsdWs

∥∥∥∥
H

> ε

]

≤ P
[∫ ∞

0

‖Xs‖2L2(UΣ;H)ds > δ

]
+

1

ε2
E
[∫ ∞

0

‖1(0,T ]Xs‖2L2(UΣ;H)ds

]
= P

[∫ ∞
0

‖Xs‖2L2(UΣ;H)ds > δ

]
+

1

ε2
E
[
δ ∧

∫ ∞
0

‖Xs‖2L2(UΣ;H)ds

]
.

This inequality is called Lenglart’s inequality. It shows that the integral is
continuous at zero with respect to the topology of convergence in probability.
By linearity, it is uniformly continuous, and we have shown (ii).

56 Reflection. For nuclear Q one may use the following (larger) class of ele-
mentary processes X to define the stochastic integral: [DZ14; Jen16; PR07]

X = 1(s,t] ⊗ 1A ⊗ Y,

where 0 ≤ s < t, A ∈ Fs, and Y ∈ L(U ;H). How are the spaces L2(UΣ;H) and
L(U ;H) related?

• L(U,H) is continuously embedded in L2(UΣ;H) because

‖Y ◦ iΣ‖L2(UΣ;H) ≤ ‖Y ‖L(U ;H)‖iΣ‖L2(UΣ;U) = ‖Y ‖L(U ;H)‖Σ‖L2(U)

= ‖Y ‖L(U ;H)‖Q‖
1/2
L1(U).

To see this, let B be an orthonormal basis of U and let λ : B→ [0,∞) such
that Qb = λbb. Then BΣ := {Σb : b ∈ λ−1((0,∞))} is an orthonormal
basis of UΣ. Then

‖Y ◦ iΣ‖2L2(UΣ;H) =
∑
b∈BΣ

‖Y iΣb‖2H ≤ ‖Y ‖2L(U ;H)

∑
b∈BΣ

‖iΣb‖2U

= ‖Y ‖2L(U ;H)‖iΣ‖
2
L2(UΣ;U),

‖iΣ‖2L2(UΣ;U) =
∑
b∈BΣ

‖b‖2U =
∑

b∈λ−1((0,∞))

‖Σb‖2U =
∑
b∈B
‖Σb‖2U = ‖Σ‖2L2(U),

‖Σ‖2L2(U) =
∑
b∈B
‖Σb‖2U =

∑
b∈B
〈Qb, b〉U =

∑
b∈B

λb = ‖Q‖L1(U).

The embedding may be strict, as L2(UΣ;H) may contain unbounded op-
erators on U .

5.4 Properties of the stochastic integral

57 Lemma (Localization). Let X ∈ NW and let T be a stopping time satisfying
P[T <∞] = 1. Then ∫ ·∧T

0

XsdWs =

∫ ·
0

1(0,T ](s)XsdWs.
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Proof. If T is simple and X ∈ E , this follows by inspection. In the general
case, there is a sequence of simple stopping times Tn ↓ T and a sequence of

elementary processes Xm p→ X. Then∫ ·∧T
0

XsdWs = plim
n→∞

∫ ·∧Tn
0

XsdWs = plim
n→∞

plim
m→∞

∫ ·∧Tn
0

Xm
s dWs

= plim
n→∞

plim
m→∞

∫ ·
0

1(0,Tn](s)X
m
s dWs =

∫ ·
0

1(0,T ](s)XsdWs.

58 Remark. Lemma 57 allows one to define the stochastic integral for the
localized classes of integrands (N 2

W )loc and (NW )loc.

59 Lemma. Let K be a topological space, let E and F be normed vector spaces,
and let f : E → F be uniformly continuous on bounded sets. Then the following
mapping is continuous:

L0(Ω;C(K;E))→ L0(Ω;C(K;F )), X 7→ f ◦X.

Proof. Let ε > 0 and let Xn → X in L0(Ω;C(K;E)). Then (Xn) is bounded
in probability (tight). Therefore, there is R > 0 such that

sup
n∈N

P
[
‖Xn‖C(K;E) > R

]
< ε/3, P

[
‖X‖C(K;E) > R

]
< ε/3.

As f is uniformly continuous on the ball of radius R, there is δ > 0 such that(
‖x− y‖E < δ, ‖x‖E ≤ R, ‖y‖E ≤ R

)
⇒ ‖f(x)− f(y)‖F < ε/3.

As Xn → X in probability, one may choose n large enough such that

P
[
‖Xn −X‖C(K;E) > δ

]
< ε/3.

Taken together, this yields

P
[
‖f ◦Xn − f ◦X‖C(K;F ) > ε

]
≤ P

[
‖f ◦Xn − f ◦X‖C(K;F ) > ε, ‖Xn‖C(K;E) ≤ R, ‖X‖C(K;E) ≤ R

]
+ P

[
‖Xn‖C(K;E) > R

]
+ P

[
‖X‖C(K;E) > R

]
≤ P

[
‖Xn −X‖C(K;E) > δ

]
+ 2ε/3 < ε.

60 Lemma (Itō’s formula). Let X0 : Ω → H be strongly F0-measurable, let
F : R+ × Ω → H be predictable and a.s. Bochner-integrable on R+, let B :
R+ × Ω→ L2(UΣ;H) be stochastically integrable, let

X = X0 +

∫ ·
0

Fsds+

∫ ·
0

BsdWs,

let f : H → H be a C2 function such that f, fx, fxx are uniformly continuous
on bounded subsets of H, and let U be an orthonormal basis of UΣ. Then

f(X) = f(X0) +

∫ ·
0

(
fx(Xs)Fs +

1

2

∑
u∈U

fxx(Xs)(Bsu,Bsu)

)
ds

+

∫ ·
0

fx(Xs)BsdWs.
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Proof. By Itō’s formula in finite dimensions, the statement of the lemma holds
for elementary processes F and B. The general case follows because all terms
in Itō’s formula are continuous with respect to the topology of convergence in
probability thanks to Lemma 59.

61 Lemma (Stochastic Fubini theorem). Let (E, E , µ) be a finite measure space,
and let X ∈ L1(E;N 2

W ). Then the following iterated integrals are well-defined
and coincide almost surely,∫

E

∫ ∞
0

Xx
s dWsµ(dx) =

∫ ∞
0

∫
E

Xx
s µ(dx)dWs.

Proof. Recalling that L1(E;N 2
W ) = L1(E)⊗̂πN 2

W , let X = 1BY for some B ∈ E
and Y ∈ N 2

W . Then the random function∫ ∞
0

XdW = 1B

∫ ∞
0

Y dW : Ω× E → H

is F ⊗ E-measurable, and the process∫
E

Xdµ =

∫
E

1Bdµ Y : R+ × Ω→ L2(UΣ;H)

is predictable. By Minkowski’s inequality and Itō’s isometry,∥∥∥∥∫
E

∫ ∞
0

XdWdµ

∥∥∥∥
L2(Ω;H)

≤
∫
E

∥∥∥∥∫ ∞
0

XdW

∥∥∥∥
L2(Ω;H)

dµ

=

∫
E

‖X‖N 2
W ) dµ = ‖X‖L1(E;N 2

W ).

Moreover, the following integrals coincide,∫
E

∫ ∞
0

XdWdµ = µ(B)

∫ ∞
0

Y dW =

∫ ∞
0

∫
E

XdµdW,

By continuity and density, this extends to all X ∈ L1(E;N 2
W ).

62 Lemma (Burkholder-Davis-Gundy inequality). For each p ≥ 2, there exists
a constant cp such that∥∥∥∥∫ ·

0

XsdWs

∥∥∥∥
Lp(Ω;L∞(R+;H))

≤ cp ‖X‖Lp(Ω;L2(R+;L2(UΣ;H))) .

Proof. As the case p = 2 is covered by Doob’s maximal inequality (Lemma 47.(iii))
and Itō’s isometry, assume p > 2, and let X be a predictable process in
Lp(Ω;L2(R+;L2(UΣ;H))). By Doob’s maximal inequality,∥∥∥∥∫ ·

0

XsdWs

∥∥∥∥
Lp(Ω;L∞(R+;H))

≤ p

p− 1

∥∥∥∥∫ ·
0

XsdWs

∥∥∥∥
L∞(R+;Lp(Ω;H))

≤ p

p− 1

∥∥∥∥∫ ∞
0

XsdWs

∥∥∥∥
Lp(Ω;H)

.
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Set Y equal to the continuous modification of
∫ ·

0
XsdWs. For each y ∈ H, set

f(y) = ‖y‖pH ,
fy(y) = p‖y‖p−2

H 〈y, ·〉H ,
fyy(y) = p(p− 2)‖y‖p−4〈y, ·〉H〈y, ·〉H + p‖y‖p−2〈, ·〉H ,

and note that for each y ∈ H

‖fyy(y)‖L(H,H;R) ≤ p(p− 1)‖y‖p−2
H .

By Itō’s formula, letting U be an orthonormal basis of UΣ,

‖Y∞‖pLp(Ω;H) = E

[∫ ∞
0

fy(Ys)XsdWs +
1

2

∫ ∞
0

∑
u∈U

fyy(Ys)(Xsu,Xsu)ds

]
.

Assume temporarily that Y is bounded. Then the stochastic integral above is
a uniformly integrable martingale, and the bound on fyy gives

‖Y∞‖pLp(Ω;H) ≤
p(p− 1)

2
E

[∫ ∞
0

∑
u∈U
‖Ys‖p−2

H ‖Xsu‖2Hds

]

=
p(p− 1)

2
E
[∫ ∞

0

‖Ys‖p−2
H ‖Xs‖2L2(UΣ;Hds

]
≤ p(p− 1)

2
E
[
‖Y∞‖p−2

H

∫ ∞
0

‖Xs‖2L2(UΣ;Hds

]
.

By Hölder’s inequality with exponents p/(p− 2) and p/2,

‖Y∞‖pLp(Ω;H) ≤
p(p− 1)

2
E [‖Y∞‖pH ]

(p−2)/p E

[(∫ ∞
0

‖Xs‖2L2(UΣ;Hds

)p/2]2/p

=
p(p− 1)

2
‖Y∞‖p−2

Lp(Ω;H) ‖X‖
2
Lp(Ω;L2(R+;L2(UΣ;H))) .

Diving through ‖Y∞‖p−2
Lp(Ω;H) and taking the square root, one gets

‖Y∞‖Lp(Ω;H) ≤
√
p(p− 1)

2
‖X‖Lp(Ω;L2(R+;L2(UΣ;H))) .

In the general case where Y is not bounded, let for each n ∈ N

Tn = inf{t ≥ 0 : ‖Yt‖H ≥ n}.

Then Y Tn is bounded, and ‖Y Tn∞ ‖H = ‖Y∞‖H ∧ n is monotonically increasing
and converges to ‖Y∞‖H . By the monotone convergence theorem, the Lp(Ω;H)-
norm of ‖Y Tn∞ ‖H converges to the Lp(Ω;H)-norm of ‖Y∞‖H . Thus, the estimate
remains valid in the general case.

5.5 Literature

The construction of the stochastic integral in Section 5.3 uses a smaller class of
elementary processes than many other works [DZ14; PR07; Jen16]. This has the
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advantage that the stochastic integrals with respect to cylindrical and normal
Brownian motion are immediately seen to be identical because they coincide for
our small class of elementary processes.

Our presentation of Itō’s formula (Lemma 60) and the stochastic Fubini
theorem (Lemma 61) is similar to the one in [DZ14]. The Burkholder-Davis-
Gundy inequality and its proof (see Lemma 62) is a corrected version of [DZ14,
Theorem 4.36].

6 Stochastic evolution equations with Lipschitz
coefficients

63 Setting. Let (Ω,F ,P, (Ft)t∈R+) be a stochastic basis, let H and U be sepa-

rable Hilbert spaces, let Q ∈ L(U) by non-negative symmetric, let Σ = Q1/2, let
Σ−1 be the pseudo-inverse of Σ, let UΣ = Σ(U) with 〈u, v〉UΣ = 〈Σ−1u,Σ−1v〉U ,
and let W be cylindrical Q-Brownian motion with respect to (Ft).

Let T > 0, let P be the predictable σ-algebra on [0, T ] × Ω, let ξ be an H-
valued F0-measurable random variable, let A : D(A) ⊆ H → H be the generator
of a strongly continuous semigroup on H, and let F and B be P ⊗ B(H)-
measurable mappings

F : [0, T ]× Ω×H → H, (t, ω, x) 7→ Ft(ω, x),

B : [0, T ]× Ω×H → L2(UΣ;H), (t, ω, x) 7→ Bt(ω, x).

6.1 Solution concepts

64 Definition. Strong, weak, and mild solutions (in the analytical sense) of
the stochastic evolution equation

dXt = (AXt + Ft(Xt))dt+Bt(Xt)dWt, X0 = ξ. (4)

are defined as follows:

(i) A strong solution of (4) is a predictable process

X : [0, T ]× Ω→ D(A)

which satisfies for each t ∈ [0, T ], almost surely,

Xt = ξ +

∫ t

0

(
AXs + Fs(Xs)

)
ds+

∫ t

0

Bs(Xs)dWs.

(ii) A weak solution of (4) is a predictable process

X : [0, T ]× Ω→ H

which satisfies for each t ∈ [0, T ] and h ∈ D(A∗), almost surely,

〈Xt, h〉H = 〈ξ, h〉H+

∫ t

0

(
〈Xs, A

∗h〉H+〈Fs(Xs), h〉H
)
ds+

∫ t

0

〈Bs(Xs), h〉HdWs.
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(iii) A mild solution of (4) is a predictable process

X : [0, T ]× Ω→ H

which satisfies for every t ∈ [0, T ], almost surely,

Xt = eAtξ +

∫ t

0

eA(t−s)Fs(Xs)ds+

∫ t

0

eA(t−s)Bs(Xs)dWs.

65 Remark. It is part of the above definition that the Bochner integrals are
well-defined a.s. and the stochastic integrals are well-defined.

66 Remark. The attributes weak and strong have the following additional
unrelated meanings:

• A solution is strong in the stochastic sense if the Brownian motion and the
stochastic basis are given, and weak in the stochastic sense if the Brownian
motion and the stochastic basis may be chosen freely.

• The strong error of approximations Xn of X is E[supt∈[0,T ] ‖Xn
t −Xt‖H ],

and the weak error is E[f(XT )− f(Xn
T )], where f is a “nice” function.

67 Lemma.

(i) Any strong solution is a weak and mild solution.

(ii) Any weak solution which satisfies

P

[∫ T

0

∥∥∥eA(T−t)Ft(Xt)
∥∥∥
H
dt+

∫ T

0

∥∥∥eA(T−t)Bt(Xt)
∥∥∥2

L2(UΣ;H)
dt <∞

]
= 1

is a mild solution.

(iii) Any mild solution which satisfies for each h ∈ D(A∗)

P

[∫ T

0

|〈Ft(Xt), h〉H |dt+

∫ T

0

‖〈Bt(Xt), h〉H‖2L2(UΣ;R) dt <∞

]
= 1

is a weak solution.

Proof. (i): Strong ⇒ weak is trivial, and strong ⇒ mild follows from (ii).
(ii): Let X be a weak solution, let D(A∗) be endowed with the graph norm,

let h ∈ D(A∗), let f ∈ C1([0, T ]), and let Y = fh ∈ C1([0, T ];D(A∗)). Itō’s
formula applied to the product of 〈X,h〉H and f yields

〈Xt, Yt〉H = 〈Xt, h〉Hft

= 〈ξ, h〉Hf0 +

∫ t

0

(
〈Xs, A

∗h〉H + 〈Fs(Xs), h〉H
)
fsds

+

∫ t

0

〈Xs, h〉Hf ′sds+

∫ t

0

〈Bs(Xs), Ys〉HdWs

= 〈ξ, Y0〉H +

∫ t

0

(
〈Xs, A

∗Ys〉H + 〈Fs(Xs), Ys〉H + 〈Xs, Y
′
s 〉H

)
ds
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+

∫ t

0

〈Bs(Xs), Ys〉HdWs.

By continuity, this relation extends to all functions Y ∈ C1([0, T ];D(A∗)). In
particular, the choice

Ys = (eA(t−s))∗h = eA
∗(t−s)h, Y ′s = −A∗Ys

yields

〈Xt, h〉H = 〈eAtξ, h〉H +

∫ t

0

〈eA(t−s)Fs(Xs), h〉Hds+

∫ t

0

〈eA(t−s)Bs(Xs), h〉HdWs.

Thus, by the integrability assumptions on F (X) and B(X) and by the denseness
of D(A∗), X is a mild solution, and we have shown (ii).

(iii): Let X be a mild solution, and let h ∈ D(A∗). By Fubini’s theorem for
Bochner and stochastic integrals, after suitable localization,∫ t

0

〈Xs, A
∗h〉Hds

=

∫ t

0

〈
eAsξ +

∫ s

0

eA(s−u)Fu(Xu)du+

∫ s

0

eA(s−u)Bu(Xu)dWu, A
∗h

〉
H

ds

=

∫ t

0

〈eAsξ, A∗h〉Hds+

∫ t

0

∫ t

u

〈eA(s−u)Fu(Xu), A∗h〉Hdsdu

+

∫ t

0

∫ t

u

〈eA(s−u)Bu(Xu), A∗h〉HdsdWu

=

∫ t

0

〈ξ, eA
∗sA∗h〉Hds+

∫ t

0

∫ t

u

〈Fu(Xu), eA
∗(s−u)A∗h〉Hdsdu

+

∫ t

0

∫ t

u

〈Bu(Xu), eA
∗(s−u)A∗h〉HdsdWu

= 〈ξ, (eA
∗t − I)h〉H +

∫ t

0

〈Fu(Xu), (eA
∗(t−u) − I)h〉Hdu

+

∫ t

0

〈Bu(Xu), (eA
∗(t−u)h− I)〉HdWu

= 〈(eAt − I)ξ, h〉H +

∫ t

0

〈(eA(t−u) − I)Fu(Xu), h〉Hdu

+

∫ t

0

〈(eA(t−u) − I)Bu(Xu), h〉HdWu

= 〈Xt, h〉 − 〈ξ, h〉H −
∫ t

0

〈Fu(Xu), h〉Hdu−
∫ t

0

〈Bu(Xu), h〉HdWu.

Thus, X is a weak solution, and we have shown (iii).

6.2 Existence and uniqueness

68 Theorem. If F and B are Lipschitz continuous in x, with a Lipschitz
constant not depending on (t, ω), then there exists a mild solution of (4), which
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is unique up to modifications among the predictable processes satisfying

P

[∫ T

0

‖Xs‖2Hds <∞

]
= 1. (5)

69 Remark.

• The integrals in (4) are well-defined if (5) holds, thanks to the Lipschitz
continuity of F and B.

• Uniqueness may fail if (5) is not imposed.

We need an auxiliary lemma.

70 Lemma. Let p ≥ 2, and let E be the Banach space of dt ⊗ P-equivalence
classes of predictable processes X : [0, T ]× Ω→ H satisfying

‖X‖E := sup
t∈[0,T ]

‖Xt‖Lp(Ω;H) <∞.

If F and B are Lipschitz continuous in x, with a Lipschitz constant not depend-
ing on (t, ω), and ξ ∈ Lp(Ω;H), then the following statements hold:

(i) There is a constant C1, which is given by (6), such that for any X ∈ E,
the process

KXt = eAtξ +

∫ t

0

eA(t−s)Fs(Xs)ds+

∫ t

0

eA(t−s)Bs(Xs)dWs

satisfies KX ∈ E and ‖KX‖E ≤ C1(1 + ‖X‖E).

(ii) There is a constant C2, which is given by (7), such that for any X,Y ∈ E,

‖KX −KY ‖E ≤ C2 ‖X − Y ‖E .

(iii) There is a constant C3, which is given by (8), such that for any X,Y ∈ E,

‖X − Y ‖E ≤ C3 ‖X −KX − Y +KY ‖E .

(iv) There exists a unique solution of (4) in E.

Proof. By the Lipschitz property, there is a constant M ∈ (0,∞) such that for
each t ∈ [0, T ], x, y ∈ H, and ω ∈ Ω, ∥∥eAt∥∥

L(H)
≤M,

‖Ft(ω, x)− Ft(ω, y)‖H + ‖Bt(ω, x)−Bt(ω, y)‖L2(UΣ;H) ≤M‖x− y‖H ,

‖Ft(ω, x)‖H + ‖Bt(ω, x)‖L2(UΣ;H) ≤M(1 + ‖x‖H).

(i): Let X ∈ E and t ∈ [0, T ]. The Bochner integral in Equation (4) satisfies
each t ∈ [0, T ]:∥∥∥∥∫ t

0

eA(t−s)Fs(Xs)ds

∥∥∥∥
Lp(Ω;H)
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≤
∥∥∥eA(t−·)F (X)

∥∥∥
Lp(Ω;L1([0,t];H))

(Minkowski)

≤M2 ‖1 + ‖X‖H‖Lp(Ω;L1([0,t])) (Lipschitz)

≤M2t1−1/p ‖1 + ‖X‖H‖Lp(Ω;Lp([0,t])) (Jensen)

≤M2t1−1/p ‖1 + ‖X‖H‖Lp([0,t];Lp(Ω)) (Fubini).

and the stochastic integral in Equation (4), we get the following estimates for
each t ∈ [0, T ] (using in particular the Burkholder-Davis-Gundy inequality of
Lemma 62):∥∥∥∥∫ t

0

eA(t−s)Bs(Xs)dWs

∥∥∥∥
Lp(Ω;H)

≤
∥∥∥eA(t−·)B(X)

∥∥∥
Lp(Ω;L2([0,t];L2(UΣ;H)))

(BDG)

≤M2 ‖1 + ‖X‖H‖Lp(Ω;L2([0,t])) (Lipschitz)

≤M2t1/2−1/p ‖1 + ‖X‖H‖Lp(Ω;Lp([0,t])) (Jensen)

= M2t1/2−1/p ‖1 + ‖X‖H‖Lp([0,t];Lp(Ω)) (Fubini),

Therefore,

‖KX‖E ≤M‖ξ‖Lp(Ω;H) +M2(T 1−1/p + T 1/2−1/p)T 1/p(1 + ‖X‖E)

≤ C1(1 + ‖X‖E),

where
C1 = M‖ξ‖Lp(Ω;H) +M2(T + T 1/2). (6)

This shows (i).
(ii): Let X,Y ∈ E and t ∈ [0, T ]. The same steps as in (i) lead to the

following estimates:∥∥∥∥∫ t

0

eA(t−s)(Fs(Xs)− Fs(Ys))ds
∥∥∥∥
Lp(Ω;H)

≤
∥∥∥eA(t−·)(F (X)− F (Y ))

∥∥∥
Lp(Ω;L1([0,t];H))

(Minkowski)

≤M2 ‖X − Y ‖Lp(Ω;L1([0,t];H)) (Lipschitz)

≤M2t1−1/p ‖X − Y ‖Lp(Ω;Lp([0,t];H)) (Jensen)

≤M2t1−1/p ‖X − Y ‖Lp([0,t];Lp(Ω;H)) (Fubini),

and ∥∥∥∥∫ t

0

eA(t−s)(Bs(Xs)−Bs(Ys))dWs

∥∥∥∥
Lp(Ω;H)

≤
∥∥∥eA(t−·)(B(X)−B(Y ))

∥∥∥
Lp(Ω;L2([0,t];L2(UΣ;H)))

(BDG)

≤M2 ‖X − Y ‖Lp(Ω;L2([0,t];H)) (Lipschitz)

≤M2t1/2−1/p ‖X − Y ‖Lp(Ω;Lp([0,t];H)) (Jensen)
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= M2t1/2−1/p ‖X − Y ‖Lp([0,t];Lp(Ω;H)) (Fubini).

Therefore,

‖KXt −KYt‖Lp(Ω;H) ≤M
2(T 1−1/p + T 1/2−1/p) ‖X − Y ‖Lp([0,t];Lp(Ω;H)) .

Taking the supremum over t ∈ [0, T ] and using Hölder’s inequality shows

‖KX −KY ‖E ≤ C2 ‖X − Y ‖E ,

where
C2 = M2(T + T 1/2). (7)

This shows (ii).
(iii): The last estimate above implies

‖Xt − Yt‖Lp(Ω;H) ≤ ‖Xt −KXt − Yt +KYt‖Lp(Ω;H) + ‖KXt −KYt‖Lp(Ω;H)

≤ ‖X −KX − Y +KY ‖E
+M2(T 1−1/p + T 1/2−1/p) ‖X − Y ‖Lp([0,t];Lp(Ω;H)) .

Taking the p-th power and using (a+ b)p ≤ 2p−1(ap + bp) for any a, b ≥ 0 yields

‖Xt − Yt‖pLp(Ω;H) ≤ 2p−1 ‖X −KX − Y +KY ‖pE

+ 2p−1M2p(T 1−1/p + T 1/2−1/p)p
∫ t

0

‖Xs − Ys‖pLp(Ω;H) ds.

By Gronwalls inequality may be applied because both sides are bounded, and
we get

‖Xt − Yt‖pLp(Ω;H) ≤ 2p−1 ‖X −KX − Y +KY ‖pE

× exp
(

2p−1M2p(T 1−1/p + T 1/2−1/p)pT
)
.

Taking the p-th root establishes (iii) with

C3 = 21−1/p exp
(

21−1/pM2(T + T 1/2)
)
. (8)

(iv): For sufficiently small T , K : E → E is a contraction by (i) and (ii).
In this case, Banach’s fixed point theorem gives a unique solution of (4) in E.
For arbitrary T , existence follows by concatenation of small time intervals, and
uniqueness follows from (iii).

Proof of Theorem 68. Let p ≥ 2 be fixed.
Existence: For each n ∈ N, let Γn = 1‖ξ‖H≤n, and let Xn ∈ E satisfy for

each t ∈ [0, T ]

Xn
t = Γne

Atξ +

∫ t

0

eA(t−s)ΓnFs(X
m
s )ds+

∫ t

0

eA(t−s)ΓnBs(X
m
s )dWs.

Then one has for for all m ≥ n that ΓnX
n = ΓnX

m ∈ E because all processes
ΓnX

m satisfy one and the same equation

ΓnX
m
t = Γne

Atξ +

∫ t

0

eA(t−s)ΓnFs(ΓnX
m
s )ds+

∫ t

0

eA(t−s)ΓnBs(ΓnX
m
s )dWs.
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Thus, for each t ∈ [0, T ], the limit Xt := limn→∞ ΓnX
n
t exists a.s. The dt⊗ P-

equivalence class of X contains a predictable process, which satisfies (5) and is
a mild solution of (4). This establishes existence.

Uniqueness: Let X and Y be mild solutions of (4) satisfying (5). For each
n ∈ N, let

Sn = inf
{
t ∈ [0, T ] : ‖Xs‖2 + ‖Ys‖2 ≥ n

}
∧ T,

let Xn
t = ΓnXt∧Sn , let Y nt = ΓnYt∧Sn , and define for each Z ∈ E and t ∈ [0, T ]

KnZt = eA(t∧Sn)Γnξ +

∫ t

0

eA(t−s)
1(0,Sn]ΓnFs(Zs)ds

+

∫ t

0

eA(t−s)
1(0,Sn]ΓnBs(Zs)dWs.

Then Xn and Y n belong to E and satisfy Xn = KnX
n, Y n = KnY

n. By
Lemma 70.(iii), Xn = Y n ∈ E. Therefore, X = Y up to modifications.

6.3 Existence of continuous modifications

71 Theorem. The mild solution provided by Theorem 68 has a continuous
modification.

We need some auxiliary lemmas.

72 Lemma. Let p > 2, let ξ ∈ Lp(Ω;H), let X be the mild solution provided
by Lemma 70, and let α < 1/2. Then the process

Zt =

∫ t

0

(t− s)−αeA(t−s)Bs(Xs)dWs.

belongs to Lp(Ω;Lp([0, T ];H)).

Proof. Let M ∈ (0,∞) be as in the proof of Lemma 70, and let I[0,T ] denote
the identity on [0, T ]. Then

‖Z‖Lp(Ω;Lp([0,T ];H)) =

∫ T

0

E [‖Zt‖pH ] dt (Fubini)

≤ cpp
∫ T

0

E

[(∫ t

0

(t− s)−2α‖eA(t−s)Bs(Xs)‖2L2(UΣ;H)ds

)p/2]
dt (BDG)

≤ cppM2p

∫ T

0

E

[(∫ t

0

(t− s)−2α(1 + ‖Xs‖H)2ds

)p/2]
dt (Lipschitz)

= cppM
2pE

[∥∥I−2α ? (1 + ‖X‖H)2
∥∥p/2
Lp/2([0,T ])

]
(Fubini)

≤ cppM2pE
[∥∥I−2α

∥∥p/2
L1([0,T ])

∥∥(1 + ‖X‖H)2
∥∥p/2
Lp/2([0,T ])

]
(Young)

= cppM
2p
∥∥I−2α

∥∥p/2
L1([0,T ])

∫ T

0

E [(1 + ‖Xt‖H)p] dt (Fubini)

The right-hand side is finite thanks to the condition α < 1/2 and Lemma 70.
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73 Lemma. For any p > 1 and α > 1/p,

(Gαz)t =

∫ t

0

(t− s)α−1eA(t−s)zsds

defines a bounded linear operator Gα : Lp([0, T ];H)→ C([0, T ];H).

Proof. Let q be such that 1/p+ 1/q = 1, and let I[0,T ] be the identity on [0, T ].
For any t ∈ [0, T ],

‖(Gαz)t‖H ≤M
∫ t

0

(t− s)α−1‖zs‖Hds (Minkowski)

≤M
∥∥∥Iα−1

[0,T ]

∥∥∥
Lq
‖z‖Lp([0,T ];H) (Hölder)

and similarly, for any s, t ∈ [0, T ],

‖(Gαz)s − (Gαz)t‖H =

∥∥∥∥∥
∫ T

0

uα−1eAu(1[0,s]

(
u)zs−u − 1[0,t](u)zt−u

)
du

∥∥∥∥∥
H

≤M
∥∥∥Iα−1

[0,T ]

∥∥∥
Lq
‖1[0,s]

(
u)zs−u − 1[0,t](u)zt−u‖Lp([0,T ];H).

This shows that Gαz belongs to C([0, T ];H) if z is continuous. By the density
of continuous functions in Lp([0, T ];H), this holds for general z.

74 Lemma. Let p > 2, assume that ξ ∈ Lp(Ω;H), let X be the mild solution
provided by Lemma 70, let α ∈ (1/p, 1/2), and let Z be as in Lemma 72. Then
the process

sin(απ)

π
GαZ

is a continuous modification of the process∫ ·
0

eA(·−s)Bs(Xs)dWs.

Proof. We use Euler’s reflection formula for the Beta function, which states that
for each 0 ≤ s ≤ t and α ∈ (0, 1),∫ t

s

(t− u)α−1(u− s)−αdu =

∫ 1

0

(1− u)α−1u−αdu = Beta(α, 1− α) =
π

sin(απ)
.

For each t ∈ [0, T ], assuming that we may apply the stochastic Fubini theorem,

GαZt =

∫ t

0

(t− u)α−1eA(t−u)

∫ u

0

(u− s)−αeA(u−s)Bs(Xs)dWsdu

=

∫ t

0

∫ u

0

(t− u)α−1(u− s)−αeA(t−s)Bs(Xs)dWsdu

=

∫ t

0

∫ t

s

(t− u)α−1(u− s)−αdu eA(t−s)Bs(Xs)dWs =
π

sin(απ)
Yt.

To verify the condition of Fubini’s theorem, we estimate∫ t

0

∥∥∥s 7→ (t− u)α−1eA(t−u)(u− s)−αeA(u−s)Bs(Xs)
∥∥∥
L2([0,u];L2(UΣ;H))

du
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≤M
∫ t

0

(t− u)α−1
∥∥∥s 7→ (u− s)−αeA(u−s)Bs(Xs)

∥∥∥
L2([0,u];L2(UΣ;H))

du

= M

∫ t

0

(t− u)α−1 ‖Zu‖L2(Ω;H)) du (Itō’s isometry)

≤M
∥∥∥Iα−1

[0,T ]

∥∥∥
Lq
‖Z‖Lp([0,t];L2(Ω;H) (Lemma 73).

The right-hand side is finite by Jensen’s inequality and Lemma 72.

Proof of Theorem 71. For each n ∈ N, let Γn = 1‖ξ‖H≤n, and let Xn = ΓnX.
We saw in the proof of Theorem 68 that Xn is an E-valued solution (where E
is defined with respect to some fixed p > 2) of the truncated SPDE

Xn
t = Γne

Atξ +

∫ t

0

eA(t−s)ΓnFs(X
m
s )ds+

∫ t

0

eA(t−s)ΓnBs(X
m
s )dWs.

The Bochner integral is continuous by Lemma 73, and the stochastic integral
has a continuous modification by Lemma 74. As this holds for each n ∈ N, X
has a continuous modification.

6.4 Literature

Theorem 68 and the supporting Lemma 70 correspond to parts of [DZ14, The-
orem 7.2 and 7.5]. Section 6.3 is taken from [DZ14].

7 Heath–Jarrow–Morton equation

7.1 Bond prices and interest rates

75 Definition. We denote time by t ∈ R+, time to maturity by x ∈ R+, and
maturity by T = t + x, the price of zero-coupon bonds by P (t, T ) = Pt(x),
the yields (or spot rate) by Y (t, T ) = Yt(x), the instantaneous forward rate
by f(t, T ) = ft(x), the short rate by rt = ft(0), and the bank account by

Bt = exp(
∫ t

0
rsds). The following fundamental relation holds:

P (t, T ) = exp
(
− (T − t)Y (t, T )

)
= exp

(
−
∫ T

t

f(t, s)ds

)
.

76 Remark. The Euro-Area yield curves are public and can be viewed at
http://ecb.europa.edu/stats/money/yc/.

7.2 Existence and uniqueness

77 Setting. We want to analyze the equation

dft =
(
Aft(x) + αt(f)

)
dt+ σt(f)dWt

subject to the following assumptions:

(i) (Ω,F ,P, (Ft)t∈R+
) is a stochastic basis, U is a separable Hilbert space,

and W is an IU -cylindrical Brownian motion on U with respect to (Ft).
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(ii) H is a separable Hilbert space consisting of continuous functions R+ → R
such that point evaluations

δx : H → R, f 7→ f(x)

are continuous for all x ∈ R+.

(iii) For each f ∈ H and t ∈ R+, the function Stf := f(t+ ·) belongs to H, and
S : R+ → L(H) is a strongly continuous semigroup on H. The generator
of S is denoted by A.

(iv) There is a linear subspace H0 of H such that the following mapping is
sounded bilinear:

m : H0 ×H0 → H, m(f, g)(x) = f(x)

∫ x

0

g(y)dy.

(v) The functions

λ : R+ × Ω×H → U, σ : R+ × Ω×H → L2(U ;H)

are P ⊗ B(H)-measurable, and

α : R+ × Ω×H → H

is given by

αt(f) = Tr
(
m
(
σt(f), σt(f)

))
+ σt(f)λt(f).

78 Remark. The trace in the definition of α is well-defined because

Tr
(
m
(
σt(f), σt(f)

))
=

∞∑
n=1

∥∥∥(m
(
σt(f)en, σt(f)en

)∥∥∥
H

≤ ‖m‖L(H0,H0;H‖σt(f)‖2L2(U ;H0
.

79 Theorem. Assume that Setting 77 holds, let σ be bounded, let σ and λ be
Lipschitz in f , and let f0 ∈ L0(F0;H). Then there is an up to modifications
unique predictable process f : R+ ×Ω→ H which satisfies for each t ∈ R+ that

ft = Stf0 +

∫ t

0

St−sαs(fs)ds+

∫ t

0

St−sσsdWs

and

P
[
∀t ∈ R+ :

∫ t

0

‖fs‖2Hds <∞
]

= 1.

Proof. For each f, g ∈ H set

αt(f, g) = Tr
(
m
(
σt(f), σt(g)

))
+ σt(f)λt(g)

and observe that

‖αt(f)− αt(g)‖H =
1

2
‖αt(f − g, f + g) + αt(f + g, f − g)‖H
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≤ ‖m‖L(H0,H0;H‖σt(f − g)‖L2(U ;H0)‖σt(f + g)‖L2(U ;H0)

+
1

2
‖σt(f − g)‖L2(U ;H0)‖λt(f + g)‖U

+
1

2
‖σt(f + g)‖L2(U ;H0)‖λt(f − g)‖U

≤ C‖f − g‖H

for some constant C ∈ R+ which does not depend on f, g. Thus, α and σ are
Lipschitz continuous, and the result follows from Theorem 68.

7.3 Absence of arbitrage

80 Definition. (i) A probability measure Q on
⋃
t∈R+

Ft is called a local

martingale measure if for every T ∈ R+ the process (B−1
t P (t, T ))t∈[0,T ] is

a P-local martingale.

(ii) An interest rate model is called free of arbitrage if there exists a local
martingale measure Q on

⋃
t∈R+

Ft which is equivalent to P on Ft for
every t ∈ R+.

81 Theorem. Let P and f be as in Theorem 79. Then P is a local martingale
measure if and only if σt(f)λt(f) vanishes dt⊗ P-almost surely.

Proof. As a first step we show that the theorem holds under the additional
assumption that f0 ∈ L2(F0;H). For each T ∈ R+ and f ∈ H let

IT f =

∫ T

0

f(x)dx.

Then IT : H → R is continuous because

|IT f | ≤ |T | sup
x∈[0,T ]

|f(x)| ≤ |T | sup
x∈[0,T ]

‖δx‖H∗‖f‖H

and supx∈[0,T ] ‖δx‖H∗ <∞ by the Banach-Steinhaus theorem. Therefore,

− logP (t, T ) =

∫ T−t

0

ft(x)dx = IT−tft

= IT−tStf0 +

∫ t

0

IT−tSt−sαs(fs)ds+

∫ t

0

IT−tSt−sσs(fs)dWs

= (IT − It)f0 +

∫ t

0

(IT−s − It−s)αs(fs)ds+

∫ t

0

(IT−s − It−s)σs(fs)dWs

= IT f0 +

∫ t

0

IT−sαs(fs)ds+

∫ t

0

IT−sσs(fs)dWs

− Itf0 −
∫ t

0

∫ t

s

δu−sαs(fs)duds−
∫ t

0

∫ t

s

δu−sσs(fs)dudWs.

To verify that we may apply Fubini’s theorem to the last two integrals, note
that the solution f lies in the space E of Lemma 70 with p = 2. Thus, letting
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|α|Lip and |σ|Lip denote the Lipschitz constants of α and σ with respect to f ,
we have

E
[∫ t

0

∫ u

0

|δu−sαs(fs)|dsdu
]
≤ t2 sup

x∈[0,t]

‖δx‖H∗ |α|Lip‖f‖E <∞

and

E

[∫ t

0

(∫ u

0

‖δu−sσs(fs)‖2L2(U ;R)ds

)1/2

du

]

≤
∫ t

0

(∫ u

0

E
[
‖δu−sσs(fs)‖2L2(U ;R)

]
ds

)1/2

du

≤ t3/2 sup
x∈[0,t]

‖δx‖H∗ |σ|Lip‖f‖E <∞.

Therefore, we can apply Fubini’s theorem and get

− logP (t, T ) = IT f0 +

∫ t

0

IT−sαs(fs)ds+

∫ t

0

IT−sσs(fs)dWs

− Itf0 −
∫ t

0

∫ u

0

δu−sαs(fs)dsdu−
∫ t

0

∫ u

0

δu−sσs(fs)dWsdu

= IT f0 +

∫ t

0

IT−sαs(fs)ds+

∫ t

0

IT−sσs(fs)dWs

−
∫ t

0

δ0

(
Suf0 +

∫ u

0

Su−sαs(fs)ds+

∫ u

0

Su−sσs(fs)dWs

)
du

= IT f0 +

∫ t

0

IT−sαs(fs)ds+

∫ t

0

IT−sσs(fs)dWs −
∫ t

0

rudu.

By Itō’s formula, the processes P (t, T ) and P̃ (t, T ) := B−1
t P (t, T ) satisfy

P (t, T ) = exp

(
−IT f0 −

∫ t

0

IT−sαs(fs)ds−
∫ t

0

IT−sσs(fs)dWs +

∫ t

0

rudu

)
= P (0, T )−

∫ t

0

P (s, T )IT−sσs(fs)dWs

+

∫ t

0

P (s, T )

(
rs − IT−sαs(fs) +

1

2
Tr
(
IT−sσs(fs), IT−sσs(fs)

))
ds,

and

P̃ (t, T ) = P̃ (0, T )−
∫ t

0

P̃ (s, T )IT−sσs(fs)dWs

+

∫ t

0

P̃ (s, T )

(
−IT−sαs(fs) +

1

2
Tr
(
IT−sσs(fs), IT−sσs(fs)

))
ds.

For each g ∈ H one has

m(g, g)(x) = g(x)

∫ x

0

g(y)dy =
d

dx

1

2

(∫ x

0

g(y)dy

)2

,
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which implies that

IT−s Tr
(
m(σs(fs), σs(fs))

)
=

1

2
Tr
(
IT−sσs(fs), IT−sσs(fs)

)
.

Therefore, by the definition of α,

P̃ (t, T ) = P̃ (0, T )−
∫ t

0

P̃ (s, T )IT−sσs(fs)λsds−
∫ t

0

P̃ (s, T )IT−sσs(fs)dWs

= P̃ (0, T ) E
(∫ ·

0

IT−sσs(fs)(dWs − λsds)
)
t

,

(9)
where E denotes the stochastic exponential. This process is a local martingale
for each T if and only if for each T ∈ R+ the following is a dt⊗ P-null set:

{(t, ω) ∈ [0, T ]× Ω : IT−tσt(ft)λt 6= 0} .

Differentiation with respect to T shows that this is equivalent to σt(ft)λt van-
ishing dt⊗P-almost surely. This establishes the theorem under the assumption
that f0 ∈ L2(F0;H). The general case follows using the localization technique
in the existence proof of Lemma 70.

82 Corollary. Let P and f be as in Theorem 79, and assume that for each
t ∈ R+

E
[
exp

(
−1

2

∫ t

0

‖λs(fs)‖2Uds+

∫ t

0

〈λs(fs), ·〉UdWs

)]
= 1.

Then the bond market is free of arbitrage.

Proof. Let Q be the probability measure on
⋃
t∈R+

Ft which satisfies for each
t ∈ R+ that

dQ|Ft
dP|Ft

= exp

(
−1

2

∫ t

0

‖λs(fs)‖2Uds+

∫ t

0

〈λs(fs), ·〉UdWs

)
.

By Girsanov’s theorem, the process Wt−
∫ t

0
λsds is a Brownian motion under Q.

It follows from (9) that the discounted bond prices are local martingales under
Q. Thus, Q is an equivalent local martingale measure, and the bond market is
free of arbitrage.

7.4 Examples

The following lemma shows that the presence of the shift semigroup in the HJM
equation is due to the parametrization of forward rates as functions of time to
maturity x instead of maturity T . Moreover, it shows how mild solutions of
the HJM equation can be constructed forward rate processes which are defined
pointwise for every maturity T .

83 Lemma. Let Setting 77.(i) be in place. For every T ∈ R+ let

α(·, T ) : [0, T ]× Ω→ R, σ(·, T ) : [0, T ]× Ω→ L2(U ;R)
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be predictable processes such that∫ T

0

|α(s, T )|ds <∞,
∫ T

0

‖σ(s, T )‖2L2(U ;R)ds <∞.

Then the following statements hold:

(i) The equation

f(t, T ) = f(0, T ) +

∫ t

0

α(s, T )ds+

∫ t

0

σ(s, T )dWs,

holds for every t ∈ [0, T ] and every T ∈ R+ if and only if the equation

ft(x) = Stf0(x) +

∫ t

0

St−sαs(x)ds+

∫ t

0

St−sσs(x)dWs

holds for every t, x ∈ R+, where S is the shift semigroup on functions
R+ → R and where

ft(x) = f(t, t+ x), αt(x) = α(t, t+ x), σt(x) = σ(t, t+ x).

(ii) If additionally Setting 77.(ii)–(iii) holds, if there are predictable processes

f : R+ × Ω→ H, α : R+ × Ω→ H, σ : R+ × Ω→ L2(U ;H)

such that for every x ∈ R+,

ft(x) = δxft, αt(x) = δxαt, σt(x) = δxσt,

and if for every t ∈ R+,∫ t

0

‖αs‖Hds <∞,
∫ t

0

‖σs‖2L2(U ;H)ds <∞,

then f is a mild solution of the HJM equation on H.

Proof. See exercises or [Fil01, Sections 4.1 and 4.2].

The following is a common choice of a Hilbert space containing the forward
rate curves.

84 Lemma. Let α > 3, and let

H =
{
f ∈ H1

loc : ‖f‖H <∞
}
,

where

‖f‖2H = |f(0)|2 +

∫ ∞
0

|f ′(x)|2w(x)dx, w(x) = (1 + x)α.

Then H satisfies Setting 77.(ii)–(iii).

Proof. See exercises or [Fil01, Theorem 5.1.1 and Example 5.1.2].

43



85 Lemma. Let H be as in Lemma 84, let θ ∈ H, let β < 0, let a > 0, let
U = R, let W be IU -Brownian motion, let (rt)t∈R+

be the unique solution of

drt = (θ(t) + βrt)dt+
√
adWt, (10)

and define for each t, x ∈ R+

Pt(x) = E
[
exp

(
−
∫ t+x

t

r(s)ds

)∣∣∣∣F(t)

]
,

ft(x) = − d

dx
logPt(x).

Then f is the unique mild solution of the HJM equation with λ = 0 and

σt(f)(u)(x) =
√
aeβxu, t ∈ R+, f ∈ H,u ∈ U, x ∈ R+.

Proof. See exercises or [Fil09, Section 5.4.1] and Lemma 83.

86 Lemma. Let H be as in Lemma 84, let θ ∈ H satisfy θ(x) ≥ 0 for each
x ∈ R+, let β < 0, let α > 0, let U = R, let W be IU -Brownian motion, let
(rt)t∈R+

be the unique solution of

drt = (θ(t) + βrt)dt+
√
αrtdWt, (11)

and define Pt(x) and ft(x) as in Lemma 85. Then f is a mild solution of the
HJM equation with λ = 0 and

σt(f)(u)(x) = −
√
αf(0)Ψ′(x)u, t ∈ R+, f ∈ H,u ∈ U, x ∈ R+,

where for each x ∈ R+,

Ψ(x) =
−2 (eγx − 1)

γ (eγx + 1)− β (eγx − 1)
, γ =

√
β2 + 2α.

Proof. See exercises or [Fil09, Section 5.4.2] and Lemma 83.

7.5 Literature

This section is similar to [CT07, Chapter 6] and [Fil01, Chapters 4 and 5].
Further information can be found in the textbook [Fil09] and in the extensive
monograph [BM07].

8 Stochastic evolution equations with unbounded
coefficients

8.1 Interpolation spaces

87 Definition. Let H be a Hilbert space, let A : D(A) ⊆ H → H be a
symmetric diagonal linear operator with inf σP (A) > 0.
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(i) For each r ≥ 0, Ar : D(Ar) ⊆ H → H is the linear operator which is
defined on

D(Ar) =

v ∈ H :
∑

λ∈σP (A)

∥∥λrPker(λ−A)(v)
∥∥2

H
<∞

 ,

and which satisfies for each v ∈ D(Ar) that

Arv =
∑

λ∈σP (A)

Pker(λ−A)(v).

(ii) A family of interpolation spaces associated to A is a family (Hr)r∈R of
Hilbert spaces such that for all q ≥ 0, all r ≥ s, and all v ∈ Hr, Hq =

D(Aq), Hr ⊆ Hs ⊆ Hr
Hs

, and ‖v‖Hr = ‖Ar−sv‖Hs .

88 Remark.

• Interpolation spaces as in Definition 87 exist and are unique [Jen15, The-
orem 3.5.24].

• For each r ∈ R the scalar product 〈·, ·〉H admits an extension to a non-
degenerate continuous bilinear form Hr ×H−r → R.

• Interpolation spaces for more general operators are defined in [EN99, Sec-
tion 2.5].

8.2 Smoothing effect of the semigroup

89 Lemma. Let H be a Hilbert space, let A : D(A) ⊆ H → H be a symmetric
diagonal linear operator with supσP (A) < 0. Then

(i) A is the generator of a strongly continuous semigroup, and

(ii) For each r ≥ 0 it holds that

sup
t∈[0,∞)

∥∥(−tA)reAt
∥∥
L(H)

≤
(r
e

)r
<∞.

Proof. (i): As A is diagonal, there is an orthonormal basis B of H and a function
λ : B→ R such that for each v ∈ D(A),

Av =
∑
b∈B

eλbt〈b, v〉Hb.

The assumption that supσP (A) < 0 ensures that the following function is well-
defined,

S : [0,∞)→ L(H), Stv =
∑
b∈B

eλbt〈b, v〉Hb.

S is a semigroup because for each s, t ≥ 0 and v ∈ H,

SsStv = Ss

(∑
b∈B

eλbt〈b, v〉Hb

)
=
∑
b∈B

eλbt〈b, v〉HSsb
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=
∑
b∈B

eλbt〈b, v〉Heλbsb = Ss+tv,

and S is strongly continuous because one has for each v ∈ H by the dominated
convergence theorem that

lim
t↘0
‖Stv − v‖2H = lim

t↘0

∥∥∥∥∥∑
b∈B

(
eλbt − 1

)
〈b, v〉Hb

∥∥∥∥∥
2

H

= lim
t↘0

∑
b∈B

∣∣eλbt − 1
∣∣2 |〈b, v〉H |2 = 0.

The generator of S is an extension of A because for each v ∈ D(A), by the
dominated convergence theorem,

lim
t↘0

∥∥∥∥Stv − vt
−Av

∥∥∥∥2

H

= lim
t↘0

∥∥∥∥∥∑
b∈B

(
eλbt − 1

t
− λb

)
〈b, v〉Hb

∥∥∥∥∥
2

H

= lim
t↘0

∑
b∈B

∣∣∣∣eλbt − 1

t
− λb

∣∣∣∣2 |〈b, v〉H |2 = 0.

Conversely, A extends the generator of S: if v belongs to the domain of the
generator of S, there exists w ∈ H such that

0 = lim
t↘0

∥∥∥∥Stv − vt
− w

∥∥∥∥2

= lim
t↘0

∑
b∈B

∣∣∣∣eλbt − 1

t
〈b, v〉H − 〈b, w〉H

∣∣∣∣2 ,
which implies that 〈b, w〉H = λb〈b, v〉H and∑

b∈B
|λb|2 |〈b, v〉H |2 =

∑
b∈B
|〈b, w〉H |2 <∞,

and therefore v ∈ D(A) and w = Av. Therefore, the generator of S equals A.
(ii): For each r, t ≥ 0 one has∥∥(−tA)reAt

∥∥
L(H)

= sup
b∈B

∣∣(−tλb)reλbt∣∣ ≤ sup
x∈(0,∞)

∣∣xre−x∣∣ ≤ (r
e

)r
<∞.

8.3 Existence and uniqueness

90 Setting. We want to analyze the equation

dXt =
(
AXt + F (Xt)

)
dt+B(Xt)dWt

subject to the following assumptions:

(i) T ∈ [0,∞), (Ω,F ,P, (Ft)t∈[0,T ]) is a stochastic basis, U is a separable
Hilbert space, and (Wt)t∈[0,T ] is an IU -cylindrical Brownian motion on U
with respect to (Ft)t∈[0,T ].

(ii) H is a separable Hilbert space, A : D(A) ⊆ H → H is a symmetric
diagonal linear operator with supσP (A) < 0, and (Hr)r∈R is a family of
interpolation spaces associated to −A.
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(iii) γ ∈ R, p ∈ [2,∞), and ξ ∈ Lp(Hγ).

(iv) η ∈ [0, 1), and F and B are P ⊗ B(Hγ)-measurable mappings

F : [0, T ]× Ω×Hγ → Hγ−η, (t, ω, x) 7→ Ft(ω, x),

B : [0, T ]× Ω×Hγ → L2(U ;Hγ−η/2), (t, ω, x) 7→ Bt(ω, x).

91 Theorem. Let Setting 90 hold, and let F and B be Lipschitz continuous in
x with a Lipschitz constant not depending on (t, ω). Then there exists a unique
up to modifications predictable processes X : [0, T ]×Ω→ Hγ which satisfies for
each t ∈ [0, T ] that

Xt = eAtξ +

∫ t

0

eA(t−s)Fs(Xs)ds+

∫ t

0

eA(t−s)Bs(Xs)dWs

and

P

[∫ T

0

‖Xs‖2Hγds <∞

]
= 1.

Proof. The proof is similar to Lemma 70. We set up a fixed point problem
on the Banach space E of dt ⊗ P-equivalence classes of predictable processes
X : [0, T ]× Ω→ H satisfying

‖X‖E := sup
t∈[0,T ]

‖Xt‖Lp(Ω;Hγ) <∞.

There are three key estimates. First, by the smoothing effect of the semigroup
(Lemma 89.(ii)), one has for each t ≥ 0 and r ∈ [0, e] that∥∥eAt∥∥

L(Hγ−r;Hγ)
=
∥∥(−A)γeAt(−A)r−γ

∥∥
L(H;H)

= t−η
∥∥(−tA)reAt

∥∥
L(H;H)

≤ t−r
(r
e

)r
≤ t−r.

Second, for any predictable process F : [0, T ]× Ω→ Hγ−η one has∥∥∥∥∫ t

0

eA(t−s)Fsds

∥∥∥∥
Lp(Ω;Hγ)

≤
∫ t

0

∥∥∥eA(t−s)Fs

∥∥∥
Lp(Ω;Hγ)

ds (Minkowski)

≤
∫ t

0

(t− s)−η ‖Fs‖Lp(Ω;Hγ−η) ds (smoothing)

≤

√∫ t

0

(t− s)−ηds
∫ t

0

(t− s)−η ‖Fs‖2Lp(Ω;Hγ−η) ds (C–S)

=

√
t1−η

1− η

∫ t

0

(t− s)−η ‖Fs‖2Lp(Ω;Hγ−η) ds

≤ t1−η

1− η

√∫ t

0

‖Fs‖2Lp(Ω;Hγ−η) ds (Young).
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Third, for any predictable process B : [0, T ]× Ω→ L2(U ;Hγ−η) one has∥∥∥∥∫ t

0

eA(t−s)BsdWs

∥∥∥∥
Lp(Ω;Hγ)

≤

√
p(p− 1)

2

∫ t

0

∥∥eA(t−s)Bs
∥∥2

Lp(Ω;L2(U ;Hγ))
ds (BDG)

≤

√
p(p− 1)

2

∫ t

0

(t− s)−η ‖Bs‖2Lp(Ω;L2(U ;Hγ−η/2)) ds (smoothing)

≤

√
p(p− 1)

2

t1−η

1− η

∫ t

0

‖Bs‖2Lp(Ω;L2(U ;Hγ−η/2)) ds (Young).

These estimates imply the local contraction property of the fixed point mapping
and therefore existence and uniqueness similarly to the proof of Lemma 70.

92 Remark.

• The condition ξ ∈ Lp((Ω,F0,P);Hγ) can be relaxed to ξ ∈ L0((Ω,F0,P);Hγ)
using localization as in the proof of Theorem 68.

• A priori estimates can be obtained using a generalized Gronwall inequality
[Jen15, Corollary 1.4.6] applied to the expressions one step before Young’s
inequality (see [Jen15, Proposition 7.1.4].

8.4 Literature

This section follows the setup and notation of [Jen15, Section 7]. At the expense
of heavier notation most results can be extended to analytic semigroups with
generators that are not necessarily diagonal linear operators [DZ14, Section 6.5].

9 Stochastic heat equation

9.1 Existence and uniqueness

93 Setting. We want to analyze the equation

dXt(x) =
(
θ∆Xt(x) + f(x,Xt(x))

)
dt+ b(x,Xt(x))dWt(x), x ∈ (0, 1),

in the following setting:

(i) T ∈ [0,∞), (Ω,F ,P, (Ft)t∈[0,T ]) is a stochastic basis, U = L2((0, 1)),
and (Wt)t∈[0,T ] is an IU -cylindrical Brownian motion with respect to
(Ft)t∈[0,T ].

(ii) H = U , θ > 0, and ∆ : H2
0 ((0, 1)) ⊆ H → H is the Laplace operator.

(iii) f, b : (0, 1)×R→ R are measurable functions, are Lipschitz in the second
variable, and satisfy f(·, 0), b(·, 0) ∈ L2((0, 1)).

94 Theorem. Under the assumptions of Setting 93, the following statements
hold:
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(i) A := θ∆ is a diagonal linear operator, which satisfies supσP (A) < 0 and
generates a strongly continuous semigroup.

(ii) For any β < −1/4, the following mappings are well-defined and Lipschitz
continuous,

F : H → H, F (v)(x) = f(x, v(x)),

B : H → L2(U ;Hβ), B(v)(u)(x) = b(x, v(x))u(x),

where Hβ denotes an interpolation space associated to −A.

(iii) For each ξ ∈ L2((Ω,F0,P);H) there exist a unique up to modifications
predictable process X : [0, T ] × Ω → H which satisfies for each t ∈ [0, T ]
that

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs)ds+

∫ t

0

eA(t−s)B(Xs)dWs

and

P

[∫ T

0

‖Xs‖2Hds <∞

]
= 1.

Proof. We follow [Jen15, Section 7.2.1].
(i): For each n ∈ N and x ∈ (0, 1) let

en(x) =
√

2 sin(nπx).

Then (en)n=1,2,... is an orthonormal basis of H, each en is contained in D(A),
and Aen = −θπ2n2en. Thus, A is a diagonal linear operator, which satisfies
supσP (A) = −θπ2 < 0. By Lemma 89 it generates a strongly continuous
semigroup S. This proves (i).

(ii): Let |f |Lip and |b|Lip denote the Lipschitz constants of f and b in the sec-
ond variable. The mapping F : H → H is well-defined and Lipschitz continuous
because for each u, v ∈ H,

‖F (u)‖L2((0,1)) ≤ ‖f(·, 0)‖L2((0,1)) + ‖f(·, u(·))− f(·, 0)‖L2((0,1))

≤ ‖f(·, 0)‖L2((0,1)) + |f |Lip‖u‖L2((0,1)) <∞,
‖F (u)− F (v)‖L2((0,1)) ≤ |f |Lip‖u− v‖L2((0,1)) <∞.

The mapping B : H → L2(H;Hβ) is well-defined because for each v ∈ H,

‖B(v)‖2L2(U ;Hβ
=

∞∑
k=1

‖b(·, v(·))ek(·)‖2Hβ

=

∞∑
k=1

‖(−A)βb(·, v(·))ek(·)‖2H ((−A)β is isometry)

=

∞∑
k,l=1

|〈el, (−A)βb(·, v(·))ek(·)〉H |2 (Parseval)

=

∞∑
l=1

‖(−A)βel‖2H
∞∑
k=1

|〈el, b(·, v(·))ek(·)〉H |2 (el is eigenvector)
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=

∞∑
l=1

‖(−A)βel‖2H‖b(·, v(·))el(·)‖2H
(〈el,bek〉H=〈bel,ek〉H ,

Parseval

)
≤ 2

∞∑
l=1

‖(−A)βel‖2H‖b(·, v(·))‖2H (‖el‖L∞((0,1)) =
√

2)

= 2‖b(·, v(·))‖2H‖(−A)β‖2L2(U ;H) <∞. (
∑∞
k=1 k

4β <∞).

Moreover, B : H → L2(H;Hβ) is Lipschitz continuous because for each v, w ∈
H, by a similar estimate as above,

‖B(v)−B(w)‖2L2(U ;Hβ
≤ 2‖b(·, v(·))− b(·, w(·))‖2H‖(−A)β‖2L2(U ;H)

≤ 2|b|Lip‖v − w‖2H <∞.

(iii): This follows from Theorem 91 with γ = 0, p = 2, η ∈ (1/2, 1) using
(i)–(ii).

9.2 Literature

This section is taken from [Jen15, Section 7.2.1]. The stochastic heat equation
is also called continuous-time parabolic Anderson model. Higher-dimensional
analogues of the equation are studied in the context of stochastic quantization
(see [DZ14, Section 13.7] for an overview).

10 Stochastic wave equation

10.1 Overview of wave equations

The following is an overview of some well-known equations for the height u(x, t)
of a wave at time t and location x. Many qualitative properties of the equation
can be seen by studying traveling wave solutions, i.e., solutions of the form
u(x, t) = f(x− ct), where f is a function and c is a constant.

Name Equation Traveling wave solutions
Transport ut + ux = 0 u(x, t) = f(x− t)
Wave utt − uxx = 0 u(x, t) = f(x± t)
Klein-Gordon utt − uxx + u = 0 u(x, t) = a cos(k(x− ct− x0))

c2 < 1, k = (1− c2)−1/2

sine-Gordon utt − uxx + sin(u) = 0 u(x, t) = 2
π arctan(e

√
2πk(x−ct−x0))

c2 < 1, k = ±(1− c2)−1/2

Airy ut + uxxx = 0 u(x, t) = a cos(k(x− ct− x0)) + b
c < 0, k = (−c)1/2

KdV ut + uux + uxxx = 0 u(x, t) = 3c sech2(k/2(x− ct− x0))
c > 0, k = c1/2

Schrödinger
√
−1ut = −uxx u(x, t) = e

√
−1k(x−ct−x0)

c 6= 0, k = c

One speaks of dispersion if there are multiple possible values of c, of causality
if compactly supported initial data leads to compactly supported solutions, of
a conservation law if the equation is of the form ut = ∂x(. . . ), of a wave train if
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f is periodic, of a wave front if f is monotonic, and of a solitary wave if f has
a unique local maximum.

10.2 Existence and uniqueness

95 Setting. We want to analyze the equation

∂2
tXt(x) = θ∆Xt(x) + f(x,Xt(x)) + b(x,Xt(x))Ẇt(x), x ∈ (0, 1),

where Ẇ is space-time white noise, by rewriting it as a first-order system{
dXt(x) = Yt(x)dt,

dYt(x) =
(
θ∆Xt(x) + f(x,Xt(x))

)
dt+ b(x,Xt(x))dWt(x),

in the following setting:

(i) T ∈ [0,∞), (Ω,F ,P, (Ft)t∈[0,T ]) is a stochastic basis, U = L2((0, 1)), and
(Wt)t∈[0,T ] is a IU -Brownian motion with respect to (Ft)t∈[0,T ].

(ii) H = U , θ > 0, and ∆ : H2
0 ((0, 1)) ⊂ H → H is the Laplace operator.

(iii) f, b : (0, 1)×R→ R are measurable functions, are Lipschitz in the second
variable, and satisfy f(·, 0), b(·, 0) ∈ L2((0, 1)).

96 Theorem. Under the assumptions of Setting 95, the following statements
hold:

(i) The linear operator θ∆ is diagonal, satisfies supσP (θ∆) < 0, and has an
associated family (Hr)r∈R of interpolation spaces.

(ii) The linear operator

A : H1/2 ×H0 ⊂ H0 ×H−1/2 → H0 ×H−1/2, (v, w) 7→ (w, θ∆v),

generates a strongly continuous group of isometries on H0 ×H−1/2.

(iii) The following mappings are well-defined and Lipschitz continuous,

F : H0 ×H−1/2 → H0 ×H−1/2, F (v, w)(x) =
(
0, f(x, v(x))

)
,

B : H0 ×H−1/2 → L2(U ;H0 ×H−1/2), B(v, w)(u)(x) =
(
0, b(x, v(x))u(x)

)
.

(iv) For each ξ ∈ L2((Ω,F0,P);H0×H−1/2) there exists a unique up to modifi-
cations predictable process (X,Y ) : [0, T ]×Ω→ H0×H−1/2 which satisfies
for each t ∈ [0, T ] that

(Xt, Yt) = eAtξ +

∫ t

0

eA(t−s)F (Xs, Ys)ds+

∫ t

0

eA(t−s)B(Xs, Ys)dWs

and

P

[∫ T

0

(
‖Xs‖2H0

+ ‖Ys‖2H−1/2

)
ds <∞

]
= 1.

51



Proof. (i): This was shown in Theorem 94.(i).
(ii): A∗ is an extension of −A because for each (v1, w1), (v2, w2) ∈ D(A),

〈A(v1, w1), (v2, w2)〉H0×H−1/2
= 〈w1, v2〉H0 + 〈θ∆v1, w2〉H−1/2

= 〈(−θ∆)1/2w1, (−θ∆)1/2v2〉H−1/2
+ 〈(−θ∆)−1/2θ∆v1, (−θ∆)−1/2w2〉H0

= 〈w1,−θ∆v2〉H−1/2
− 〈v1, w2〉H0 = −〈(v1, w1), A(v2, w2)〉H0×H−1/2

.

To see that A∗ = −A let (v, w) ∈ D(A∗). Then the following linear mapping is
bounded:

H1/2 ×H0 ⊂ H0 ×H−1/2 → R, (h, k) 7→ 〈A(h, k), (v, w)〉H0×H−1/2
.

Rewriting the last expression as

〈A(h, k), (v, w)〉H0×H−1/2
= 〈k, v〉H0

+ 〈θ∆h,w〉H−1/2

= 〈k, v〉H0
+ 〈−(−θ∆)1/2h, (−θ∆)−1/2w〉H0

and using that (−θ∆)1/2 : H0 → H−1/2 is an isometry shows that the following
linear mappings are bounded,

H0 ⊂ H−1/2 → R, k 7→ 〈k, v〉H0
,

H0 ⊂ H−1/2 → R, h 7→ 〈h, (−θ∆)−1/2w〉H0
.

By [NJW15, Lemma 3.10.(ii)] this implies that v and (−θ∆)−1/2w belong to
H1/2, which is equivalent to (v, w) ∈ H1/2 × H0 = D(A). This proves that
A∗ = −A. It follows from a theorem of Stone [EN99, Theorem 3.24] that A
generates a strongly continuous group of isometries. This proves (ii).

(iii): This follows from Theorem 94.(ii).
(iv): This follows from Theorem 91 using (ii)–(iii).

10.3 Literature

The overview of wave equations is inspired by Peter D. Miller’s lecture notes
[Mil06]. The stochastic wave equation is also called continuous-time hyperbolic
Anderson model. An extensive analysis of the stochastic wave equation can be
found in [NJW15].

11 Stochastic Schrödinger equation

11.1 Quantum mechanics

97 Definition. According to John von Neumann’s and Paul Dirac’s axiomati-
zation of quantum mechanics and Schrödinger’s view of quantum dynamics, a
physical system is described by the following ingredients:

• States are one-dimensional subspaces of a separable complex Hilbert
space H. Thus, for every non-zero v ∈ H, spanC{v} is a state.

• Observables are self-adjoint linear operators on H. The expectation (in
the sense of probability) of an observable T under a state spanC{v} with
‖v‖ = 1 is defined as 〈Tv, v〉H .
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• Dynamics of the states X : R+ → H are encoded in Schrödinger’s equa-
tion √

−1~dXt = AXtdt,

where ~ is a constant and A is a self-adjoint linear operator on H, which
is called the Hamiltonian. Note that Schrödinger’s equation is norm-
preserving, i.e., −

√
−1A generates a strongly continuous group of isome-

tries on H by a theorem of Stone [EN99, Theorem 3.24].

98 Example (Harmonic oscillator). H = L2(R;C) and

A(v)(x) = − ~2

2m
∆v(x) +

1

2
mω2x2v(x),

where m and ω are constants. A typical observable is the position operator
Tv(x) = xv(x).

99 Remark. There are several extensions and modifications of Schrödinger’s
equation. For example, one may add a nonlinearities and noise. The noise is
typically added in Stratonovich form to preserve the property that ‖Xt‖H =
‖X0‖H . This leads to equations of the form

√
−1~dXt =

(
AXt + F (Xt)

)
dt+B(Xt) ◦ dWt,

where F : H → H, B : H → L2(U ;H), W is real-valued Brownian motion on a
Hilbert space U , and ◦dWt is the Stratonovich integral. This equation can be
recast in Itō form as

√
−1~dXt =

(
AXt + F (Xt) +

1

2
TrUQ B

′(Xt)B(Xt)

)
dt+B(Xt) ◦ dWt,

provided that

TrUQ B
′(Xt)B(Xt) =

∑
u∈U

(
B′(Xt)

(
B(Xt)u

))
u ∈ H,

where U is an orthonormal basis of the reproducing kernel Hilbert space UQ of
the cylindrical Brownian motion W .

11.2 Existence and uniqueness

100 Setting. We want to analyze the equation

√
−1 dXt(x) =

(
∆Xt(x) + f(x,Xt(x))

)
dt+ b(x,Xt(x))dWt(x), x ∈ Rd,

in the following setting:

(i) T ∈ [0,∞), (Ω,F ,P, (Ft)t∈[0,T ]) is a stochastic basis, d ∈ N\{0}, r > d/2,

U = Hr(Rd;C), Q ∈ L1(U), and (Wt)t∈[0,T ] is a Q-Brownian motion with
respect to (Ft)t∈[0,T ].

(ii) H = L2(Rd;C) and ∆ : H2(Rd;C) ⊂ H → H is the Laplace operator.

(iii) f, b : (0, 1)×R→ R are measurable functions, are Lipschitz in the second
variable, and satisfy f(·, 0), b(·, 0) ∈ L2((0, 1)).
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101 Theorem. Under the assumptions of Setting 93, the following statements
hold:

(i) A :=
√
−1 ∆ generates a strongly continuous group of isometries on H.

(ii) The following mappings are well-defined and Lipschitz continuous,

F : H → H, F (v)(x) = −
√
−1f(x, v(x)),

B : H → L2(UQ;H), B(v)(u)(x) = −
√
−1b(x, v(x))u(x).

(iii) For each ξ ∈ L2((Ω,F0,P);H) there exist a unique up to modifications
predictable process X : [0, T ] × Ω → H which satisfies for each t ∈ [0, T ]
that

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs)ds+

∫ t

0

eA(t−s)B(Xs)dWs

and

P

[∫ T

0

‖Xs‖2Hds <∞

]
= 1.

Proof. (i): Letˆdenote the Fourier transform. For each v ∈ H and t ∈ R let Stv
be the unique element of H which satisfies for each ξ ∈ R that

Ŝtv(ξ) = exp(−itξ2)v̂(ξ). (12)

Thus, in the Fourier domain, St is a multiplication operator by a function of
absolute value one. It is easy to verify that S is a strongly continuous group of
isometries on H, whose generator is A [EN99, Propositions 4.11 and 4.12].

(ii): The Lipschitz continuity of F follows by the same argument as in the
proof of Theorem 94.(ii). The Lipschitz continuity of B can be seen as follows.
First, the mapping

H → H, v 7→ b(·, v(·))

is Lipschitz by the same argument as in the proof of Theorem 94.(ii). Second,
by the Sobolev embedding theorem U is continuously embedded in L∞(Rd;C),
and therefore multiplication H × U → H is continuous. Third, the embedding
iQ : UQ → U is Hilbert-Schmidt because for any orthonormal basis B of U and
any orthonormal basis U of UQ,

‖iQ‖L2(UQ;U) =
∑
u∈U
‖iQu‖2U =

∑
u∈U

∑
v∈B
|〈iQu, v〉U |2 =

∑
u∈U

∑
v∈B
|〈u,Qv〉UQ |2

=
∑
v∈B
‖Qv‖2UQ =

∑
v∈B
〈Qv, v〉2U = Tr(Q) ≤ ‖Q‖L1(U) <∞.

The mapping B is a composition of these three mappings, and it follows that B
is Lipschitz continuous. This shows (ii).

(iii): This follows from Theorem 91 using (i)–(ii).
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11.3 Literature

The following variant of Schrödinger’s equation is a basic model for nonlinear
waves,

√
−1 dXt(x) =

(
∆Xt(x) + |Xt(x)|2σ)

)
dt+Xt(x) ◦ dWt(x), x ∈ Rd,

where σ > 0 is a constant and ◦dWt is a Stratonovich integral (see [DZ14,
Section 13.23] for an overview). This equation does not fit into Setting 100
because of the non-Lipschitz drift. Solutions exist only locally in time and blow
up with positive probability in finite time [BD02].

12 Stochastic linearized Korteweg–de Vries equa-
tion

12.1 History of the Korteweg–de Vries equation

In the 19th century much research was devoted to the study of water waves,
particularly in England and France (see [Jag] for a historical account).

• In 1834 naval architect Scott Russel observed a solitary wave, which was
traveling in the Union Canal between Edinburgh and Glasgow at a speed
of about 13 km/h without changing its shape. This led him to perform
extensive experiments and to search for a mathematical model of such
“great traveling waves.”

• Some of Russel’s contemporaries, including foremost Airy, dismissed Rus-
sel’s observation as impossible. Others, including Rayleigh, Boussinesq,
and finally Korteweg and de Vries [KV95] took up the quest and de-
rived new shallow-water limits of the Navier-Stokes equations. These new
equations admit solitary traveling waves, similar to the ones observed by
Russel.

12.2 Existence and uniqueness

102 Setting. We want to study a perturbed linearized KdV (or Airy) equation,

dXt(x) =
(
AXt(x) + f

(
x,Xt(x)

))
dt+ b

(
x,Xt(x)

)
dWt, x ∈ R,

in the following setting:

(i) T ∈ [0,∞), (Ω,F ,P, (Ft)t∈[0,T ]) is a stochastic basis, d ∈ N\{0}, r > 1/2,
U = Hr(R), Q ∈ L1(U), and (Wt)t∈[0,T ] is a Q-Brownian motion with
respect to (Ft)t∈[0,T ].

(ii) H = L2(R) and A : H3(R) ⊂ H → H is given by u 7→ −u′′′.

(iii) f, b : (0, 1)×R→ R are measurable functions, are Lipschitz in the second
variable, and satisfy f(·, 0), b(·, 0) ∈ L2((0, 1)).

103 Theorem. Under the assumptions of Setting 102, the following statements
hold:
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(i) A generates a strongly continuous group of isometries on H.

(ii) The following mappings are well-defined and Lipschitz continuous,

F : H → H, F (v)(x) = f(x, v(x)),

B : H → L2(UQ;H), B(v)(u)(x) = b(x, v(x))u(x).

(iii) For each ξ ∈ L2((Ω,F0,P);H) there exist a unique up to modifications
predictable process X : [0, T ] × Ω → H which satisfies for each t ∈ [0, T ]
that

Xt = eAtξ +

∫ t

0

eA(t−s)F (Xs)ds+

∫ t

0

eA(t−s)B(Xs)dWs

and

P

[∫ T

0

‖Xs‖2Hds <∞

]
= 1.

Proof. (i): Letˆdenote the Fourier transform, and let i =
√
−1. For each v ∈ H

and t ∈ [0,∞) let Stv be the unique element of H which satisfies for each ξ ∈ R
that

Ŝtv(ξ) = exp(itξ3)v̂(ξ). (13)

Thus, in the Fourier domain, St is a multiplication operator by a function of
absolute value one. It is easy to verify that S is a strongly continuous group of
isometries on H, whose generator is A [EN99, Propositions 4.11 and 4.12].

(ii): This follows as in Theorem 101.(ii).
(iii): This follows from Theorem 91 using (i)–(ii).

12.3 Literature

The historical account is inspired by [Jag]. It is possible to replace the colored
noise by white noise and to add the nonlinearity uux, but this requires a different
fixed point argument [BD98; BDT99].
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[PR07] C. Prévôt and M. Röckner. A concise course on stochastic partial
differential equations. Vol. 1905. Springer, 2007.

[Roz90] B. L. Rozovskii. Stochastic Evolution Systems. Linear Theory and
Applications to Non-linear Filtering. Vol. 35. Mathematics and Its
Applications (Soviet Series). Springer, 1990.

[Rya02] R. A. Ryan. Introduction to Tensor Products of Banach Spaces.
Springer Monographs in Mathematics. Springer, 2002.

[Van08] J. Van Neerven. Stochastic evolution equations. ISEM lecture notes.
2007–2008.

57

http://arxiv.org/abs/0907.4178
http://arxiv.org/abs/0907.4178
http://arxiv.org/abs/math/0602661
http://math.arizona.edu/~mcl/Miller/
http://arxiv.org/abs/1508.05168

	Introduction
	Stochastic evolution equations
	Motivating examples
	Random motion of a string
	Zakai equation in non-linear filtering
	Equations of population genetics

	Literature

	Integration in Banach spaces
	Strong measurability
	Lebesgue-Bochner Lp spaces
	Bochner integral
	Other notions of integrals
	Literature

	Gaussian random variables
	Moments
	Convergence
	Series representations
	Gaussians on Hilbert spaces
	Literature

	Tensor products and operator ideals
	Tensor products and tensor norms
	Operator ideals and bilinear forms
	Trace
	Some further tensor norms and operator ideals
	Operator ideals on Hilbert spaces
	Literature

	Stochastic integration
	Martingales
	Brownian motion
	Construction of the stochastic integral
	Properties of the stochastic integral
	Literature

	Stochastic evolution equations with Lipschitz coefficients
	Solution concepts
	Existence and uniqueness
	Existence of continuous modifications
	Literature

	Heath–Jarrow–Morton equation
	Bond prices and interest rates
	Existence and uniqueness
	Absence of arbitrage
	Examples
	Literature

	Stochastic evolution equations with unbounded coefficients
	Interpolation spaces
	Smoothing effect of the semigroup
	Existence and uniqueness
	Literature

	Stochastic heat equation
	Existence and uniqueness
	Literature

	Stochastic wave equation
	Overview of wave equations
	Existence and uniqueness
	Literature

	Stochastic Schrödinger equation
	Quantum mechanics
	Existence and uniqueness
	Literature

	Stochastic linearized Korteweg–de Vries equation
	History of the Korteweg–de Vries equation
	Existence and uniqueness
	Literature


