

SPDEs 2016/17 Exercise Sheet 5

Lecture and exercises: Philipp Harms, Tolulope Fadina Due date: Thursday November 24, 2016

Setting

Let U be a separable Hilbert space.

5.1. Existence of cylindrical Brownian motion

Show that there exists a *Q*-cylindrical Brownian motion for any symmetric non-negative $Q \in L(U)$.

5.2. Cylindrical Brownian motion is Brownian motion on a larger Hilbert space

Show that the following statement holds: if W is cylindrical Q-Brownian motion with $Q \in L(U)$ and $i: U \to \tilde{U}$ is a Hilbert-Schmidt embedding into another Hilbert space \tilde{U} , then \tilde{W} is cylindrical \tilde{Q} -Brownian motion with $\tilde{Q} \in L_1(\tilde{U})$, where $\tilde{W} := W \circ (I_{L^2(\mathbb{R}_+)} \otimes i^*)$: $L^2(\mathbb{R}_+; \tilde{U}) \to L^2(\Omega)$ and $\tilde{Q} := i \circ Q \circ i^*$.

Note: we have seen in the lecture that cylindrical Brownian motion with nuclear covariance operator can be identified with Brownian motion.

5.3. Existence of Hilbert-Schmidt embeddings

Show that for any separable Hilbert space U there is a Hilbert-Schmidt embedding $i: U \to \tilde{U}$ into a separable Hilbert space \tilde{U} .

University of Freiburg

5.4. Existence of cylindrical Brownian motion with respect to a filtration

Let *W* be *Q*-cylindrical Brownian motion for some $Q \in L(U)$. Show that there exists a right-continuous and complete filtration (\mathscr{F}_t) such that *W* is *Q*-cylindrical Brownian motion with respect to (\mathscr{F}_t) .