

SPDEs 2016/17 Exercise Sheet 4

Lecture and exercises: Philipp Harms, Tolulope Fadina Due date: November 16, 2016

4.1. Regularity of diagonal operators on Hilbert spaces

Let *H* be a Hilbert space with orthonormal basis *B*, let $\lambda : B \to \mathbb{R}$ be a function, and let $T : D(T) \subseteq H \to H$ be the diagonal linear operator given by

$$Tb = \lambda_b b, \qquad D(T) = \left\{ h \in H : \sum_{b \in B} |\lambda_b|^2 \langle b, h \rangle_H^2 < \infty
ight\}.$$

We consider *B* as a measure space with the counting measure #. Show the following statements hold:

- a) $T \in L(H)$ iff $\lambda \in L^{\infty}(B)$, and $||T||_{L(H)} = ||\lambda||_{L^{\infty}(B)}$.
- b) $T \in L_1(H)$ iff $\lambda \in L^1(B)$, and $||T||_{L_1(H)} = ||\lambda||_{L^1(B)}$.
- c) $T \in L_2(H)$ iff $\lambda \in L^2(B)$, and $\|T\|_{L_2(H)} = \|\lambda\|_{L^2(B)}$.

Hint: While this is not necessary, you might find it convenient to represent elements of the completed tensor product not by equivalence classes of Cauchy sequences, but as in [Rya02, Proposition 6.10]: any $u \in E \hat{\otimes}_{g_p} F$ can be represented as a convergent series $u = \sum_{n=1}^{\infty} x_n \otimes y_n$ such that $||(x_n)||_{p'}^w ||(y_n)||_p$ is finite and arbitrarily close to $||u||_{E \hat{\otimes}_{g_p} F}$.

References

[Rya02] Raymond A. Ryan. *Introduction to Tensor Products of Banach Spaces*. Springer Monographs in Mathematics. Springer, 2002.