

SPDEs 2016/17 Exercise Sheet 2

Lecture and exercises: Philipp Harms, Tolulope Fadina Due date: November 2, 2016

2.1. Injectivity of the Fourier transform

Show that *E*-valued random variables X_1 and X_2 are identically distributed if

$$\mathbb{E}\left[\exp\left(-i\langle X_1,x^*
angle
ight)
ight]=\mathbb{E}\left[\exp\left(-i\langle X_2,x^*
angle
ight)
ight],\qquad x^*\in E^*.$$

Note: you may use without proof that the Fourier transform is bijective on tempered distributions on \mathbb{R}^n , for each $n \in \mathbb{N}$.

2.2. Rotations of independent Gaussians

For iid centered Gaussian random variables X_1 and X_2 , set $Y_1 := (X_1 + X_2)/\sqrt{2}$ and $Y_2 := (X_1 - X_2)/\sqrt{2}$. Show that Y_1 and Y_2 are iid and have the same distribution as X_1 and X_2 .

Hint: use the previous exercise.

2.3. Convergence of Gaussians

Let $(X_n)_{n \in \mathbb{N}}$ be a sequence of centered Gaussian *E*-valued random variables, let *X* be an *E*-valued random variable, and assume that $\langle X_n, x^* \rangle \rightarrow \langle X, x^* \rangle$ in probability for each $x^* \in E^*$. Show that *X* is centered Gaussian.

University of Freiburg

2.4. Sazanov's theorem

Let *H* be a separable Hilbert space. Show that $Q \in L(H)$ is the covariance operator of a centered Gaussian *H*-valued random variable *X* if and only if *Q* is symmetric, non-negative definite, and $Tr(Q) < \infty$.