

7. Übungsblatt zur Vorlesung Empirische Prozesse (Bonusblatt)

Prof. Dr. Angelika Rohde, WiSe 2016 / 2017

Aufgabe 1. (+4 Punkte)

Seien ρ eine (Pseudo-)Metrik auf einer Menge \mathcal{T} und $h:[0,\infty)\to[0,\infty)$ monoton wachsend und stetig mit h(0)=0, Grenzwert $h(\infty)>0$ und

$$h(r+s) \le h(r) + h(s)$$
 für alle $r, s \ge 0$.

Zeigen Sie, dass dann auch $h \circ \rho$ eine (Pseudo-)Metrik auf \mathcal{T} darstellt und dieselbe Topologie wie ρ induziert.

Aufgabe 2. (+4 Punkte)

Sei (\mathcal{T}, ρ) ein pseudometrischer Raum; für $n \in \mathbb{N}$ sei $x_n : \mathcal{T} \to \mathbb{R}$ eine bezüglich ρ gleichmäßig stetige Funktion. Angenommen, $(x_n)_{n \in \mathbb{N}}$ konvergiere gleichmäßig gegen eine Funktion x. Zeigen Sie, dass dann auch x gleichmäßig stetig bezüglich ρ ist.

Aufgabe 3. (+4 Punkte)

Sei $\mathbb{M} = \mathbb{M}_1 \times \mathbb{M}_2$ mit metrischen Rähmen (\mathbb{M}_1, d_1) und (\mathbb{M}_2, d_2) , und sei d auf $\mathbb{M}_1 \times \mathbb{M}_2$ definiert vermöge

$$d((x_1, x_2), (y_1, y_2)) := \max (d_1(x_1, y_1), d_2(x_2, y_2)).$$

(i) Angenommen, die M-ZVA Z sei straff. Zeigen Sie, dass die Folge $(Z_n)_{n\in\mathbb{N}}$ von M-Zufallselementen genau dann in Verteilung gegen Z konvergiert, wenn

$$\lim_{n\to\infty} \mathbb{E}^* f(Z_n) = \mathbb{E} f(Z)$$

für alle stetigen Funktionen f von der Form

$$f(z_1, z_2) = f_1(z_1) f_2(z_2)$$
 mit $f_i \in \mathcal{C}(\mathbb{M}_i, [0, 1])$.

(ii) Zeigen Sie, dass $(Z_n)_{n\in\mathbb{N}}$ genau dann asymptotisch straff und asymptotisch messbar ist, wenn mit $Z_n = (Z_{n1}, Z_{n2})$ beide Folgen $(Z_{n1})_{n\in\mathbb{N}}$ und $(Z_{n2})_{n\in\mathbb{N}}$ asymptotisch straff und asymptotisch messbar sind.