

Wahrscheinlichkeitstheorie

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Moritz Ritter

Übungsblatt 10

Abgabe: Freitag, 07.07.2023, um 18:00 Uhr.

Aufgabe 1 (4 Punkte). Seien Y und Y_n für alle $n \in \mathbb{N}$ Zufallsvariablen mit Werten in \mathbb{Z} . Zeigen

$$Y_n \Rightarrow Y \iff \forall j \in \mathbb{Z} : P(Y_n = j) \xrightarrow[n \to \infty]{} P(Y = j).$$

Lösung. " \Rightarrow ": Es gilt für alle $j \in \mathbb{Z}$:

$$\lim_{n \to \infty} P(Y_n = j) = \lim_{n \to \infty} \int_{\mathbb{Z}} \mathbb{1}_{\{j\}}(x) P^{Y_n}(dx) = \int_{\mathbb{Z}} \mathbb{1}_{\{j\}}(x) P^{Y}(dx) = P(Y = j),$$

denn $\mathbb{1}_{\{i\}}: \mathbb{Z} \to \mathbb{R}$ ist stetig (und beschränkt).

"\(\infty\)": Wir zeigen zunächst die Straffheit von $(Y_n)_{n\in\mathbb{N}}$. Sei $\varepsilon>0$. Wähle $K\subset\mathbb{Z}$ kompakt (und damit $|K| < \infty$), sodass

$$P^Y(K) >= 1 - \varepsilon/2.$$

Da K endlich existiert ein $N_K \in \mathbb{N}$, sodass für alle $i \in K$

$$|P^{Y_n}(\{i\} - P^Y(\{i\}))| \le \varepsilon/(2|K|)$$
 für alle $n \ge N_K$.

Nun gilt für alle $n \geq N_K$:

$$P^{Y_n}(K) = \sum_{i \in K} P^{Y_n}(\{i\}) \ge \sum_{i \in K} P^Y(\{i\}) - \varepsilon/(2|K|) = P^Y(K) - \varepsilon/2 \ge 1 - \varepsilon.$$

Weiter sind endlich viele Maße straff, damit existiert ein $K' \subset \mathbb{Z}$ kompakt, sodass für alle $n \leq N_K$

$$P^{Y_n}(\{K'\}) \ge 1 - \varepsilon.$$

Mit $K \cup K'$ erhalten wir die Straffheit. Da $\{\mathbb{1}_{\{i\}}|i\in\mathbb{Z}\}\subset\mathcal{C}_b(\mathbb{Z})$ eine separierende Familie ist folgt $P^{Y_n} \Rightarrow P^Y$ mit Satz 128.

Aufgabe 2 (4 Punkte). Zeigen Sie, dass jedes Wahrscheinlichkeitsmaß auf \mathbb{R} schwacher Limes einer Folge von diskreten Wahrscheinlichkeitsmaßen ist.

Lösung. Sei P ein Wahrscheinlichkeitsmaß auf \mathbb{R} und F die zugehörige Verteilungsfunktion. Dann wird durch $F_n(x) := F\left(\frac{[x \cdot 2^n] + 1}{2^n}\right)$ für alle $x \in \mathbb{R}$ für alle $n \in \mathbb{N}$ eine Verteilungsfunktion definiert und das zu F_n gehörige Maß P_n ist diskret. Sei $x_0 \in \mathbb{R}$. Offensichtlich gilt $\frac{[x_0 \cdot 2^n]+1}{2^n} \searrow x_0$ für $n \to \infty$. Da Verteilungsfunktinen rechtsstetig

sind, gilt

$$\lim_{n \to \infty} F_n(x_0) = \lim_{n \to \infty} F\left(\frac{[x_0 \cdot 2^n] + 1}{2^n}\right) = F(x_0).$$

Insbesondere gilt $F_n(x) \xrightarrow{n \to \infty} F(x)$ für alle Stetigkeitsstellen von F und damit erhalten wir nach Korollar 44 $P_n \stackrel{n \to \infty}{\Longrightarrow} P$.

Aufgabe 3 (4 Punkte). Sei $(\alpha_n)_{n\in\mathbb{N}}$ eine Folge mit $\alpha_n\in(0,\infty)$. Weiter sei $(X_n)_{n\in\mathbb{N}}$ eine Folge von Zufallsvariablen, sodass X_n exponentialverteilt mit Parameter α_n ist, d.h. X_n besitzt die Dichte

$$f_n(x) = \mathbb{1}_{\{x > 0\}} \alpha_n e^{-\alpha_n x}.$$

Zeigen Sie die schwache Konvergenz von $(X_n)_{n\in\mathbb{N}}$ für $n\to\infty$, falls $\alpha_n\to\infty$ für $n\to\infty$.

Lösung. Wir zeigen zunächst, dass $X_n \to 0$ in Wahrscheinlichkeit. Es gilt

$$P(|X_n| > \varepsilon) = \int_{\varepsilon}^{\infty} \alpha_n e^{-\alpha_n x} dx = e^{-\alpha_n \varepsilon} \to 0.$$

Aus der stochastischen Konvergenz folgt die schwache Konvergenz. Damit ist der erste Beweis gefunden. Für einen alternativen Beweis betrachte die Verteilungsfunktion von X_n . Es gilt für $x \ge 0$.

$$P(X_n \le x) = \int_0^x \alpha_n e^{-\alpha_n} x dx = 1 - e^{-\alpha_n x} \to \mathbb{1}_{\{x \ge 0\}}.$$

Die rechte Seite entspricht der Verteilungsfunktion der Diracverteilung $\delta_{\{0\}}$. Damit konvergieren die Verteilungsfunktionen punktweise an allen Stetigkeitsstellen von $\mathbb{1}_{\{x\geq 0\}}$. Dies zeigt ebenfalls die schwache Konvergenz.

Aufgabe 4 (4 Punkte). Zeigen Sie, dass es einen Homeomorphismus zwischen \mathbb{R} und den Dirac Maßen auf \mathbb{R} mit der schwachen Konvergenz gibt.

Lösung. Wir betrachten die Abbildung $\Psi : \mathbb{R} \to \mathcal{P}(\mathbb{R})$ gegeben durch $x \mapsto \delta_{\{x\}}$. Wir zeigen die Stetigkeit mithilfe der Folgenstetigkeit: Es gelte $x_n \to x \in \mathbb{R}$. Dann folgt

$$E_{P_n}[f] = f(x_n) \to f(x) = E_P[f]$$
 für alle Funktionen $f \in \mathcal{C}_b(\mathbb{R})$.

Dies zeigt $\delta_{\{x_n\}} \Rightarrow \delta_{\{x\}}$. Umgekehrt gelte $\delta_{\{x_n\}} \Rightarrow \delta_{\{x\}}$. Damit folgt

$$E_{P_n}[f] \to E_P[f]$$
 für alle Funktionen $f \in \mathcal{C}_b(\mathbb{R})$.

Da $(P_n)_{n\in\mathbb{N}}$ straff ist und aus Dirac-Maßen besteht, existiert eine kompakte Menge $K\subset\mathbb{R}$, sodass

$$P(K) = 1, P_n(K) = 1$$
 für alle $n \in \mathbb{N}$.

Sei nun $K \subset [a,b]$ für ein Intervall $[a,b] \in \mathbb{R}$, $a,b \in \mathbb{R}$. Wir definieren

$$f = a\mathbb{1}_{(-\infty,a)} + \mathrm{id} \cdot \mathbb{1}_{[a,b]} + b\mathbb{1}_{(b,\infty)} \in \mathcal{C}_b(\mathbb{R}).$$

Dann gilt

$$x_n = E_{P^n}[f] \to E_P[f] = x.$$