

Funktionalanalysis

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Marc Weber

https://www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-funktionalanalysis-ss-2020

Übung 3

Abgabe: 04.06.20 bis 18 Uhr per E-Mail an FunkAnaAbgabenFr2020@gmail.com

Aufgabe 1 (3 Punkte). Sei V ein normierter Vektorraum und $u \in V \setminus \{0\}$. Dann existiert ein Funktional $f \in V^*$ so, dass $||f||_{V^*} = 1$ und $\langle f, u \rangle = ||u||_{V^*}$. Sei zusätzlich $||\cdot||_{V^*}$ strikt konvex, d.h. für alle $t \in (0,1)$ und $f_0, f_1 \in X$ mit $f_0 \neq f_1$ und $||f_0||_{X^*} = ||f_1||_{X^*} = 1$ gilt

$$||(1-t) f_0 + t f_1||_{V^*} < 1.$$

Zeigen Sie, dass f eindeutig bestimmt ist.

Aufgabe 2 (6 Punkte). Sei V ein normierter Vektorraum und $g:V\to\mathbb{R}\cup\{\infty\}$. Zeigen Sie das Folgende:

- (a) g ist unterhalbstetig genau dann, wenn epi (g) abgeschlossen ist.
- (b) g ist unterhalbstetig genau dann, wenn $\{x \in V \mid g(x) > \lambda\}$ für alle $\lambda \in \mathbb{R}$ offen ist.
- (c) g ist konvex genau dann, wenn epi (g) konvex ist.
- (d) Sei $\{g_j: V \to \mathbb{R} \cup \{\infty\}, j \in J\}$ eine Familie unterhalbstetiger Funktionen. Dann ist die Funktion $g := \sup_{j \in J} g_j$ (punktweise definiert) unterhalbstetig.

Aufgabe 3 (5 Punkte). Zeigen Sie, dass es eine Funktion $g \in C([0,1])$ gibt, welche in keinem Punkt des Intervalls [0,1] differenzierbar (nicht einmal einseitig) ist.

Hinweis: Betrachten Sie dazu für $n \in \mathbb{N}$ die Mengen

$$M_n := \left\{ f \in C([0,2]) \mid \exists x_0 \in [0,1] \text{ mit } \sup_{0 \le h \le 1} \frac{|f(x_0 + h) - f(x_0)|}{h} \le n \right\}$$

und beweisen Sie, dass M_n in C([0,2]) abgeschlossen ist, aber keine inneren Punkte besitzt.

Aufgabe 4 (6 Punkte). Zeigen Sie das Folgende:

- (a) Sei E ein unendlichdimensionaler Banachraum. Dann besitzt E keine abzählbare algebraische Basis.
 - Hinweis: Satz von Baire.
- (b) Es gibt keine Norm auf dem Raum der Polynome auf [0,1], bezüglich der dieser Raum vollständig ist.
- (c) Ein normierter Raum X ist separabel genau dann, wenn eine Folge (x_n) linear unabhängiger Elemente von X derart existiert, dass für jedes $x \in X$ und $\varepsilon > 0$ endlich viele Koeffizienten $\alpha_{n_1}, \ldots, \alpha_{n_K} \in \mathbb{R}$ existieren so, dass

$$\left\| x - \sum_{k=1}^{K} \alpha_{n_k} x_{n_k} \right\|_{X} < \varepsilon.$$