

Funktionalanalysis

Vorlesung: Prof. Dr. Thorsten Schmidt

Ubung: Marc Weber

https://www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-funktionalanalysis-ss-2020

Übung 1

Abgabe: 18.05.20 bis 18 Uhr per E-Mail.

Hilfreiche Definitionen: Eine algebraische Basis (Hamel-Basis) eines Vektorraumes X ist eine linear unabhängige Menge $\mathcal{B} \subset X$, so dass jedes $x \in X$ als endliche Linearkombination von Elementen aus \mathcal{B} darstellbar ist. Die Dimension von X ist die Anzahl der Elemente von \mathcal{B} .

Aufgabe 1 (5 Punkte). Seien X, Y normierte Vektorräume und $A: X \to Y$ ein linearer Operator. Beweisen Sie, dass die folgenden Aussagen äquvivalent sind:

- (a) A ist Lipschitz-stetig,
- (b) A ist stetig,
- (c) A ist stetig in 0,
- (d) $\sup_{||x|| \le 1} ||Ax||_Y < \infty$,
- (e) A ist beschränkt.

Aufgabe 2 (5 Punkte). Überprüfen Sie, ob der Operator $T: X \to Y$ linear ist und ob er stetig und/oder beschränkt ist.

- (a) $X = (C^1([0,1]), ||\cdot||_{\infty}), Y = (C([0,1]), ||\cdot||_{\infty}), Tf = f'.$
- (b) $X = (L^1([0,1]), ||\cdot||_1), Y = (\mathbb{R}, |\cdot|), Tf = \sup\{c \ge 0 | c \le |f| \text{ fast "überall auf } [0,1]\}.$

Aufgabe 3 (5 Punkte). Sei $(X, ||\cdot||_X)$ ein normierter Vektorraum mit algebraischer Basis \mathcal{B} .

- (a) Sei $\varphi \in L(X, \mathbb{R})$. Zeigen Sie, dass φ durch seine Werte auf \mathcal{B} definiert ist, d.h. wenn $\varphi(x)$ für alle $x \in \mathcal{B}$ definiert ist, dann existiert genau ein lineares Funktional $\bar{\phi}: X \to \mathbb{R}$, so dass $\varphi(x) = \bar{\varphi}(x)$ für alle $x \in \mathcal{B}$ gilt.
- (b) Zeigen Sie, dass ein unbeschränktes lineares Funktional $\phi: X \to \mathbb{R}$ genau dann existiert, wenn dim $X = \infty$ gilt.

Hinweis: Betrachten Sie eine abzählbare Untermenge der Basis und definieren Sie ein geeignetes Funktional darauf.

Aufgabe 4 (5 Punkte). Seien (X,τ) ein topologischer Raum und $M\subset X$. Zeigen Sie:

- (a) Die Menge M ist genau dann offen, wenn sie Umgebung all ihrer Punkte ist.
- (b) Der Abschluss der Menge M ist abgeschlossen.
- (c) Das Innere der Menge M ist offen.
- (d) M abgeschlossen \Longrightarrow für alle Folgen $(x_n)_{n\in\mathbb{N}}\subset M$ mit $x_n\to x$ gilt $x\in M$.
- (e) Setzen wir voraus, dass jeder Punkt von X eine abzählbare Umgebungsbasis besitzt, dann gilt auch " $\Leftarrow=$ " in (d).