

Funktionalanalysis

Vorlesung: Prof. Dr. Thorsten Schmidt

Übung: Marc Weber

https://www.stochastik.uni-freiburg.de/lehre/ss-2020/vorlesung-funktionalanalysis-ss-2020

Übung 2

Abgabe: 28.05.20 bis 18 Uhr per E-Mail.

Aufgabe 1 (6 Punkte). Sei $X = (L^{\infty}(-1,1), \|\cdot\|_{\infty})$. Für $f \in X$ definiere

$$\langle \varphi, f \rangle = \varphi(f) := \int_{-1}^{1} t f(t) dt.$$

- 1. Berechnen Sie die Norm $\|\varphi\|_{X^*}$.
- 2. Finden Sie eine Funktion $f \in X$ mit $||f||_X = 1$ so, dass $\varphi(f) = ||\varphi||_{X^*}$ gilt, oder beweisen Sie, dass keine solche Funktion existiert.
- 3. Beantworten Sie (a) und (b), falls $X = (C([-1,1]), \|\cdot\|_{\infty})$ ist.

Aufgabe 2 (4 Punkte). Seien X, Y Banachräume, $(X_0, \|\cdot\|_X)$ ein dichter Untervektorraum von X und sei $T \in L(X, Y)$. Zeigen Sie, dass gilt

$$||T||_{L(X,Y)} = \sup_{\substack{x \in X \\ ||x||_X = 1}} ||T(x)||_Y = \sup_{\substack{x \in X_0 \\ ||x||_X = 1}} ||T(x)||_Y.$$

Aufgabe 3 (4 Punkte). Sei X ein Banachraum und sei $E \subset X$ ein Untervektorraum mit dim $E < \infty$. Zeigen Sie, dass E abgeschlossen ist.

Aufgabe 4 (6 Bonuspunkte). Sei X ein Banachraum und sei $E \subset X$ ein abgeschlossener Untervektorraum. Für jedes $x \in X$ definiere $\hat{x} := \{z \in X \mid x - z \in E\}$. Dann ist

$$X/E := \{\hat{x} \mid x \in X\}$$

ein Vektorraum. Wir definieren

$$\|\hat{x}\|_{X/E} := \inf_{y \in E} \|x - y\|_{X}.$$

Zeigen Sie das Folgende:

- 1. $\|\hat{x}\|_{X/E}$ ist wohldefiniert, d.h. aus $\hat{x} = \hat{z}$ folgt $\|\hat{x}\|_{X/E} = \|\hat{z}\|_{X/E}$.
- 2. $\|\cdot\|_{X/E}$ ist eine Norm auf X/E. Dies ist die Quotientennorm.
- 3. $(X/E, \|\cdot\|_{X/E})$ ist ein Banachraum.

Hinweis: Sei $(\hat{x}_n)_n$ eine Cauchyfolge in X/E. Dann kann man wie folgt vorgehen:

- (i) Wählen Sie eine Teilfolge $(\hat{x}_k)_k$ so, dass $\|\hat{x}_k \hat{x}_j\|_{X/E} \le 2^{-k}$ für alle $j \ge k$ gilt;
- (ii) Wählen Sie eine Folge $(e_k)_k$ in E so, dass $||x_k e_k x_{k+1} + e_{k+1}||_X \le ||\hat{x}_k \hat{x}_{k+1}||_{X/E} + 2^{-k}$ qilt:
- (iii) $x_k e_k \to x \in X$;
- (iv) $\|\hat{x}_k \hat{x}\|_{X/E} \to 0$.