Übungen zur Vorlesung "Stochastische Integration und Finanzmathematik"

Blatt 10

Abgabetermin: Dienstag, 09.07.2019, bis 14.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen an.)

Aufgabe 1 (6 Punkte)

Für $h \in (0,1)$ sei $X = (X_t)_{t \ge 0}$ ein Gauß'scher Prozess mit $\mathbb{E}[X_t] = 0$ für alle t und Kovarianzstruktur gegeben durch

$$Cov(X_s, X_t) = \frac{1}{2}(t^{2h} + s^{2h} - (t - s)^{2h})$$

für alle $s \leq t$.

Zeigen Sie:

- a) $X_t X_s \stackrel{d}{=} (t s)^h X_1$ für alle $t \ge s$.
- b) Es existiert eine Modifikation von X mit stetigen Pfaden.
- c) X ist kein (klassisches) Semimartingal, wenn $h < \frac{1}{2}$.

Aufgabe 2 (4 Punkte)

Sei $B = (B_t)_{t \geq 0}$ eine Standard-Brownsche Bewegung und $T_{a,b} := \inf\{t \in \mathbb{R}^+ : B_t + bt = a\}$ für a, b > 0. Bestimmen Sie mit Hilfe des Satzes von Girsanov die Laplace-Transformierte $L_{a,b}(x) := \mathbb{E}[e^{-xT_{a,b}}]$.

HINWEIS: Führen Sie es auf $T_{a,0}$ zurück. Um dann $L_{a,0}$ zu bestimmen, erinnern Sie sich an ein bestimmtes exponentielles Martingal und benutzen Sie das OST.

Aufgabe 3 (6 Punkte)

Seien F, G stetige Funktionen und f die Lösung der Differentialgleichung f'(s) = F(s)f(s) mit f(0) = 1. Sei $X = (X_t)_{t>0}$ ein stetiges Semimartingal. Zeigen Sie:

$$Z_t := f(t) \left(z + \int_0^t f(u)^{-1} G(u) dX_u \right)$$

ist eine Lösung von

$$Z_t = z + \int_0^t F(u)Z_u du + \int_0^t G(u)dX_u$$

und es gilt

$$Z_t = \frac{f(t)}{f(s)}Z_s + \int_s^t \frac{f(t)}{f(u)}G(u)dX_u.$$

Ist $X = B = (B_t)_{t \ge 0}$ eine Brownsche Bewegung, so ist $Z = (Z_t)_{t \ge 0}$ ein Gauß-Prozess.