Übungen zur Vorlesung "Stochastische Integration und Finanzmathematik"

Blatt 6

Abgabetermin: Dienstag, 04.06.2019, bis 14.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen an.)

Aufgabe 1 (4 Punkte)

Es seien $M = (M_t)_{t\geq 0}$ und $N = (N_t)_{t\geq 0}$ unabhängige stetige lokale Martingale bezüglich einer gemeinsamen Filtration $\mathbb{F} = (\mathcal{F}_t)_{t\geq 0}$, d.h. die σ -Algebren $\sigma(M_t : t \geq 0) \subset \mathbb{F}$ und $\sigma(N_t : t \geq 0) \subset \mathbb{F}$ sind unabhängig.

- a) Zeigen Sie, dass dann [M, N] = 0 gilt, oder äquivalent dazu, dass MN ein stetiges lokales Martingal bezüglich $(\mathcal{F}_t)_{t>0}$ ist.
- b) Seien nun B eine Standard-Brownsche Bewegung, T eine nicht fast sicher konstante Stoppzeit und B^T die zugehörige gestoppte Brown'sche Bewegung. Zeigen Sie anhand von B^T und $B B^T = (B_t B_t^T)_{t \ge 0}$, dass die Umkehrung in a) im Allgemeinen nicht gilt.

Aufgabe 2 (4 Punkte)

Zeigen Sie für eine Standard-Brownsche Bewegung B, dass

$$\int_0^t s \, dB_s = tB_t - \int_0^t B_s \, ds.$$

HINWEIS: $\sum_{j} \Delta(s_j B_{s_j}) = \sum_{j} s_j \Delta B_{s_j} + \sum_{j} B_{s_{j-1}} \Delta s_j$, mit $0 = s_0 < \dots < s_n = t$ einer Partition des Intervalls [0, t].

Aufgabe 3 (4 Punkte)

Es sei $(M_t)_{t\geq 0}$ ein stetiger beschränkter stochastischer Prozess mit unabhängigen Zuwächsen und M_0 konstant. Zeigen Sie, dass $N:=(N_t)_{t\geq 0}$, definiert durch $N_t:=M_t-\mathbf{E}[M_t]$ ein stetiges Martingal bezüglich der von (M_t) erzeugten Filtration ist. Bestimmen Sie $([N,N]_t)_{t\geq 0}$.

Aufgabe 4 (4 Punkte)

Sei X ein Semimartingal bzgl. dem Wahrscheinlichkeitsmaß \mathbb{P} . Sei \mathbb{P}' ein weiteres Wahrscheinlichkeitsmaß mit $\mathbb{P}' \ll \mathbb{P}$. Wir bezeichnen mit $[X,X]^{\mathbb{P}}$ die quadratische Variation von X, wobei wir X als \mathbb{P} -Semimartingal auffassen. Zeigen Sie

$$[X,X]^{\mathbb{P}'} = [X,X]^{\mathbb{P}}, \mathbb{P}'$$
-fast sicher.