Übungen zur Vorlesung "Stochastische Integration und Finanzmathematik"

Blatt 1

Abgabetermin: Dienstag, 30.04.2019, bis 14.00 Uhr im zugehörigen Briefkasten im UG des Mathematischen Instituts, Ernst-Zermelo-Straße 1 (Geben Sie auf jedem Lösungsblatt Ihren Namen an.)

Aufgabe 1 (4 Punkte)

Es sei $X = (X_t)_{t\geq 0}$ ein E-wertiger, progressiv messbarer Prozess und adaptiert an einer den üblichen Bedingungen genügenden Filtrierung \mathbb{F} . Es sei $B \in \mathcal{B}(E)$, dann heißt T_B , definiert durch

$$T_B(\omega) := \inf\{t \ge 0 \mid X_t(\omega) \in B\},\$$

(erste) Eintrittszeit von X in B. Zeigen Sie:

- a) Hat X stetige Pfade und ist B abgeschlossen, so ist T_B eine Stoppzeit.
- b) Hat X rechtsseitig stetige Pfade und ist B offen, so ist T_B eine Stoppzeit.

Aufgabe 2 (4 Punkte)

Es sei $X = (X_t)_{t \ge 0}$ ein stochastischer Prozess mit càdlàg Pfaden und sei $\varepsilon > 0$.

- a) Zeigen Sie für jedes $t \geq 0$, dass in dem Intervall [0,t] nur endlich viele Sprünge existieren, dessen Sprunghöhen betragsmäßig größer als ε sind.
- b) Folgern Sie aus a), dass es höchstens abzählbar viele Sprünge in dem Intervall [0, t] gibt.