Übungen zur Vorlesung "Analysis II"

Blatt 7

Abgabetermin: Freitag, 21.06.2019, bis 10.00 Uhr in den Briefkästen im Math. Institut (Geben Sie auf jedem Lösungsblatt Ihren Namen und Ihre Übungsgruppe an. Sie dürfen maximal zu zweit abgeben.)

Aufgabe 1 (4 Punkte)

Untersuchen Sie die folgenden uneigentlichen Integrale auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert:

(a)
$$\int_0^1 \frac{1}{\sqrt{x}} dx$$
, (b) $\int_0^3 \frac{1}{x} dx$, (c) $\int_3^\infty \frac{4+x}{x^3} dx$, (d) $\int_0^\infty e^{-\pi x} dx$.

Aufgabe 2 (4 Punkte)

Es sei $R([a,b]) \subset B([a,b])$ der Raum aller beschränkten Riemann-integrierbaren Funktionen $f:[a,b] \longrightarrow \mathbb{R}$. Zeigen Sie, dass $(R([a,b]),||\cdot||_{\sup})$ ein Banachraum ist.

Aufgabe 3 (4 Punkte)

Es sei X eine Menge. Dann heißt eine Funktion $d:X\times X\longrightarrow \mathbb{R}$ eine Metrik, falls für alle $x,y,z\in X$ gilt, dass

- (1) $d(x,y) = 0 \Leftrightarrow x = y$,
- (2) d(x,y) = d(y,x),
- (3) $d(x,y) \le d(x,z) + d(z,y)$.

Das Paar (X,d) heißt dann $metrischer\ Raum$. Zeigen Sie:

- (a) Für $x, y \in X$ gilt $d(x, y) \ge 0$.
- (b) Jeder normierte Vektorraum $(E, ||\cdot||)$ ist mit d(x, y) = ||x y|| ein metrischer Raum.
- (c) Es sei A eine endliche Menge. Für $a, b \in A^n$ definieren wir die $Hamming-Distanz\ d$ als Anzahl der Einträge, an denen sich die Tupel unterscheiden, d.h.

$$d(a,b) := |\{1 < i < n \mid a_i \neq b_i\}|.$$

Zeigen Sie, dass es sich hierbei um eine Metrik handelt.

(d) Betrachten Sie den Raum $C([0,\infty))$ der stetigen Funktionen $f:[0,\infty)\to\mathbb{R}$ und

$$d(f,g) := \sum_{k=1}^{\infty} \frac{\sup_{x \in [0,k]} |f(x) - g(x)| \wedge 1}{2^k},$$

wobei $a \wedge b := \min(a, b)$. Zeigen Sie, dass es sich bei d um eine Metrik handelt.

Aufgabe 4 (4 Punkte)

Es sei $p \in \mathbb{N}$. Für eine Folge reeller Zahlen $x = (x_k)_{k \in \mathbb{N}}$ definieren wir

$$||x||_{l^p} := \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{\frac{1}{p}},$$

und

$$l^p(\mathbb{R}) := \{x \text{ Folge reeller Zahlen} : ||x||_{l^p} < \infty \}.$$

Zeigen Sie, dass es sich bei $||\cdot||_{l^p}$ um eine Norm handelt und dass mit dieser $(l^p(\mathbb{R}), ||\cdot||_{l^p})$ ein Banachraum ist.

Beginn Bonusaufgaben:

Es seien $f, \alpha : [a, b] \longrightarrow \mathbb{R}$ Funktionen und $Z = (x_0, x_1, \dots, x_n)$ sei eine Zerlegung des Intervalls [a, b] mit zugehörigem Stützwertvektor $\xi = (\xi_1, \xi_2, \dots, \xi_n)$. Dann definieren wir die Riemann-Stieltjes-Summe als

$$S_{\alpha}(f,Z,\xi) := \sum_{i=1}^{n} f(\xi_i) \left(\alpha(x_i) - \alpha(x_{i-1}) \right).$$

Konvergiert die Folge $(S_{\alpha}(f, Z_n, \xi_n))_{n \in \mathbb{N}}$ für jede Folge von Zerlegungen mit $|Z_n| \to 0$, so nennen wir den Grenzwert Riemann-Stieltjes-Integral von f bezüglich α und schreiben hierfür

$$\int_{a}^{b} f(x) d\alpha(x).$$

Aufgabe 5 (4 Bonuspunkte)

Es sei $\alpha:[a,b] \longrightarrow \mathbb{R}$ differenzierbar und es seien $f,\alpha':[a,b] \longrightarrow \mathbb{R}$ Riemann-integrierbare Funktionen in R([a,b]). Zeigen Sie, dass in diesem Fall für alle Zerlegungen Z_n mit $|Z_n| \to 0$ die Riemann-Stieltjes-Summen konvergieren und dass gilt

$$\int_{a}^{b} f(x)d\alpha(x) = \int_{a}^{b} f(x)\alpha'(x)dx.$$

HINWEIS: Nach dem Mittelwertsatz der Differentialrechnung existiert ein $\eta_j \in [x_{j-1}, x_j]$ sodass $\alpha(x_j) - \alpha(x_{j-1}) = \alpha'(\eta_j)(x_j - x_{j-1})$.

Aufgabe 6 (4 Bonuspunkte)

(a) Berechnen Sie die folgenden Riemann-Stieltjes-Integrale:

(a)
$$\int_0^1 x dx^2$$
, (b) $\int_0^{\pi} e^x d\sin(x)$.

(b) Es sei $\lfloor x \rfloor : \mathbb{R}_{\geq 0} \longrightarrow \mathbb{R}$ die Abrundungsfunktion, d.h. jedes $x \in \mathbb{R}_{\geq}$ wird auf die größte ganze Zahl m abgebildet mit $m \leq x$. Sei weiter $f : \mathbb{R} \to \mathbb{R}$ eine stetige Funktion. Zeigen Sie für a > 0, dass

$$\int_0^a f(x)d\lfloor x\rfloor$$

existiert und berechnen Sie dieses Integral.