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8.1. Kushner-Stratonovich and Zakai equation

Let X solve the martingale problem associated to A : D(A) ✓ B(Rd) ! B(Rd) and let
dYt = h(Xt)dt + dWt . Recall that for any bounded measurable function f : X! R, r( f )
is defined as the (F(Y ), ˜P)-optional projection of L f (X), where

P|Ft = Lt ˜P|Ft , L = E (h(X)•Y ),
˜P|Ft = ZtP|Ft , Z = E (�h(X)•W ).

a) Assume that h is bounded. Show that r(1) = E (p(h)•Y ).

Hint: Show that for any bounded stopping time T

˜E [1T<•LT ] = ˜E

1T<•

Z T

0

ps(h)rs(1)dYs

�

by applying the martingale representation theorem to 1T<•.

b) Deduce the Zakai equation from the Kushner-Stratonovich equation and a).

8.2. Change of measure approach for jump processes

Let X solve the martingale problem associated to A : D(A)✓B(Rd)!B(Rd) and let Y be
a Poisson process with rate l (X�), i.e., Yt = NR t

0

l (Xs�)ds, where N is a standard Poisson
process independent of X and l : X! (0,•) is a measurable function. Assume that l

and l

�1 are bounded.
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Define a change of measure from P to ˜P via

P|Ft = Lt ˜P|Ft , dLt = Lt�
�
l (Xt�)�1

��
dYt �dt

�
,

˜P|Ft = ZtP|Ft , dZt = Zt�
�
l

�1(Xt�)�1

��
dYt �l (Xt�)dt

�
.

It can be shown that the law of (X ,Y ) under ˜P equals the law of (X ,N) under P.

a) Show that [M f ,Y ] = 0, where

M f
t = f (Xt)� f (X

0

)�
Z t

0

A f (Xs�)ds.

Sketch of proof: Let (Tn)n2N be a sequence of stopping times exhausting the jumps
of M f . Under the measure ˜P, the process Y is a standard Poisson process inde-
pendent of X . Therefore, it has no fixed times of discontinuity, i.e., ˜P[Yt 6= 0] = 0

holds for each deterministic time t 2R. Together with the independence of Tn and
Y this implies ˜P[DYTn 6= 0] = 0 for each n 2 N. Thus, M f and Y have no common
jumps and [M f ,Y ] = 0.

b) Derive the Zakai equation, i.e.,

drt( f ) = rt(A f )dt +
�
rt�(l f )�rt�( f )

�
(dYt �dt).

Hint: You can use exactly the same steps as in the lecture, where Zakai’s equation
was derived for observations with additive Gaussian noise.

8.3. Singular filtering and stochastic volatility

This example shows why one typically assumes that the volatility of the observational
noise does not depend on the signal process X .

We work on a filtered probability space (W,F ,F,P) satisfying the usual conditions. The
signal is a càdlàg, F-adapted, X-valued process X .The observation process Y satisfies
Y

0

= 0 and
dYt = h(Xt)dt +s(Xt�)dWt ,
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where W is a standard F-Wiener process, s : X! [0,•) and h : X!R are both contin-
uous.

a) Suppose X= [0,•) and s is bijective. Derive an expression for the filter p.

Hint: Show that X is F(Y )-adapted.

b) Let T > 0 be fixed and consider an increasing sequence (An)n2N of finite subsets
of [0,T ] such that Sn2NAn is dense in [0,T ]. Suppose that the process Y from a)
is observable only at the time-points t 2 An. Let Gn be the (augmented) s -algebra
generated by {Yt : t 2 An}. Show that for any bounded f , we have

lim

n!•
E[ f (XT )|Gn] = pT ( f ) a.s.

Hint: Apply Doob’s martingale convergence theorem.

c) Compare the results of this exercise to Exercise 7.4. Give a mathematically pre-
cise interpretation of the following sentence: “High-frequency data allows one to
estimate volatilities, but not drifts.”

8.4. Singular filtering of a two-dimensional process

This is an example of a singular filtering problem with an explicit solution. Consider
the setting of Exercise 8.3 with X = R2, h(x) = 0, s(x) = kxk for x 2 R2, and X is a 2-
dimensional standard Wiener process independent of W . Calculate the filter of X given
Y .

Hint: Show that pt is a spherical distribution on R2, i.e., pt( f ) = pt( f �U), where f :

R2 ! R is bounded and U denotes multiplication by an orthogonal 2⇥ 2 matrix. Use
that any spherical distribution on R2 can be represented as the law of RS, where R is a
random variable with values in [0,•) and S is uniformly distributed on the unit sphere in
R2, independent of R.


