

Stochastic Filtering (SS2016) Exercise Sheet 5

Lecture and Exercises: JProf. Dr. Philipp Harms Due date: June 1, 2016

5.1. Change of measure

Let \mathbb{P} be the law of a HMM (X, Y) with state kernel P(x, dx') and observation kernel $K(x, dy) = \lambda(x, y)\phi(dy)$, where λ is a positive function and ϕ a probability measure. Furthermore, let $\tilde{\mathbb{P}}$ be the law of a HMM (X, Y) with the same state kernel P(x, dx') and observation kernel $K(x, dy) = \phi(dy)$. Finally, let $\mathscr{F}_k = \sigma(X_{0:k}, Y_{0:k}), \ \mathscr{F}_{\infty} = \bigvee_{k \ge 0} \mathscr{F}_k$, and $\mathbb{F} = (\mathscr{F}_k)_{k \in \mathbb{N}}$.

a) Find an example where $\mathbb{P}|_{\mathscr{F}_k} \ll \tilde{\mathbb{P}}|_{\mathscr{F}_k}$ holds for each $k \in \mathbb{N}$, but not for $k = \infty$.

Hint: Use the law of large numbers to construct an \mathscr{F}_{∞} -measurable random variable which assumes one value \mathbb{P} -a.s. and another value $\tilde{\mathbb{P}}$ -a.s.

b) Take \mathbb{P} and $\tilde{\mathbb{P}}$ be as in a) and let Λ_k be the density of $\mathbb{P}|_{\mathscr{F}_k}$ with respect to $\tilde{\mathbb{P}}|_{\mathscr{F}_k}$. Then Λ is a $\tilde{\mathbb{P}}$ -martingale. Is it uniformly integrable?

5.2. Strong property of predictable representation

Let $M = (M_k)_{k \in \mathbb{N}}$ be a martingale on a filtered probability space $(\Omega, \mathscr{F}, \mathbb{F}, \mathbb{P})$ with $\mathbb{F} = (\mathscr{F}_k)_{k \in \mathbb{N}}$. We write $\mathscr{F}_k(M) = \sigma(M_0, \dots, M_k)$, $\mathbb{F}(M) = (\mathscr{F}_k(M))_{k \in \mathbb{N}}$, and $\Delta M_k = M_k - M_{k-1}$. A process *H* is called \mathbb{F} -predictable if H_0 is \mathscr{F}_0 -measurable and H_k is \mathscr{F}_{k-1} -measurable for each $k \in \mathbb{N}_{>0}$.

We say that the strong property of predictable representation holds for $(M, \mathbb{F}, \mathbb{P})$ if every (\mathbb{F}, \mathbb{P}) -martingale *L* can be written as $L_k = L_0 + \sum_{i=1}^k H_i \Delta M_i$, $k \in \mathbb{N}$, for some predictable process *H*.

a) Show that the strong property of predictable representation holds for $(M, \mathbb{F}(M), \mathbb{P})$, where $M_k = \sum_{i=1}^k \Delta M_k$ and ΔM_k is an i.i.d. sequence of random variables with uniform distribution on $\{-1, 1\}$.

Hint: You can focus on a single time step and construct the representing process H explicitly.

Remark: In financial lingo, the strong property of predictable representation means that the market is complete.

5.3. Strong property of predictable representation

a) Come up with an example of an (\mathbb{F}, \mathbb{P}) -martingale *M* such that $(M, \mathbb{F}, \mathbb{P})$ does not have the strong property of predictable representation.

5.4. Stochastic exponentials

Let *X* be an Itō process, i.e., *X* satisfies

$$dX_t = \mu_t dt + \sigma_t dW_t$$

for some predictable processes μ, σ and Brownian motion *W*.

a) Show using Ito's formula that the process

$$Y_t = \exp\left(X_t - X_0 - \frac{1}{2}\langle X, X \rangle_t\right)$$

is a solution of the SDE

$$dY_t = Y_t dX_t, \qquad Y_0 = 1.$$

- b) Show that *Y* is a local martingale if $\mu = 0$.
- c) Show that *Y* is a martingale if $\mu = 0$ and σ is bounded.

Hint: You can find this in any of the books [2, 3, 5, 4, 1].

References

- [1] Jean Jacod and Albert Shiryaev. *Limit theorems for stochastic processes*. Vol. 288. Springer Science & amp; Business Media, 2013.
- [2] Ioannis Karatzas and Steven Shreve. *Brownian motion and stochastic calculus*. Vol. 113. Springer Science & amp; Business Media, 2012.
- [3] Bernt Oksendal. *Stochastic differential equations: an introduction with applications*. Springer Science & amp; Business Media, 2013.
- [4] Philip E Protter. *Stochastic Differential Equations*. Springer, 2005.
- [5] L Chris G Rogers and David Williams. *Diffusions, Markov processes and martingales*. Vol. 1 and 2. Cambridge University Press, 2000.