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Note: Please send me your source code by email or bring a laptop.

4.1. Kalman filter

We consider the same linear Gaussian HMM as in Exercise 3.4: the state and obser-
vation processes are assumed to evolve according to
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a) Smoothing step: assume for some k  n that p
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Hint. You may look this up in the reference of your choice or [1].

b) Explain how Exercises 3.4 and 4.1 can be combined to calculate smoothing dis-
tributions p

k|n, k  n, for fixed n.

Remark. This is known under the names forward-backward algorithm, Baum-
Welch algorithm and, in the special case of linear Gaussian models, Rauch-Tung-
Striebel smoothing [4].
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4.2. Filtering the position of a moving particle

Consider a particle moving in R2 at constant velocity, subject to small random pertur-
bations in position and velocity. The goal is to estimate the true position of the particle
from noisy observations of its position. This estimation can be done in the framework
of Exercises 3.4 and 4.1. Complete the Matlab template kalman.m on the homepage to
perform the following tasks.

a) Generate a sample trajectory of (X
k

,Y
k

)
k=0,...,N for a fixed number N.

b) Calculate the filtering distributions p

k

and smoothing distributions p

k|N for k  N.

c) Calculate the prediction distributions p

k|n, n  k  N, for some fixed n < N. Com-
pare this to the distributions p

k|N to see the e�ect of dropping all observations
between n and N.

4.3. HMMs with finite state space

When the state spaces X and Y of the signal and observation processes are finite, the
filtering, smoothing, and prediction recursions simplify significantly.

Without loss of generality, we take X= {1, . . . ,d} for some d 2N. Any function f : X!R
can be identified with a vector f = ( f (1), . . . , f (d))> 2 Rd. Analogously, any measure µ

on X can be identified with µ

µ

µ = (µ({1}), . . . ,µ({d}))> 2 Rd. Similarly, transition ker-
nels can be represented by matrices. For example, the transition kernel P of the state
process (X

k

)
k�0

can be represented by the matrix P with entries P
i j

= P(i,{ j}).

a) Verify the identity P f (i) = (Pf)
i

, where P is a transition kernel with matrix repre-
sentation P, f is a function on X, and Pf denotes matrix-vector multiplication.

b) Use these concepts to derive a matrix representation for the filtering recursion
that we derived in the lecture (see also Exercise 3.1).

Hint. You may look this up in the reference of your choice or [1, 2].
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4.4. Fluorescence resonance energy transfer (FRET)

FRET is used to estimate the distance between light-sensitive molecules by measuring
energy transfer between them. As an example,1 consider two strands of DNA dyed in
di�erent fluorescent colors: one red and one green, say. The distance between the
strands increases when a binding protein wedges itself between the strands. When
the red dye is excited with red laser light, some energy is transferred to the neighboring
molecule, which emits green light. Counting the number of emitted green photons
allows one to estimate the number of binding proteins.

This estimation can be done in the framework of Exercise 4.3 with X

k

representing the
number of binding proteins and Y

k

the number of measured protons at time k. Assume
that X = {0,1,2,3}, Y = Z+, X is a Markov chain with transition matrix P and initial
distribution µ
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is Poisson distributed with rate l

k
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. Complete the Matlab template
fret.m on the homepage to perform the following tasks.

a) Implement the Baum-Welch algorithm, which calculates the smoothing distribu-
tions p

k|n for k  n.

b) Calculate the maximum likelihood estimator ˆ

X

k

of X

k

, k  n, with respect to the
smoothing distribution and compare it to the true signal.

4.5. Bayes’ formula and measure changes

Let X and Y be random variables on (W,F ,P) with values in measurable spaces (X,X )
and (Y,Y ), respectively.

1The example is borrowed from [2] and based on [3].
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a) Let P⌧ ˜P with density dP/d

˜P = L(X ,Y ) for some measurable function L. Given
a regular conditional probability ˜

P

X |Y of X given Y under ˜P, show that a regular
conditional probability P

X |Y of X given Y under P exists and is given by

P
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R
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X |Y (y,dx)
R

L(x,y) ˜

P

X |Y (y,dx)
, y 2 Y,A 2 X ,

where the fraction is set to zero if the denominator vanishes.

b) How can Bayes’ formula from Exercise 1.4 be obtained as a special case of this?
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