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Stochastic Filtering (SS2016) Exercise Sheet 3

Lecture and Exercises: JProf. Dr. Philipp Harms
Due date: May 11, 2016

General setup

(X,Y) is a HMM with state kernel P(x,dx’) and observation kernel K(x,dy). The obser-
vation kernel is non-degenerate, i.e., K(x,dy) = A(x,y)¢(dy) for a positive function 4
and a probability measure ¢. We write m, for the regular conditional distribution of X;
given Yy.,, and we set 7, = m;. The unnormalized filters are denoted by oy, and ;.

3.1. Filtering recursion

The filtering recursion expresses w1 in terms of .

a) A direct approach to deriving the filtering recursion is to apply Bayes’ formula
to an increment of the process (X,Y) as follows. Assume for fixed k € N that
(X, Yi) ~ m(dxp)K (xg,dyy) for some given probability measure m;,. Calculate the
regular conditional distribution 7. ; = Py, |y, under the HMM.

b) Contrast this with the derivation of the filtering recursion shown in the lecture,
where one applies Bayes’ formula to the joint distribution of (X, Yo.x) and com-
pares the results for k and k+ 1.

3.2. Prediction recursion

The prediction recursion expresses . |, in terms of my,, for k > n.
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a) A direct approach to deriving the prediction recursion is to apply Bayes’ formula
to an increment of the process (X,Y) as follows. Assume for fixed k € N that
(Xk, Vi) ~ mi(dxi)K (xx,dyi) for some given probability measure ;. Calculate the
distribution of X ; conditional on (X;,Y;) under the HMM.

b) Show that the prediction recursion coincides with the filtering recursion if the ob-
servation kernel K(x,dy) does not depend on the state x.

3.3. Predictor and corrector step

Each step m; ~~ m;1 of the filtering recursion can be split in a predictor step 7 ~~
followed by a corrector step @,y ~ Tiy1-

a) Provide explicit formulas for the predictor and corrector steps.

b) Which steps depend on the state kernel and which ones on the observation ker-
nel?

3.4. Kalman Filter

Let us consider linear Gaussian HMMs: the state and observation processes are as-
sumed to evolve according to

Xir1 = AXi + RE;, Y, = BX + SNy, k>0

with initial state Xy ~ .4 (mo,Xo) and parameters A,R € R’*?, B R?9*P, and § € R7*9 with
S invertible. The variables & ~ .47(0,1,x,), n;j ~ 4 (0,1,x,), and X, are independent.
The filtering distributions of this HMM are Gaussian (see Exercise 1.4.b)), and we write
T ~ A (X, X)) and Ty g ~ A (X1 Zar 1)k -

a) Predictor step: assume that m ~ .4 (X, ;) and show that 7 ~ A (X y 10 Exs 110,
where

Ko 1e = AKXy, Siiik =A%AT +RRT
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b) Corrector step: assume that m, i x ~ A (Xii 1> Sar-1x) @nd show that mey  ~ A (Xey 1, L),
where

X1 =Xis1je — S BT (ST + B ;BT (BXy ik — Yirr)
Sert =Sk —EkrawB (SST +BE (B )T BE k.

Hint. You may look this up in the reference of your choice or [1].

3.5. Normalized versus unnormalized recursions

a) Come up with an example of a HMM where the unnormalized filter o, quickly
exceeds machiner precision, whereas the normalized filter 7, does not.

b) Explain in which sense the normalized filtering recursion is non-linear and the
unnormalized one linear.
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