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General setup

(X ,Y ) is a HMM with state kernel P(x,dx

0) and observation kernel K(x,dy). The obser-
vation kernel is non-degenerate, i.e., K(x,dy) = l (x,y)f(dy) for a positive function l

and a probability measure f . We write p

k|n for the regular conditional distribution of X

k

given Y

0:n

, and we set p

k

= p

k|k. The unnormalized filters are denoted by s

k|n and s

k

.

3.1. Filtering recursion

The filtering recursion expresses p

k+1

in terms of p

k

.

a) A direct approach to deriving the filtering recursion is to apply Bayes’ formula
to an increment of the process (X ,Y ) as follows. Assume for fixed k 2 N that
(X

k

,Y
k

) ⇠ p

k

(dx

k

)K(x
k

,dy

k

) for some given probability measure p

k

. Calculate the
regular conditional distribution p

k+1

= P

X

k+1

|Y
k+1

under the HMM.

b) Contrast this with the derivation of the filtering recursion shown in the lecture,
where one applies Bayes’ formula to the joint distribution of (X

0:k

,Y
0:k

) and com-
pares the results for k and k+1.

3.2. Prediction recursion

The prediction recursion expresses p

k+1|n in terms of p

k|n for k � n.
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a) A direct approach to deriving the prediction recursion is to apply Bayes’ formula
to an increment of the process (X ,Y ) as follows. Assume for fixed k 2 N that
(X

k

,Y
k

) ⇠ p

k

(dx

k

)K(x
k

,dy

k

) for some given probability measure p

k

. Calculate the
distribution of X

k+1

conditional on (X
k

,Y
k

) under the HMM.

b) Show that the prediction recursion coincides with the filtering recursion if the ob-
servation kernel K(x,dy) does not depend on the state x.

3.3. Predictor and corrector step

Each step p

k

 p

k+1

of the filtering recursion can be split in a predictor step p

k

 p

k+1|k
followed by a corrector step p

k+1|k p

k+1

.

a) Provide explicit formulas for the predictor and corrector steps.

b) Which steps depend on the state kernel and which ones on the observation ker-
nel?

3.4. Kalman Filter

Let us consider linear Gaussian HMMs: the state and observation processes are as-
sumed to evolve according to

X

k+1

= AX

k

+Rx

k

, Y

k

= BX

k

+Sh

k

, k � 0

with initial state X

0

⇠N (m
0

,S
0

) and parameters A,R2Rp⇥p, B2Rq⇥p, and S2Rq⇥q with
S invertible. The variables x

i

⇠ N (0,1
p⇥p

), h

j

⇠ N (0,1
q⇥q

), and X

0

are independent.
The filtering distributions of this HMM are Gaussian (see Exercise 1.4.b)), and we write
p

k

⇠ N ( ˆ

X

k

, ˆS
k

) and p

k+1|k ⇠ N ( ˆ

X

k+1|k, ˆS
k+1|k).

a) Predictor step: assume that p

k

⇠N ( ˆ

X

k

, ˆS
k

) and show that p

k+1|k ⇠N ( ˆ

X

k+1|k, ˆS
k+1|k),

where
ˆ

X

k+1|k = A

ˆ

X

k

, ˆS
k+1|k = A

ˆS
k

A

>+RR

>.
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b) Corrector step: assume that p

k+1|k ⇠N ( ˆ

X

k+1|k, ˆS
k+1|k) and show that p

k+1

⇠N ( ˆ

X

k+1

, ˆS
k+1

),
where

ˆ

X

k+1

= ˆ

X

k+1|k � ˆS
k+1|kB

>(SS

>+B

ˆS
k+1|kB

>)�1(B ˆ

X

k+1|k �Y

k+1

),

ˆS
k+1

= ˆS
k+1|k � ˆS

k+1|kB

>(SS

>+B

ˆS
k+1|kB

>)�1

B

ˆS
k+1|k.

Hint. You may look this up in the reference of your choice or [1].

3.5. Normalized versus unnormalized recursions

a) Come up with an example of a HMM where the unnormalized filter s

k

quickly
exceeds machiner precision, whereas the normalized filter p

k

does not.

b) Explain in which sense the normalized filtering recursion is non-linear and the
unnormalized one linear.
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