

Stochastic Filtering (SS2016) Exercise Sheet 3

Lecture and Exercises: JProf. Dr. Philipp Harms Due date: May 11, 2016

General setup

(X,Y) is a HMM with state kernel P(x,dx') and observation kernel K(x,dy). The observation kernel is non-degenerate, i.e., $K(x,dy) = \lambda(x,y)\phi(dy)$ for a positive function λ and a probability measure ϕ . We write $\pi_{k|n}$ for the regular conditional distribution of X_k given $Y_{0:n}$, and we set $\pi_k = \pi_{k|k}$. The unnormalized filters are denoted by $\sigma_{k|n}$ and σ_k .

3.1. Filtering recursion

The filtering recursion expresses π_{k+1} in terms of π_k .

- a) A direct approach to deriving the filtering recursion is to apply Bayes' formula to an increment of the process (X,Y) as follows. Assume for fixed $k \in \mathbb{N}$ that $(X_k, Y_k) \sim \pi_k(dx_k)K(x_k, dy_k)$ for some given probability measure π_k . Calculate the regular conditional distribution $\pi_{k+1} = P_{X_{k+1}|Y_{k+1}}$ under the HMM.
- b) Contrast this with the derivation of the filtering recursion shown in the lecture, where one applies Bayes' formula to the joint distribution of $(X_{0:k}, Y_{0:k})$ and compares the results for k and k+1.

3.2. Prediction recursion

The prediction recursion expresses $\pi_{k+1|n}$ in terms of $\pi_{k|n}$ for $k \ge n$.

- a) A direct approach to deriving the prediction recursion is to apply Bayes' formula to an increment of the process (X,Y) as follows. Assume for fixed $k \in \mathbb{N}$ that $(X_k,Y_k) \sim \pi_k(dx_k)K(x_k,dy_k)$ for some given probability measure π_k . Calculate the distribution of X_{k+1} conditional on (X_k,Y_k) under the HMM.
- b) Show that the prediction recursion coincides with the filtering recursion if the observation kernel K(x, dy) does not depend on the state *x*.

3.3. Predictor and corrector step

Each step $\pi_k \rightsquigarrow \pi_{k+1}$ of the filtering recursion can be split in a predictor step $\pi_k \rightsquigarrow \pi_{k+1|k}$ followed by a corrector step $\pi_{k+1|k} \rightsquigarrow \pi_{k+1}$.

- a) Provide explicit formulas for the predictor and corrector steps.
- b) Which steps depend on the state kernel and which ones on the observation kernel?

3.4. Kalman Filter

Let us consider linear Gaussian HMMs: the state and observation processes are assumed to evolve according to

$$X_{k+1} = AX_k + R\xi_k, \qquad \qquad Y_k = BX_k + S\eta_k, \qquad \qquad k \ge 0$$

with initial state $X_0 \sim \mathcal{N}(m_0, \Sigma_0)$ and parameters $A, R \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{q \times p}$, and $S \in \mathbb{R}^{q \times q}$ with *S* invertible. The variables $\xi_i \sim \mathcal{N}(0, \mathbb{1}_{p \times p})$, $\eta_j \sim \mathcal{N}(0, \mathbb{1}_{q \times q})$, and X_0 are independent. The filtering distributions of this HMM are Gaussian (see Exercise 1.4.b)), and we write $\pi_k \sim \mathcal{N}(\hat{X}_k, \hat{\Sigma}_k)$ and $\pi_{k+1|k} \sim \mathcal{N}(\hat{X}_{k+1|k}, \hat{\Sigma}_{k+1|k})$.

a) Predictor step: assume that $\pi_k \sim \mathcal{N}(\hat{X}_k, \hat{\Sigma}_k)$ and show that $\pi_{k+1|k} \sim \mathcal{N}(\hat{X}_{k+1|k}, \hat{\Sigma}_{k+1|k})$, where

$$\hat{X}_{k+1|k} = A\hat{X}_k, \qquad \qquad \hat{\Sigma}_{k+1|k} = A\hat{\Sigma}_k A^\top + RR^\top.$$

b) Corrector step: assume that $\pi_{k+1|k} \sim \mathcal{N}(\hat{X}_{k+1|k}, \hat{\Sigma}_{k+1|k})$ and show that $\pi_{k+1} \sim \mathcal{N}(\hat{X}_{k+1}, \hat{\Sigma}_{k+1})$, where

$$\begin{split} \hat{X}_{k+1} &= \hat{X}_{k+1|k} - \hat{\Sigma}_{k+1|k} B^{\top} (SS^{\top} + B\hat{\Sigma}_{k+1|k} B^{\top})^{-1} (B\hat{X}_{k+1|k} - Y_{k+1}), \\ \hat{\Sigma}_{k+1} &= \hat{\Sigma}_{k+1|k} - \hat{\Sigma}_{k+1|k} B^{\top} (SS^{\top} + B\hat{\Sigma}_{k+1|k} B^{\top})^{-1} B\hat{\Sigma}_{k+1|k}. \end{split}$$

Hint. You may look this up in the reference of your choice or [1].

3.5. Normalized versus unnormalized recursions

- a) Come up with an example of a HMM where the unnormalized filter σ_k quickly exceeds machiner precision, whereas the normalized filter π_k does not.
- b) Explain in which sense the normalized filtering recursion is non-linear and the unnormalized one linear.

References

[1] Olivier Cappé, Eric Moulines, and Tobias Ryden. *Inference in Hidden Markov Models*. Springer Series in Statistics. Springer Verlag, New York, 2005.