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Abstract

A classical result of Slepian (1962) for the normal distribution and
extended by Das Gupta et al. (1972) for elliptical distributions character-
izes one-sided (lower orthant) comparisons of the distributions. Müller and
Scarsini (2000) established that these conditions even imply the stronger
supermodular comparison in the normal case. In the present paper, we
extend this result to elliptical distributions. We also derive a similar com-
parison result for the directionally convex ordering of elliptical distribu-
tions. As application, we obtain extensions and strengthenings of several
recent results on risk bounds in partially specified risk factor models with
elliptical specifications as well as in elliptical classes under restrictions on
the partial correlations.

Keywords supermodular ordering, directionally convex ordering,
convex ordering, elliptically contoured distributions, conditionally increas-
ing, multivariate normal distribution, partial correlation, canonical vine

1 Introduction

In the first part of this paper, we extend and strengthen some basic stochastic
ordering results for multivariate normal distributions to the frame of elliptical
distributions. As consequence, we obtain in the second part of this paper ex-
tensions and strengthenings of several recent results on risk bounds in partially
specified risk factor models with elliptical specifications as well as in classes of
elliptical distributions under restrictions on (partial) correlations.

A classical result of Slepian (1962, Lemma 1.1) characterizes one-sided (lower
orthant) comparisons of normal distributions by the increase of the off-diagonal
correlations. In the paper of Block and Sampson (1988, Theorem 2.1 and Corol-
lary 2.3) it is stated that an increase of the off-diagonal correlations even implies
the supermodular comparison of this distributions. The argument in Block and
Sampson (1988) was shown in Müller and Scarsini (2000, Section 4) to be incom-
plete. In their paper these authors gave a complete proof of the strengthened
comparison result for the normal case. In the present paper, we use the ideas in
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these two papers to establish the supermodular comparison result for the gen-
eral elliptical case. We also derive a similar characterization for the comparison
w.r.t. the directionally convex order.

As application, we study in Section 3 two supermodular and two directionally
convex maximization problems. In Section 3.1.1, we obtain a strengthening of
the characterization of the lower orthant ordering of the conditionally comono-
tonic risk vectors, describing risk bounds in partially specified risk factor models,
to the stronger supermodular ordering. In Section 3.1.2, we obtain optimal risk
bounds for the joint portfolio in elliptical models under the restrictions on the
(generalized) partial correlation coefficients that correspond to canonical vine
structures. Based on a criterion for the conditional increasingness (CI) of el-
liptical distributions, we obtain in Section 3.2.1 a solution to the directionally
convex maximization problem in partially specified factor models where we also
allow the marginal distributions to come from some specifications sets. In el-
liptical models, we give in Section 3.2.2 a solution to the directionally convex
maximization problem with upper bounded (generalized) covariance matrix.

2 Characterization of the supermodular order in
classes of elliptical distributions

In this section, we characterize the supermodular ordering and the directionally
convex ordering in classes of elliptical distributions.

For a function f : Rd → R , let ∆ε
if(x) := f(x+ εei)− g(x) be the difference

operator where ε > 0 and ei denotes the unit vector w.r.t. the canonical base in
Rd . Then, f is said to be supermodular resp. directionally convex if ∆εi

i ∆
εj
i f ≥ 0

for all 1 ≤ i < j ≤ d resp. 1 ≤ i ≤ j ≤ d . For d-dimensional random vectors
ξ, ξ′ , the supermodular ordering ξ ≤sm ξ′ resp. the directionally convex ordering
ξ ≤dcx ξ′ is defined via Ef(ξ) ≤ Ef(ξ′) for all supermodular resp. directionally
convex functions f for which the expectations exist. The lower orthant ordering
ξ ≤lo ξ′ is defined by the pointwise comparison of the corresponding distribution
functions, i.e. Fξ(x) ≤ Fξ′(x) for all x ∈ Rd . Remember that the convex ordering
ζ ≤cx ζ ′ for real valued random variables ζ, ζ ′ is defined via Eϕ(ζ) ≤ Eϕ(ζ ′) for
all convex functions ϕ for which the expectation exists.

For an overview of stochastic orderings, see Müller and Stoyan (2002), Shaked
and Shanthikumar (2007) and Rüschendorf (2013).

A d-dimensional random vector X has an elliptically contoured (or, shortly,
elliptical) distribution with parameters µ , Σ and generator φ , written

X ∼ ECd(µ,Σ, φ) ,

if µ ∈ Rd , Σ is a d × d positive semi-definite matrix, and if the characteristic
function ϕX−µ of X−µ is a function of the quadratic form tΣtT , i.e. ϕX−µ(t) =

φ(tΣtT ) .
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Elliptical random vectors have a characterization by a stochastic represen-
tation of the form

X
d
= µ+RU (l)A , (1)

where U (l) , l ≥ 1 , is a random vector of (appropriate) dimension l which is uni-
formly distributed on the unit sphere in Rl , where R is a non-negative random
variable independent of U (l) , and where A is a deterministic l × d matrix such
that Σ = ATA , see Cambanis et al. (1981).

Necessary and sufficient conditions for such a representation are that l ≥
rank(Σ) and φ ∈ Φl , where Φl denotes the class of functions ψ : [0,∞) → R
with ψ(u) =

∫
[0,∞)

Ωl(r
2u) dF (r) for Ωl being the characteristic function of U (l)

and F the distribution function of R , see Cambanis et al. (1981, Corollary 2).
Exactly in the case that ER2 < ∞ , or equivalently that φ′(0) is finite, the

covariance matrix exists and is proportional to Σ (see Fang and Zhang (1990,
p.67)). It is easy to see that the univariate marginal distribution functions of X
are continuous if rank(Σ) ≥ 2 and R has no point mass in 0 , i.e. FR(0) = 0 .

A well-known property of elliptical distributions is that they are closed under
marginalization and the margins inherit the elliptical generator (see e.g. Fang
and Zhang (1990, Corollary 1 of Theorem 2.6.3)).

Further, elliptical distributions are closed under conditioning, see Camba-
nis et al. (1981, Corollary 5). In contrast to the marginalization property, the
generator is not necessarily inherited.

2.1 The supermodular ordering of elliptical distributions

The characterization of the lower orthant ordering of multivariate normal distri-
butions with fixed univariate marginal distributions goes back to Slepian (1962,
Lemma 1.1) (see also Tong (1980)). An extension to elliptical distributions is
established by Das Gupta et al. (1972, Theorem 5.1). In the bivariate case, this
is equivalent to the supermodular ordering.

The following special comparison result is given by Block and Sampson
(1988, Theorem 2.1 and Lemma 2.2), see also Müller and Scarsini (2000, Lemma
4.1). The proof is based essentially on a conditioning argument leading to a re-
duction to a comparison of two-dimensional elliptical distributions. We give the
proof since we shall make use of some arguments of it.

Lemma 2.1 Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ,Σ′, φ) with σij ≤ σ′ij and
σkl = σ′kl for all (k, l) /∈ {(i, j), (j, i)} for some i 6= j . Then, X ≤sm Y .

Proof: Assume without loss of generality that (i, j) = (1, 2) . In the first case
assume that both Σ and Σ′ are positive definite matrices. Write

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
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where Σ11 is the two-dimensional covariance matrix of (X1, X2) and Σ22 denotes
the (d − 2)-dimensional covariance matrix of (X3, . . . , Xd) . Partition Σ′ , µ =

(µ1, µ2) and µ′ = (µ′1, µ
′
2) in the same way.

For z ∈ Rd−3 , let µz = µ1 + (z − µ2)Σ−122 Σ21 and

Σ11.2 = Σ11 − Σ12Σ−122 Σ21 , resp.

Σ′11.2 = Σ′11 − Σ′12Σ′−122 Σ′21 .

Then, for the conditional distributions holds

(X1, X2)|(X3, . . . , Xd) = z ∼ EC2(µz,Σ11.2, φq(z)) , resp.

(Y1, Y2)|(Y3, . . . , Yd) = z ∼ EC2(µz,Σ
′
11.2, φq(z)) ,

see Cambanis et al. (1981, Corollary 5), for some generator φq(z) depending
only on φ and q(z) = (z−µ2)Σ−122 (z−µ2)T . Thus, the conditional distributions
depend on Σ11 resp. Σ′11 only through Σ11.2 resp. Σ′11.2 .

Since by assumption Σ11 ≤ Σ′11 , Σ12 = Σ′12 , Σ21 = Σ′21 and Σ22 = Σ′22 it fol-
lows that Σ11.2 ≤ Σ′11.2 componentwise with equality for the diagonal elements.
Hence, the characterization of the supermodular ordering in the bivariate case
implies

(X1, X2)|(X3, . . . , Xd) = z ≤sm (Y1, Y2)|(Y3, . . . , Yd) = z

for almost all z . Then, the concatenation property of the supermodular or-
dering yields X|(X3, . . . , Xd) = z ≤sm Y |(Y3, . . . , Yd) = z for almost all z .
Since (X3, . . . , Xd)

d
= (Y3, . . . , Yd) , the statement follows from the closure of the

supermodular ordering under mixtures, see Shaked and Shanthikumar (1997,
Theorem 2.4.).

In the second case assume that at least one of Σ and Σ′ is positive semi-
definite and not positive definite. Denote by I the identity matrix. Then, the
matrices Σ + 1

nI and Σ′ + 1
nI are positive definite for all n ∈ N . According to

the first case holds for Xn ∼ ECd(µ,Σ+ 1
nI, φ) and Yn ∼ ECd(µ,Σ′+ 1

nI, φ) that
Xn ≤sm Yn for all n ∈ N . Then, the statement follows from the closure of the
supermodular ordering under weak convergence (see Müller and Scarsini (2000,
Theorem 3.5)). �

In the following theorem we establish that also elliptical distributions are or-
dered in the off-diagonal elements of the (generalized) covariance matrix w.r.t.
the supermodular ordering. This result is the positive answer to the question
formulated in Landsman and Tsanakas (2006, Remark 2) whether the super-
modular ordering results for multivariate normal distributions (see Müller (2001,
Theorem 11) and for Kotz-type distributions (see Ding and Zhang (2004, The-
orem 3.11)) can be extended to elliptical distributions of arbitrary dimension.
We correct the proof of Block and Sampson (1988, Corollary 2.3) which was
shown by Müller and Scarsini (2000, Section 4) to be incomplete.
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Theorem 2.2 (≤sm-ordering elliptical distributions)
Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ′,Σ′, φ) with Σ = (σij)1≤i,j≤d , Σ′ =

(σ′ij)1≤i,j≤d . Then, the following statements are equivalent:

(i) X ≤sm Y ,

(ii) µ = µ′ , σii = σ′ii f.a. 1 ≤ i ≤ d and σij ≤ σ′ij for all i 6= j .

(iii) X and Y have the same univariate marginals and σij ≤ σ′ij f.a. i, j .

Proof: ’(i) =⇒ (iii)’: Since the supermodular ordering is a pure dependence
ordering, the univariate marginal distributions must be equal. This implies σii =

σ′ii for all i . If the covariance matrix exists, then for i 6= j , it follows that
σij ≤ σ′ij because f(x) = xixj is supermodular. Otherwise, the statement follows
by an approximation (w.r.t. weak convergence) of the radial part R by a square-
integrable sequence (Rn)n using the closure of the supermodular ordering under
weak convergence (see Müller and Scarsini (2000, Theorem 3.5)).
The implication ’(iii) =⇒ (ii)’ is immediate.

Assume (ii). Consider two cases. In the first case let us assume that both
matrices Σ and Σ′ are positive definite. In the same way as in the proof of
Das Gupta et al. (1972, Theorem 5.1) resp. Müller and Scarsini (2000, Theorem
4.2.) there exists a finite sequence Σ = Σ1 ≤ . . . ≤ Σk = Σ′ (componentwise) of
positive semi-definite matrices such that Σl+1 is obtained from Σl by increasing
exactly one off-diagonal entry. Hence, statement (i) follows from Lemma 2.1 and
from the transitivity of the supermodular ordering.

In the second case assume that at least one of Σ and Σ′ is positive semi-
definite and not positive definite. Then, the statement follows from the first
part and a similar approximation argument as in the second part of the proof
of Lemma 2.1. �

Remark 2.3 The supermodular ordering result in Theorem 2.2 is established
independently in a recent paper by Yin (2019, Theorem 3.4) submitted to arXiv
on Oct 16, 2019. For the proof, this author extends the integral representation
argument in Müller (2001, Theorem 11) in the normal case. We remark that
our paper and, in particular, Theorem 2.2 is based on the dissertation of the
first author published on Apr 09, 2019, see Ansari (2019, Theorem 5.2).

2.2 The directionally convex ordering of elliptical distri-
butions

In this section, we show a similar characterization for the directionally convex
ordering.

Lemma 2.4 Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ′,Σ′, φ) be integrable with
σij = σ′ij for all (i, j) 6= (1, 1) and σ11 ≤ σ′11 . Then, X ≤dcx Y .

Proof: As a consequence of Shaked and Shanthikumar (2007, Theorem 3.A.1)
and Cambanis et al. (1981, Corollary 5), it holds for the conditional distributions
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that

X1 | (Xj = xj , j = 2, . . . , d) ≤cx Y1 | (Yj = xj , j = 2, . . . , d)

for all xj , j = 2, . . . , d . Since the convex ordering and the directionally convex
ordering coincide in the one-dimensional case, we obtain with the concatenation
property of the directionally convex ordering that

X | (Xj = xj , j = 2, . . . , d) ≤dcx Y | (Yj = xj , j = 2, . . . , d)

for all xj , j = 2, . . . , d . Then, the closure of the directionally convex order-
ing under mixtures implies X ≤dcx Y , see Müller and Stoyan (2002, Theorem
3.12.6). �

As a consequence, Lemma 2.4 implies the following result which is essentially
based on a conditioning argument and on the characterization of the supermod-
ular ordering in Theorem 2.2, see also Yin (2019, Theorem 3.6).

Theorem 2.5 (≤dcx-ordering of elliptical distributions)
Let X ∼ ECd(µ,Σ, φ) and Y ∼ ECd(µ′,Σ′, φ) with Σ = (σij)1≤i,j≤d and Σ′ =

(σ′ij)1≤i,j≤d be integrable. Then, the following statements are equivalent:

(i) X ≤dcx Y ,

(ii) µ = µ′ and σij ≤ σ′ij for all i, j .

Proof: Assume (i). In the first case, let the radial random variable R corre-
sponding to φ be square-integrable. Then, the statement follows from the fact
that the functions f(x) = ±xi and g(x) = xixi for 1 ≤ i ≤ j ≤ d are direc-
tionally convex. In the second case, approximate the distribution of R weakly
by a sequence of square-integrable radial variables. Then, the statement follows
from the first case and the approximation argument in Müller and Stoyan (2002,
Theorem 3.12.8).
Assume (ii). Let ξ ∼ ECd(µ,Σ′′, φ) where Σ′′ = (σij)1≤i,j≤d is given by σ′′ij = σ′ij
for all i = j and σ′′ij = σij for all i 6= j . Since componentwise increasing of the
diagonal elements does not affect the positive semi-definiteness, Σ′′ is positive
semi-definite. Thus, Lemma 2.4 implies X ≤dcx ξ . Due to Theorem 2.2, it holds
that ξ ≤sm Y and thus X ≤dcx Y . �

3 Applications to risk bounds unter elliptical con-
straints

In this section, we determine and analyse solutions to two supermodular and two
directionally convex maximization problems in the class of elliptical distributions
resp. under elliptical constraints. In general, solutions to supermodular resp.
directionally convex maximization problems do not exist because these orderings
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are partial orders on the underlying class of distributions that do not form a
lattice, see Müller and Scarsini (2006).

Both the supermodular and directionally convex ordering have the useful
property that they imply the convex ordering of the sum of the components, i.e.

(X1, . . . , Xd) ≤sm (Y1, . . . , Yd) =⇒
d∑
i=1

Xi ≤cx
d∑
i=1

Yi , resp.

(X1, . . . , Xd) ≤dcx (Y1, . . . , Yd) =⇒
d∑
i=1

Xi ≤cx
d∑
i=1

Yi .

Thus, a solution to a supermodular resp. directionally convex maximization
problem also yields a solution to the maximization problem for the sum in
convex ordering under the corresponding constraints. Note that the supermod-
ular ordering is a pure dependence ordering and has the useful property that
it is invariant under increasing transformations. In contrast, the directionally
convex ordering allows a comparison for univariate marginal distributions with
Xi ≤cx Yi .

The improvement of bounds for the sum of random variables in convex or-
dering (where the improvement is w.r.t. the comonotonic sum) has an important
practical relevance because it implies improved risk bounds for portfolios in fi-
nance or for the aggregate insurance risk whenever the underlying risk measure
on L1(Ω,A, P ) is convex, law-invariant and has the Fatou-property, assuming
that (Ω,A, P ) is atomless, see Bäuerle and Müller (2006, Theorem 4.3).

3.1 Supermodular maximization problem

In this section, we study two supermodular maximization problems. For the first
one, we assume a partially specified factor model where the bivariate specifica-
tions are from classes of elliptical distributions, see Bernard et al. (2017). For
the second one, we assume an elliptical model where the (generalized) partial
correlations corresponding to a canonical vine are bounded.

3.1.1 ≤sm-maximization problem with partial elliptical specifications

For µ = 0 ∈ R2 and Σ =
( 1 ρ
ρ 1

)
, ρ ∈ [−1, 1] , we abbreviate the bivariate

distribution EC2(µ,Σ, φ) by EC2(0, ρ, φ) . Since the supermodular ordering is
invariant under increasing transformations, supermodular ordering results w.r.t.
off-diagonal entries of the (generalized) covariance matrix can be formulated
w.l.o.g. in the standardized case.

For φ ∈ Φ2 and ρi ∈ [−1, 1] , 1 ≤ i ≤ d , consider the supermodular maxi-
mization problem

max {(X1, . . . , Xd) | ∃Z : (Xi, Z) ∼ EC2(0, ρi, φ) ∀i} w.r.t. ≤sm (2)

with partial elliptical specifications of the components Xi and the common risk
factor Z .
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Define the function M : [−1, 1]2 → [−1, 1] by

M(a, b) := ab+
√

1− a2
√

1− b2 .

Let Xc
i,z = F−1i,z (U) with U ∼ U(0, 1) independent of the common risk factor

Z . Then, the conditionally comonotonic random vector Xc
Z = (Xc

1,Z , . . . , X
c
d,Z)

solves maximization problem (2) as follows, see Ansari and Rüschendorf (2016,
Theorem 2).

Proposition 3.1 A solution to the supermodular maximization problem (2) is
given by a vector (Xc

Z) ∼ ECd(0,Σ, φ) where Σ = (σij) is given by

σij =

{
1 for i = j ,

M(ρi, ρj) for i 6= j .

As a consequence of Theorem 2.2, the following result compares the worst
case scenarios in maximization problem (2) w.r.t. the elliptical specifications. It
extends the lower orthant ordering result in classes of elliptical distributions in
Ansari and Rüschendorf (2016, Proposition 4) to the supermodular ordering.

Theorem 3.2 Let (Xi, Z) ∼ EC2(0, ρi, φ) , (Yi, Z) ∼ EC2(0, ρ′i, φ) , 1 ≤ i ≤ d .

Then, for conditionally comonotonic random vectors Xc
Z resp. Y cZ with these

specifications holds

Xc
Z ≤sm Y cZ ⇐⇒ M(ρi, ρj) ≤M(ρ′i, ρ

′
j) , ∀i 6= j . (3)

Remark 3.3 (a) It can easily be verified that M(a, b) = 1 if and only if a = b .

Thus, ρi = ρj for all i 6= j yields Xc
Z

d
= Xc , where Xc = (F−1Xi

(U))1≤i≤d is
comonotonic.

(b) A sufficient condition for the right hand side in (3) is

ρ1 ≷ ρ
′
1 ≷ ρ2 ≷ · · · ≷ ρd and ρ′i = ρi for all 2 ≤ i ≤ d .

This is a special case of Ansari and Rüschendorf (2018, Corollary 3.11) in
the elliptical setting with FR(0) = 0 . In particular, also

ρ1 ≷ · · · ≷ ρk ≷ ρ′k ≷ ρ′k+1 ≷ ρk+1 ≷ · · · ≷ ρd
and ρ′1 = · · · = ρ′k ≷ ρ

′
k+1 = · · · = ρd

(4)

for some k ∈ {1, . . . , d− 1} yields the right hand side in (3).

3.1.2 ≤sm-maximization problem under partial correlation bounds

In this section, we consider a supermodular maximization problem for elliptical
distributions under a boundedness assumption on the (generalized) partial cor-
relations corresponding to a canonical vine structure.
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For k ∈ N0 , denote by 1:k the indices (1, . . . , k) . If k = 0 , then 1:k= ∅ .

Let (σij,1:(i−1))1≤i<j≤d ∈ [−1, 1]
d(d−1)

2 . Define the matrix Σ = (σij)1≤i,j≤d by
σii = 1 for all i and by σij = σji = σij,1:0 for i < j , where σij,1:0 is iteratively
defined through

σij,1:(k−1) = σki,1:(k−1)σkj,1:(k−1) + σij,1:k
√

1− σ2
ki,1:(k−1)

√
1− σ2

kj,1:(k−1) (5)

for j = 3, . . . , d , i = 2, . . . , j − 1 and k = i− 1, . . . , 1 .

Let Md×d
cor be the set of correlation matrices, i.e. the set of positive semi-

definite symmetric d× d matrices with all diagonal elements equal to 1 . Then,
Σ is a correlation matrix, and, further, every element Σ′ ∈Md×d

cor can be decom-

posed into (generalized) partial correlations (σ′ij,1:(i−1))1≤i<j≤d ∈ [−1, 1]
d(d−1)

2

via formula (5), see Proposition 3.4. In the case that Σ is the correlation matrix
of a square-integrable random vector (Y1, . . . , Yd) , then σij,1:(i−1) is the partial
correlation of Yi and Yj given Y1, . . . , Yi−1 .

For φ ∈ Φd and bi ∈ [0, 1] , 1 ≤ i ≤ d − 1 , consider the supermodular
maximization problem

max{X ∈ ECd(0,Σ, φ) |Σ ∈Md×d
cor : |σij,1:(i−1)| ≤ bi f.a. i < j} w.r.t. ≤sm (6)

in the class of elliptical distributions with bounded (generalized) partial corre-
lations corresponding to a canonical vine structure. Note that we do not assume
square-integrability.

The following result shows that the (generalized) partial correlations (σij,1:(i−1))1≤i<j≤d
are algebraically independent and determine a unique correlation matrix. More
precisely, the set of positive definite correlation matrices can be characterized in
terms of (generalized) partial correlations that correspond to a canonical vine
(or C-vine) which is a star-shaped regular vine. This is a graphical tool to model
dependencies, see e.g. Kurowicka and Cooke (2005) and Aas et al. (2009) for
definitions.

Proposition 3.4 (i) There is a one-to-one correspondence between the set
of d × d positive definite correlation matrices and the set of (generalized)

partial correlations (σij,1:(i−1))1≤i<j≤d ∈ (−1, 1)
d(d−1)

2 .

(ii) The (generalized) partial correlations (σij,1:(i−1))1≤i<j≤d ∈ [−1, 1]
d(d−1)

2

determine a correlation matrix uniquely.

(iii) If Σ ∈ Md×d
cor is not of full rank, the corresponding (generalized) partial

correlations (σij,1:(i−1))1≤i<j≤d are not necessarily uniquely determined.

Proof: (i): The (generalized) partial correlations correspond to the structure
of a canonical vine. Thus, the statement follows from Bedford and Cooke (2002,
Corollary 7.5).
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Statement (ii) is a consequence of (i) and (5).
(iii): The determinant of Σ is given by

det(Σ) =

d−1∏
i=1

d∏
j=i+1

(1− σ2
ij,1:(i−1)) ,

see Kurowicka and Cooke (2006, Theorem 4.5). Thus, the determinant vanishes
if and only if there exist 1 ≤ i < j ≤ d such that σij,1:(i−1) ∈ {−1, 1} . In this
case, (5) implies that the (generalized) partial correlations σlj,1:(l−1) , i < l < j ,

are not uniquely determined. �

The following proposition gives some elementary ordering results for (gener-
alized) partial correlations based on formula (5). To keep the notation simple,
we formulate it in the case that k = 1 , i = 2 and j = 3 .

Proposition 3.5 (Ordering partial correlations)
For the (generalized) partial correlations the following ordering properties hold
true:

(i) If σ1
1l = σ2

1l for l = 2, 3 , then

σ1
23,1 ≤ σ2

23,1 =⇒ σ1
23 ≤ σ2

23 .

(ii) If σ1
23,1 = σ2

23,1 , then

0 ≤ |σ1
1l| ≤ σ2

12 = σ2
13 for l = 2, 3 =⇒ σ1

23 ≤ σ2
23 . (7)

(iii) If σ1
23,1 = σ2

23,1 ≤ 0 , then

0 ≤ σ1
1l ≤ σ2

1l for l = 2, 3 =⇒ σ1
23 ≤ σ2

23 .

Proof: Statement (i) follows from the partial correlation formula

σ23 = σ12σ13 + σ23,1

√
1− σ2

12

√
1− σ2

13 =: f(σ23,1, σ12, σ13) , (8)

see (5). The partial derivative ∂2f = ∂f
∂σ12

of f w.r.t. the second variable is given
by

∂2f(σ23,1, σ12, σ13) = σ13 −
σ23,1

√
1− σ2

13 σ12√
1− σ2

12

. (9)

Then, statement (ii) follows from

f(a, c, d) ≤ f(a, d, d) ≤ f(a, e, e)

f.a. a ∈ [−1, 1] , and 0 ≤ |c| ≤ d ≤ e ≤ 1 where the first inequality holds true
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because

|ac| ≤ d =⇒ ac
√

1− d2 ≤ d
√

1− c2 =⇒ ∂2f(a, c, d) ≥ 0 .

The second inequality is fulfilled since for ga(s) := f(a, s, s) holds g′a(s) =

2(1− a)s ≥ 0 f.a. a ≤ 1 and s ≥ 0 .

Statement (iii) is a consequence of (9). �

For the bounds (bi)i on the (generalized) partial correlations in maximization
problem (6), define the numbers a1, . . . , ad−1 ∈ [0, 1] iteratively by

ai,i−1 := bi for i = 1, . . . , d− 1 ,

ai,i−k := a2i−k+1,i−k + ai,i−k+1(1− a2i−k+1,i−k) for k = 2, . . . , i , (10)

ai := ai,0 for i = 1, . . . , d− 1 .

Denote by δij the Kronecker delta and by i ∧ j the minimum of i and j .

Then, the supermodular maximization problem (6) has a solution which is given
as follows.

Theorem 3.6 (Bounded partial correlations)
Let Y ∼ ECd(0,Σ′, φ) where Σ′ = (σ′ij)1≤i,j≤d with σ′ij = δij + ai∧j(1 − δij) .
Then, Y is a solution to maximization problem (6).

Proof: Applying the partial correlation formula (5) for 2 ≤ i < j ≤ d induc-
tively over k = 2, . . . , i yields

σij,1:(i−k) = σ(i−k+1)i,1:(i−k) σ(i−k+1)j,1:(i−k) (11)

+ σij,1:(i−k+1)

√
1− σ2

(i−k+1)i,1:(i−k)

√
1− σ2

(i−k+11)j,1:(i−k)

≤ σ(i−k+1)i,1:(i−k) σ(i−k+1)j,1:(i−k)

+ ai,i−k+1

√
1− σ2

(i−k+1)i,1:(i−k)

√
1− σ2

(i−k+1)j,1:(i−k)

≤ a2i−k+1,i−k + ai,i−k+1 · (1− a2i−k+1,i−k)

= ai,i−k

using Proposition 3.5 (i) and (ii). This implies with σ1,j ≤ a1,j for j = 2, . . . , d

that σij ≤ ai for all 1 ≤ i < j ≤ d . Since σij = σji for all i 6= j , it follows that
σij ≤ ai∧j for all i 6= j . Choosing (σi,j|1:(i−1))1≤i<j≤d = bi leads to σij = ai
for all 1 ≤ i < j ≤ d . This defines a correlation matrix (see Proposition 3.4(ii))
which coincides with Σ′ . �

Remark 3.7 (a) If b1 = 1 in (6), then by construction ai = 1 for all 1 ≤ i < d .

This yields σ′ij = 1 f.a. 1 ≤ i, j ≤ d , and, hence, Y d
= (Xc

1 , . . . , X
c
d) is the

standard comonotonic upper bound for X = (X1, . . . , Xd) w.r.t. the super-
modular ordering, i.e. there is no improvement of the bounds. This coincides
with the fact that a1 = 1 yields σ′1i = 1 (which means Cor(Y1, Yi) = 1 in the
square-integrable case) f.a. i , and thus Y = (Y1, . . . , Yd) is comonotonic. In
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this case, the (generalized) correlations (σ1j)1≤j≤d determine the correlation
matrix uniquely and the (generalized) partial correlations (σij,1:i)2≤i<j≤d are
not uniquely determined, see Proposition 3.4(iii).

More generally, if bi = 1 for some i ∈ {1, . . . , d−1} in (6) then aj = 1 for all
i ≤ j < d . This implies that (Yi, . . . , Yd) is comonotonic and Y |Y1:(i−1) = y

is comonotonic conditionally on y ∈ Ri−1 . The case b2 = 1 is a special
case of (Ansari and Rüschendorf, Theorem 2.3) in the context of partially
specified internal risk factor models.

(b) If bi = 0 for all 1 ≤ i < d , then ai = 0 for all i and thus Σ = Σ′ =

(δij)1≤i,j≤d , i.e. X
d
= Y has uncorrelated components. Note that the compo-

nents are only independent in the case of a multivariate normal distribution,
see Cambanis et al. (1981, Section 5(d)).

(c) The bounds (bi)i in (6) on the (generalized) (partial) correlations σij|1:(i−1)
yield a positive semi-definite matrix Σ′ while, in general, upper bounds on
the unconditional (generalized) correlations (σij)ij do not yield a positive
semi-definite matrix.

3 1 4

2

σ13 σ14

σ12

σ23,1 σ24,1

σ34,12

Figure 1: A C-vine on 4 variables that specifies a correlation matrix

The following example illustrates Corollary 3.6.

Example 3.8 Assume that X ∼ EC4(0,Σ, φ) , Σ = (σij)1≤i,j≤4 with σii = 1

for all i and with (generalized) partial correlations corresponding to the C-vine
in Figure 1. Assume that

|σ12|, |σ13|, |σ14| ≤ 0.5 = b1 = a1,0 ,

|σ23,1|, |σ24,1| ≤ 0.6 = b2 = a2,1 ,

|σ34,12| ≤ 0.4 = b3 = a3,2 .

12



Then, Corollary 3.6 yields

a1 = a1,0 = 0.5 ,

a2,0 = a21,0 + a2,1(1− a21,0) = 0.7 ,

a2 = a2,0 = 0.7 ,

a3,1 = a22,1 + a3,2(1− a22,1) = 0.616 ,

a3,0 = a21,0 + a3,1(1− a21,0) = 0.712 ,

a3 = a3,0 = 0.712 .

Hence, for Y ∼ EC4(0,Σ′, φ) with

Σ′ =


1 0.5 0.5 0.5

0.5 1 0.7 0.7

0.5 0.7 1 0.712

0.5 0.7 0.712 1

 ,

holds X ≤sm Y .

3.2 Directionally convex maximization problem

In this section, we determine solutions to two directionally convex maximization
problems. For the first one, we assume a factor model with partial specification
sets where the bivariate dependence specification sets of each risk component
w.r.t. to a common risk factor are from classes of elliptical distributions and the
marginal constraints for each risk factor are from classes of univariate distribu-
tion functions with upper bounds in convex order. For the second one, we assume
an elliptical model where the (generalized) covariance matrix is componentwise
bounded from above by a positive semi-definite symmetric matrix.

3.2.1 ≤dcx-maximization problem with marginal constraints in con-
vex order

We consider a partially specified factor model where the dependence specifica-
tion sets are bivariate elliptical copulas. Further, the univariate margins are not
uniquely determined but from some classes of distributions with upper bounds
in convex order.

For Fi ∈ F1 , let Fi := {F |F ≤cx Fi} . Let φ ∈ Φ2 such that FR(0) = 0

and let −1 ≤ ρ1 < ρ2 ≤ 1 such that M(ρ1, ρ2) ≥ 0 . Denote by Cρ,φ the (not
necessarily uniquely determined) bivariate copula associated with EC2(0, ρ, φ) .

Then, consider for k ∈ {1, . . . , d − 1} the directionally convex maximization
problem

max{(X1, . . . , Xd) |FXi
∈ Fi ,∃Z : CXi,Z = Cηi,φ ,

ηi ≤ ρ1 for 1 ≤ i ≤ k ,
ηi ≥ ρ2 for k < i ≤ d } w.r.t. ≤dcx

(12)
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with elliptical dependence constraints and with marginal specifications sets Fi .
To determine a solution, we need the following positive dependence notion.

Let Y = (Y1, . . . , Yd) be a d-dimensional random vector. Then Y is said to
be conditionally increasing (CI) if for all i ∈ {1, . . . , d} , Yi ↑st YJ for all J ⊂
{1, . . . , d}\{i} , i.e. E[f(Yi) |Yj = yj , j ∈ J ] is increasing in xj for all j ∈ J , J ⊂
{1, . . . , d} \ {i} and for all non-decreasing functions f for which the expectation
exists.

Further, a matrix A ∈ Rd×d is called an M-matrix if all off-diagonal elements
are non-positive.

The proof of the CI-criterion for normal distributions in Rüschendorf (1981,
Theorem 2) also applies in the case of elliptical distributions which leads to the
following result (see Witting (2017, Theorem 1.4.9)).

Proposition 3.9 (CI-criterion for elliptical distributions)
Let X ∼ ECd(0,Σ, φ) with positive definite matrix Σ . If Σ−1 is an M-matrix,
then X is conditionally increasing.

Define the matrix Σ = (σij)1≤i,j≤d by

σij =

{
1 if 1 ≤ i, j ≤ k or k < i, j ≤ d ,
M(ρ1, ρ2) if 1 ≤ i ≤ k < j ≤ d or 1 ≤ j ≤ k < i ≤ d .

Together with the above CI-criterion, we obtain a solution to maximization
problem (12) as follows.

Theorem 3.10 (Directionally convex maximization problem)
Let Y = (Y1, . . . , Yd) ∼ ECd(0,Σ, φ) an elliptically distributed random vector.
Then, the directionally convex maximization problem (12) has a solution which
is given by the vector Y ′ = (F−1i (FYi

(Yi)))1≤i≤d .

Proof: Let X = (X1, . . . , Xd) be an admissible vector of the set in (12). Then,
Proposition 3.1 implies X ≤sm Xc

Z . From (4) we obtain M(ηi, ηj) ≤ σij for all
i 6= j . Hence, Theorem 3.2 yields Xc

Z ≤sm Y .

Since by assumption 0 ≤ M(ρ1, ρ2) < 1 , the inverse of
(

1 M(ρi,ρj)
M(ρi,ρj) 1

)
exists and is an M-matrix. Thus, as a consequence of Proposition 3.9 and using
that Y is conditionally comonotonic, the copula CY ′ = CY is conditionally
increasing. Thus, it follows from Müller and Scarsini (2001, Theorem 4.5) that
Y ≤dcx Y ′ using FYi

≤cx Fi . Altogether, this yields X ≤dcx Y ′ . �

3.2.2 ≤dcx-maximization problem in classes of elliptical distributions
with upper bounded covariance matrix

Let φ ∈ Φd such that the corresponding radial variable R is integrable. For some
positive semi-definite symmetric matrix Σ ∈ Rd×d , consider the directionally
convex maximization problem

max{X ∼ ECd(µ,Σ′, φ) |Σ′ ≤ Σ componentwise} w.r.t. ≤dcx (13)
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in elliptical classes with upper bounded (generalized) covariance matrix.

As a consequence of Theorem 2.5, we obtain a solution to the above maxi-
mization problem as follows.

Corollary 3.11 Let Y ∼ ECd(µ,Σ, φ) . Then, Y solves the directionally convex
maximization problem (13).

Note that for the comparison of marginal distributions in the elliptical model,
we do not need a CI assumption on the solution Y to maximization problem
(13). In contrast, in the partially specified factor model in maximization problem
(12), the solution needs to be conditionally increasing to allow a more general
comparison of the marginal distributions in convex order.

Conclusion

We have extended the characterization of the supermodular resp. directionally
convex ordering for multivariate normal distributions to the class of elliptical
distributions. The proofs are based essentially on a conditioning argument. As
shown in the last section, the results allow applications to the improvement
of risk bounds both in elliptical models with knowledge of partial correlation
bounds and in partially specified factor models with elliptical dependence con-
straints.
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