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Abstract

This paper surveys some recent results on the mass transportation pro-

blem (MTP). We examine the dual and explicit solutions of MTP and its

various versions. A variety of possible applications of MTP in the context

of probability theory are listed: probability metrics, stochastic algorithms, li-

mit theorems, distributions with given marginals, computer tomography and

others.
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1 Introduction

Extensive surveys ([28], [61], [70], [85] ) and two monographs ([30], [69] ) have

appeared in the early nineties treating various mass transportation problems and

listing additional references on them. More recently, the subject has developed

intensively and interesting new applications have been found. The scope of this

survey is to review the most recent contributions.
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The paper is divided in three parts. Section 2 is devoted to theMonge-Kantorovich

problem; Section 3 deals with the Kantorovich-Rubinstein problem, and Section 4

considers transportation problems with additional or relaxed constraints.

2 The Monge-Kantorovich problem

The mass transportation problem was formulated by Monge in 1781 [60]. Monge

was interested in the minimization of the cost of transportation of soil from one

location to another, which is �xed previously. Starting with the assumption that

soil consists of small grains, the problem is to give the �nal location of every grain

in such a way that the costs of transportation are as low as possible. Note that in

this formulation it is not possible to divide the grains, so that mass which share the

same initial location must also share the same �nal location.

The so-called Kantorovich formulation, [45], of the problem is similar except

for the fact that here one is allowed to \divide grains". In this way we do not

need to answer the question of what the �nal location of the grains should be, but

the following alternative one: Given the sets A and B, what is the portion of the

mass initially located in A which should be transferred to B? We will denote this

quantity by P

1;2

(BjA) and say that the family fP

1;2

(�j�)g is a transportation plan. It

is reasonable to assume that the mass does not vary in the transportation process.

So, without loss of generality, we can assume that the total mass is one and identify

the functions giving the initial and �nal distributions of the mass as probability

measures P

1

and P

2

. It is evident that not every transportation plan is admissible.

We de�ne a probability measure P on the product space U � U by using P

1

as

the �rst marginal and fP

1;2

(�j�)g as the transition probability. The transportation

plan given by P

1;2

is admissible if and only if the second marginal distribution of P

coincides with P

2

. To optimize the cost of transportation we need to know the cost

of transporting a unit from one location to another. We denote by c(x; y) the cost

of transportation of a unit of mass initially located at x to its �nal destination y.

We shall assume that c is positive. (The motivation for this problem and some basic

results are taken from [69]. An extensive review on the discrete Monge problem is

given in [15]).

Finally we can state the Monge-Kantorovich transportation problem (MKP) in

the following terms:

Let (U; d) be a metric space, P

1

and P

2

be two probability measures de�ned on

its Borel �-algebra and let M(P

1

; P

2

) be the set of all probability measures de�ned

on the product �-algebra with marginal distributions P

1

and P

2

respectively. The

problem is to compute the functional

C(P

1

; P

2

) := inf

�

Z

U�U

c(x; y)P (dx; dy) : P 2 M(P

1

; P

2

)

�

; (1)

where c : U � U ! <

+

is measurable.
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If P 2 M(P

1

; P

2

) is a solution of (1), then we say that P determines an optimal

transportation plan (OTP) with respect to c for P

1

and P

2

or, in other words we

say that P determines an OTP(c) for P

1

and P

2

. C(�; �) is called the Kantorovich

Functional. Evidently the OTP(c) would be the family of conditional probabilities

determined by P .

Equation (1) can also be written in terms of random variables (r.v.s). With this

terminology, the MKP is equivalent to the problem of �nding a pair of r.v.s (X;Y ),

such that the distributions of X and Y are P

1

and P

2

respectively and verifying that

C(P

1

; P

2

) = E[c(X;Y )]:

With a slight abuse of notation, if the pair (X;Y ) satis�es this equality then we

say that it is an OTP(c) for their marginal distributions.

The �rst problem is to check whether the in�mum in the de�nition is attained,

or equivalently, whether an OTP(c) for P

1

and P

2

exists. This can be resolved under

rather general conditions. If P

1

and P

2

are tight probability measures, then every

probability distribution on U � U with P

1

and P

2

as marginals is also tight. Then

a standard argument permits us to conclude that if c is continuous or at least lower

semicontinuous, an OTP(c) for P

1

and P

2

exists.

An interesting topological property of C(P

1

; P

2

) arises from the fact that, under

suitable conditions on the function c, C(P

1

; P

2

) induces a distance equivalent to the

convergence in distribution together with the convergence of integrals (see Theorem

2.1 below).

For instance, if H : [0;1)! [0;1) is a continuous, nondecreasing function such

that H(0) = 0 and H satis�es Orlicz's condition

sup

t>0

H(2t)

H(t)

<1;

and c(x; y) = H[d(x; y)], then C induces a distance between P

1

and P

2

which is in

fact a minimal distance in the terminology of [69].

An important particular case is when H(t) = t

r

; r > 0, because then

d

r

(P

1

; P

2

) := C

r

�

(P

1

; P

2

); r

�

= minf1; 1=rg (2)

is a metric on the space of probability measures with �nite moment of r-th order.

In this paper we use the notation c

r

(x; y) := d

r

(x; y), and C

r

for the associated

Kantorovich functional.

When c(x; y) = H[d(x; y)], with H as above, the following result relates the

convergence to zero of fC(P

n

; P )g to weak and moment convergence.

Theorem 2.1 Let fP

n

; n � 0g be probability measures on the Borel �-algebra on

U . Assume that

Z

U

c(x; a)P

n

(dx) <1; n = 0; 1; : : : for some a 2 U:
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Then fC(P

0

; P

n

)g converges to zero if and only if fP

n

g converges weakly to P

0

and

lim

n

Z

U

c(x; b)(P

n

� P

0

)(dx) = 0

for some (and therefore for any) b 2 U .

This result was proved in [65], [67], and in the special cases H(t) = t

r

; r � 1 in

[12], [66], [95], r � 1, for a bounded metric d in [38] and for r = 2; U = < with the

usual distance in [59].

These metrics have been employed in several ways in the literature, and many

applications appear in [69]. We later discuss some more recent applications. Among

them the following ones:

� In [36], [44], [74] metrics d

r

; r > 0, have been used to measure the order of

convergence of a sequence of approximations to the solution of a stochastic

di�erential equation.

� In [80], [81] the metric d

2

is employed to measure the stability of a stochastic

program model with respect to the underlying distribution. This situation is

relevant when the underlying distribution is not known exactly.

An interesting metric related to d

r

is the total variation metric:

�(P

1

; P

2

) := sup

A2B(U)

jP

1

(A)� P

2

(A)j;

where B(U) is the Borel �-algebra in U . In fact � can be viewed as the limiting

case for d

r

:

�(P

1

; P

2

) = lim

r!1

d

r

(P

1

; P

2

):

It has a representation as the minimal metric given by

�(P

1

; P

2

) = inf

X;Y

�[X 6= Y ];

where X and Y are r.v.s with distributions P

1

and P

2

respectively. For properties

and applications of � see [69].

An important problem is to determine the conditions under which the solution for

the MKP coincides with that one for the Monge problem with the same marginals.

Or, equivalently, under what conditions can every OTP for P

1

and P

2

be written as

(X;T (X))?> It is not di�cult to �nd examples with degenerate P

1

in which such a

function does not exist because this property is related to a kind of continuity of

the distribution P

1

. In fact it is known that both solutions coincide in the following

cases:

(i) If P

1

and P

2

are de�ned on a bounded subset of the �nite dimensional space

<

k

and are absolutely continuous with respect to the Lebesgue measure and

the cost functional is C

2

(proved in [90]).
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(ii) For the d

2

-metric the result in (i) was extended to the case where only P

1

has a Lebesgue density. It has also been extended to the case of a separable

Hilbert space U but under additional stronger continuity assumptions (cf. [3],

[20], [24]).

(iii) For a general U and c under the only assumption that the in�mum in (1) is

attained, the support of P

2

is �nite and P

1

fx : c(x; a)� c(x; b) = hg = 0 for

every a; b 2 U and h 2 < (see [27]).

Note that the condition in (iii) above is not ful�lled if U = <

k

endowed with the

Euclidean norm, P

1

is absolutely continuous with respect to the Lebesgue measure

and c(x; y) = kx� yk. Under the assumption that P

1

is atomless, the support of P

2

is discrete, U is a separable Banach space, and c(x; y) = kx� yk

r

; r � 1, it is shown

in [3] that there exists an OTP for P

1

and P

2

of the form (X;T (X)).

2.1 Duality theorems, explicit results and uniqueness

As in linear programming in �nite dimensional spaces an important tool for studying

and solving the transportation problem (1) is the use of duality theorems. The

history of these duality results for the transportation problem goes back to 1942,

when Kantorovich [45] considered the special case where the cost c(x; y) = d(x; y)

is a distance in a compact metric space. There are a lot of contributions to and

extensions of the duality theorem (cf. [30], [46], [69], [83], [53]). Recently a quite

general duality theorem has been proved in [78]. Before stating this result, we recall

that a probability space (
;A; P ) is called perfect if for any measurable function

f : 
 ! <, one can �nd a Borel set B � f(
) such that P (f

�1

(B)) = 1. Perfectness

is a very weak regularity condition on 
; P .

Theorem 2.2 (General Duality Theorem)

Let (U

i

;A

i

; P

i

), i = 1; 2 be probability spaces such that P

1

is perfect and let c :

U

1

�U

2

! < be product measurable and upper majorized (i.e. c(x; y) � f

1

(x)+f

2

(y)

for some f

i

2 L

1

(P

0

)) then the following duality theorem holds:

C(P

1

; P

2

) = sup

�

Z

h

1

dP

1

+

Z

h

2

dP

2

; h

i

2 L

1

(P

i

); h

1

(x) + h

2

(y) � c(x; y)

�

:

Duality theorems are the basis of many of the properties of the Monge Kantoro-

vich functional C(P

1

; P

2

) and very often lead to explicit results for the transportation

problems. They also lead to the construction of optimal plans (cf. the introduction

of this section), and under some conditions solutions for the dual problem in Theo-

rem 2.2 exist. In this framework, an optimal plan �

�

2 M(P

1

; P

2

) is characterized

by the existence of h

�

i

2 L

1

(P

i

); i = 1; 2 with

h

�

1

(x) + h

�

2

(y) � c(x; y)

such that with respect to �

�

c(x; y) = h

�

1

(x) + h

�

2

(y) a.s. (3)
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For special cost functions, e.g. for c = d or d

r

, more speci�c versions of the duality

theorem have been established in the literature, see [69]. Later in this section we

derive explicit characterizations for an OTP pair (X;Y ) with marginals P

1

and P

2

and prove uniqueness.

Both problems are solved in full generality only in the one-dimensional case where

it is known that OTPs coincide with increasing arrangements. The �rst known

results in this direction are in early papers of Dall'Aglio [28], [59]. The following

result from [26] includes and completes known characterizations of OTP(c

2

)s.

Proposition 2.3 Let X

1

and X

2

be real, square integrable r.v.s de�ned on the pro-

bability space (
;A; �) with d.f.s F

1

and F

2

. Then:

a) The following are equivalent:

a.i) (X

1

;X

2

) is an OTP(c

2

).

a.ii) F

(X

1

;X

2

)

(x; y) = minfF

1

(x); F

2

(y)g; 8x; y.

a.iii) There exists a r.v. Z uniformly distributed on (0; 1), such that for some

nondecreasing functions �

1

; �

2

:

X

1

= �

1

(Z) and X

2

= �

2

(Z); a.s. with respect to �

a.iv) � 
 �f(!; !

0

) : (X

1

(!)�X

1

(!

0

))� (X

2

(!)�X

2

(!

0

)) � 0g = 1.

b) The functions �

i

in a) are essentially unique, �

i

= F

�1

i

a.s. with respect to

Lebesgue measure.

c) Given � 2 (0; 1) and x 2 <, we de�ne

F(x; �) := �(X

1

< x) + ��(X

1

= x):

If Z is a r.v. uniformly distributed on (0; 1), independent of X

1

, then the pair

�

X

1

; F

�1

2

� F(X

1

; Z)

�

is an OTP(c

2

) for P

1

and P

2

.

d) If P

1

is nonatomic and (X

1

; Y

1

) is an OTP(c

2

) for P

1

and P

2

then

Y

1

= F

�1

2

� F

1

(X

1

); a.s. with respect to �

e) If Y

1

= �

1

(X

1

) with �

1

non-decreasing, then (X

1

; Y

1

) is an OTP(c

2

).

If c(x; y) = �(jx � yj), then a uniqueness result holds essentially only if � is

convex (see Remark 1 (3) in [26]). So in the one-dimensional case the OTP does not

depend on the cost of transportation functions c (in the class of functions considered

above). This is not the case if the dimension is greater than one. In the following

example (see [21]) the OTP(c

r

) depends on r. Consider the points in <

2

:

m

0

= (0; 0);m

1

= (1; 0);m

2

= (�1=2;

p

3=2);
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and the probabilities P

i

; i = 1; 2, which allocate probability 1=2 to m

0

and m

i

; i =

1; 2, respectively.

It is easy to show that a probability measure P giving an OTP(c

2

) for P

1

; P

2

is

Pf(m

0

;m

2

)g = Pf(m

1

;m

0

)g =

1

2

:

However for r < (log 4)=(log 3) an OTP(c

r

) is given by the probability P

�

de�ned

by

P

�

f(m

0

;m

0

)g = P

�

f(m

1

;m

2

)g =

1

2

:

In general spaces most results providing explicit OTPs have been found in cases

in which a solution for the Monge problem gives an OTP (see the preceding section);

i.e. for a function T : U ! U the pair (X;T (X)) is an OTP.

The problem has two aspects, the construction and the uniqueness of the solution.

A complete characterization is known for a pair (X;Y ) to be an OTP. The following

theorem is proved in [87] (see also [51], [89]).

Theorem 2.4 Assume that (U; k � k) is a separable Hilbert space and that P

1

and

P

2

are two probability measures such that

R

kxk

2

P

i

(dx) <1; i = 1; 2.

If X;Y are two r.v.s with distributions P

1

and P

2

respectively, then (X;Y ) is

an OTP(c

2

) if and only if Y 2 @f(X) a.s. for some lower semicontinuous convex

function f , where @f(x) denotes the subgradient of f in x:

@f(x) = fy : f(x

0

)� f(x) � < y; x

0

� x >; for all x

0

in the domain of fg:

An interesting consequence of Theorem 2.4 is that the optimality of a certain map

depends only on the map and not on the distributions P

1

and P

2

. More precisely,

Corollary 2.5 Let T : U ! U be a measurable map such that (X;T (X)) is an

OTP(c

2

). Let X

�

be a r.v. whose support is contained in that ofX. Then (X

�

; T (X

�

))

is also an OTP(c

2

).

It is known (see [79]) that a function T satis�es T (x) 2 @f(x) for some semicon-

tinuous convex function if and only if T is cyclically monotone; i.e.

X

0�i�m�1

< x

i+1

� x

i

; Tx

i

> � 0; for x

0

; : : : ; x

m

= x

0

2 U: (4)

As a consequence, functions giving OTP(c

2

) coincide a.s. with cyclically monotone

functions.

Theorem 2.4 is particularly useful since the subgradients of convex functions or

equivalently cyclically monotone functions are well studied in convex analysis (cf.

[79]). They are basic for the solution of convex optimization problems. This allows

the construction of many examples of optimal transportation functions and optimal

pairs (X;Y ) of the transportation problem. Examples of optimal functions are

positive semide�nite, symmetric linear functions, radial transformations, projections
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on convex sets etc. (cf. [26], [85], [87]). A continuously di�erentiable function � is

an optimal function with respect to c

2

if and only if

@�

j

@x

i

=

@�

i

@x

j

for i 6= j and � is monotone; (5)

i.e. hx� y; �(x)� �(y)i � 0 (cf. [85]).

The symmetry of the derivatives is a consequence of the Poincar�e lemma. The

necessity of the monotonicity property of optimal functions was �rst established in

[20] (see also [24]).

Monotone functions (also called Zarantonello-monotone) enjoy several good ana-

lytic properties. They are continuous a.s. with respect to the Lebesgue measure

(and, therefore, measurable), they are continuous on each point such that the image

lies in the interior of the range, etc. (cf. [24], [92]).

An immediate application of Theorem 2.4 is to the case of Gaussian probability

measures (see [38], [51], [62], [87]).

Proposition 2.6 Let P

1

and P

2

be two n-dimensional, centered Gaussian proba-

bility measures with covariance matrices �

1

and �

2

respectively (regular or not),

then

C

2

(P

1

; P

2

) = trace

�

�

1

+ �

2

� 2

�

�

1=2

1

�

2

�

1=2

1

�

1=2

�

: (6)

Moreover, if X is a r.v. with distribution P

1

;�

1

is non-singular and

A =

�

�

1=2

1

�

�1

�

�

1=2

1

�

2

�

1=2

1

�

1=2

�

�

1=2

1

�

�1

;

then (X;AX) is an OTP(c

2

) for P

1

and P

2

.

Equality (6) has been extended to general separable Hilbert spaces in [24], [35].

The extension in [25] includes an expression for the operator which corresponds to

A in Proposition 2.6. Moreover it is shown in [25], [35], [87] that (6) provides an

universal lower bound for the cost of transportation between distributions P

1

and

P

2

with covariances �

1

;�

2

.

Proposition 2.7 Let P

1

and P

2

be two n-dimensional probability measures centered

in mean and with covariance matrices �

1

and �

2

respectively. Then

C

2

(P

1

; P

2

) � trace

�

�

1

+ �

2

� 2

�

�

1=2

1

�

2

�

1=2

1

�

1=2

�

(7)

This proposition has been generalized to separable Hilbert spaces in [24]. Mo-

reover, in that paper two families of lower bounds are provided for C

2

(P

1

; P

2

) which

depend on the orthogonal basis under consideration. In this way, for each orthogo-

nal basis on U two lower bounds are found. One of them depends on just the �rst

two moments of the one-dimensional marginal distributions of P

1

and P

2

. The other

lower bound (which is more precise) is the sum of the C

2

-costs of transportation
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between the one dimensional marginals of P

1

and P

2

. The lower bound in (7) is the

supremum of the �rst family. The second family of lower bounds can be improved if

one considers the sum of costs of transportation between marginals with dimension

greater than one.

In general, however, the problem of determining optimal c

2

-couplings remains

di�cult and leads to the problem of �nding the solution of a partial di�erential

equation of Monge-Amp�ere type. For example it is not known in general how to

�nd the optimal plan for a pair P

1

and P

1

T

�1

�

, where T

�

is a rotation by the angle

� in <

2

(or more generally an orthogonal transformation in <

k

). It has been proved

(see [92]) that if the support of the distribution of X contains an open set, then

(X;T

�

(X)); � > 0 is not an OTP(c

2

).

Theorem 2.4 has been extended to general cost functions c in [84], [85], [86].

The role played by convex functions, their subgradients, and cyclically monotone

functions in convex analysis is replaced by c-convex functions, c-subgradients and

c-cyclically monotone functions. The last three notions are introduced in non-

convex optimization theory, but unfortunately have not been well studied till pre-

sent. Several explicit examples of optimal c-plans (functions) have been found. For

c(x; y) = kx� yk

r

; r > 1 pairs (X;�(X)) are OTPs where

�(x) = jh(x)j

�

r�2

r�1

h(x) + x; (8)

with h any cyclically monotone function. In particular

�(x) = (x

T

A

2

x)

�

r�2

2(r�1)

Ax+ x; (9)

with A a positive semide�nite, symmetric linear function and �(x) = g(kxk)

x

kxk

a

radial transformation are optimal. Also norms di�erent from Euclidean norms are

considered in these papers. A general construction for optimal c-plans is yet to be

found.

Some approximating algorithms have been established in the case when P

2

has

�nite support:

1. In [5] an algorithm is provided to �nd the OTP(c

2

) between two distributions

P

1

and P

2

de�ned in <

k

if P

1

is continuous with bounded support and the

support of P

2

is �nite.

2. In [1], [2] an algorithm is given to construct OTP(c

r

) approximately if the

cardinality of the support of P

2

is �nite. P

1

is required to satisfy

P

1

fx : kx� ak

r

� kx� bk

r

= hg = 0;8a; b 2 U and h 2 <: (10)

For the algorithm one has to compute an element � 2 <

n�1

, where n is the

cardinality of the support of P

2

, and then solve a certain equation h(t) =

�; t 2 <

n�1

. The solution of this equation is not easy to �nd and a procedure

to construct a sequence of approximate solutions is given when P

1

satis�es

certain Lipschitz conditions. The range of applications of these algorithms

has yet to be investigated.

9



The problem of uniqueness of OTPs has been solved in some particular cases.

In [3], [24] the uniqueness of the OTP(c

2

) is proved in Hilbert spaces, if one of

the probabilities involved veri�es certain continuity condition. In fact the technique

employed in [24] can be used to extend this result to the case in which it is known that

the solutions of the Monge and Monge-Kantorovich problem coincide and c(x; y) =

H[d(x; y)] with H strictly convex.

Furthermore, in [27] the uniqueness of the OTP(c) for general U and c was

proved under the condition that the in�mum of (1) is reached, the support of P

2

is �nite and P

1

fx : c(x; a) � c(x; b) = hg = 0 for every a; b 2 U and h 2 <; but

the technique employed is of a di�erent nature. This result has been extended in

[1] to the case where the support of P

2

is denumerable but under the assumption

of a c

r

-cost function. The uniqueness result implies in particular that OTPs are

continuous with respect to weak convergence (see [24]):

Theorem 2.8 Let P;Q

n

; n = 0; 1; : : : be probability measures de�ned on <

k

such

that

R

kxk

2

dQ

n

<1; n = 0; 1; : : : and

R

kxk

2

dP <1. If P is absolutely continuous

with respect to the Lebesgue measure and (X;T

n

(X)); n = 0; 1; : : : are OTP(c

2

)

between P and Q

n

; n = 0; 1; : : : respectively, and Q

n

converges weakly to Q

0

, then

T

n

(X) ! T

0

(X); a.s.

The proof is based on the analytic properties of monotone functions mentioned

before. So, the algorithm in [1], [4] together with the above result provides an

approximate solution for the OTP(c

2

) between two given probability measures if one

of them is continuous. An extension of Theorem 2.8 to more general cost functions

would be of a considerable interest.

2.2 Convergence of empiricalmeasures, Laws of large num-

bers

We now investigate the topological properties of the metrics under consideration to

obtain some classical results in probability theory.

Minimal metrics (like d

r

(P;Q)) have been applied to prove various versions of

the Central Limit Theorem (see e.g. [20], [69], [71], [73], [91]). The proofs are based

on regularity properties of the minimal metrics as well as on Theorem 2.1.

It is not surprising that these metrics allow us to obtain a simple proof of Mou-

rier's Strong Law of Large Numbers (SLLN) in Banach spaces as well. Consider a

sequence, fX

n

g, of U -valued, independent, identically distributed random elements

with distribution Q de�ned on the probability space (
;A; �). Assume that U is a

separable Banach space with norm k � k and consider the function c

1

as the cost of

transportation.

Let for ! 2 
 P

!

n

be the empirical probability measure allocating probability

1=n to each of the points X

1

(!); : : : ;X

n

(!). If we assume that EkX

1

k < 1, then

the SLLN for real random variables implies that

Z

kxkP

!

n

(dx) =

1

n

n

X

i=1

X

i

(!)!

Z

kxkQ(dx); a.s. with respect to �

10



Moreover, Varadarajan's extension of the Glivenko-Cantelli theorem (which only

requires the SLLN for real, bounded r.v.s for its proof) states that the sequence of

probabilities fP

!

n

g converges weakly to Q a.s. with respect to �. By Theorem 2.1

we conclude that

lim

n

C

1

(P

!

n

; Q) = 0; a.s. with respect to �, (11)

a version of Varadarajan's theorem (cf. [22]). Finally, if (U

!

n

; V

!

n

) is an OTP(c

1

)

between P

!

n

and Q this implies that

k

1

n

X

X

i

(!)� EX

1

k = kEU

!

n

� EV

!

n

k � EkU

!

n

� V

!

n

k = C

1

(P

!

n

; Q) (12)

and we have proved that the sequence f

1

n

P

X

i

(!)g converges a.s. with respect to

� to EX

1

(cf. [22]). For far reaching extensions of this result we refer to [58].

Moreover, the same kind of reasoning leads to results on the a.s. stability of sums

of r.v.s in Banach spaces. For instance consider the case of weighted sums. Assume

that U is a separable Banach space and that fX

k

g is a sequence of independent,

integrable U -valued random elements with �nite expectations. We seek conditions

implying

X

k�1

a

n;k

(X

k

� EX

k

)

a:s:

�! 0: (13)

Here fa

n;k

g is a Toeplitz sequence of real numbers, i.e.

lim

n

a

n;k

= 0 for each k � 1

and

X

k�1

ja

n;k

j � C for each n � 1:

Assume that C = 1, and reduce the problem to the case in which all weights are

positive. De�ne X

0

:= 0 and a

n;0

:= 1 �

P

k�1

a

n;k

. Consider the probability

measures Q

n

=

P

k�0

a

n;k

P

X

k

and P

n

(!; �); n = 1; 2; : : : allocating mass a

n;k

to

the point X

k

(!); k = 0; : : :. Argue as in the SLLN to obtain a variety of known

results on almost sure stability of weighted sums in Banach spaces. This derivation

does not require geometric conditions on the space but reduces the problem to the

corresponding result for real r.v.s.

In the same way one can also cover cases in which the weights are not constants

but random, or in which they are given by linear operators. Also one can obtain

results on further summation methods such as Ces�aro, Abel, and others (see [22]).

Central limit theorems for summabilitymethods by means of ideal metrics have been

given in [71]. A generalization to operator-stable summation schemes is outlined in

[58].
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2.3 Simultaneous representations. Skorohod-Lebesgue

spaces.

Here we are interested in the extension of some properties of the quantile functions

to abstract spaces. For a probability measure P on the real line with distribution

function F , its quantile function is de�ned as

T

P

(t) := inffu : F (u) � tg; t 2 (0; 1):

Two key properties of the quantile function are that T

P

(X) has distribution

P if X is uniformly distributed on (0; 1) and that the mappings T

P

are the typical

example of the Skorohod representation for weak convergence of probability mesures.

This is described in the following proposition.

Proposition 2.9 Let X be a r.v. uniformly distributed on [0; 1]. If fP

n

g is a

sequence of probability measures de�ned on < which converges weakly to P , then

fT

P

n

(X)g

n

converges a.s. to T

P

(X).

Another important property is that quantile functions provide a simultaneous

representation for the the Kantorovich functional in the one-dimensional case: Ac-

cording to Proposition 2.3, if X is a �xed r.v. with uniform distribution on (0; 1)

then for every probabilities P

1

and P

2

C(P

1

; P

2

) = E[c(T

P

1

(X); T

P

2

(X))]: (14)

These properties have the following interesting application. Let L

r

(�) be the set of

all real r.v.s X such that

R

jXj

r

d� < 1 and let H : L

r

(�) ! < be a functional

which depends only on the distribution of the r.v.s, i.e. if X;Y 2 L

r

(�) satisfy that

P

X

= P

Y

then H(X) = H(Y ). With a slight abuse of notation, we can write H(P

X

)

instead of H(X). Assume that H is continuous with respect to the L

r

-norm on

L

r

(�). By employing the same notation as in preceeding section, we want to show

that strong pointwise consistency of H(P

!

n

),

lim

n

H(P

!

n

) = H(Q); a.s. with respect to �: (15)

Taking into account that for every �xed !, T

P

!

n

is a r.v. de�ned on the interval

(0; 1) whose distribution is P

!

n

and that by the Glivenko-Cantelli theorem, Proposi-

tion 2.9, and the Strong Law of Large Numbers respectively, we have that a.s. with

respect to �

T

P

!

n

(t)! T

Q

(t)

for almost all t in [0; 1], and

Z

jtj

r

P

!

n

(dt)!

Z

jtj

r

Q(dt):

Then applying Theorem 2.1 we get that

12



lim

n

Z

jT

P

!

n

(t)� T

Q

(t)j

r

dt = 0; a.s. with respect to �:

This gives the consistency result (15) by the continuity of H with respect to the

L

r

-norm. Von Mises functionals related to L

r

-norms, as in the case of the r-means,

are a typical example of application of this method (see [18], [19]), which can be

generalized to cover further functionals related to Orlicz spaces (see [52]).

The interesting point in this method is the fact that the r.v.s T

Q

and T

P

n

; n 2

N are de�ned on the same probability space which allows to simplify the usual

arguments for a result of this type.

Therefore it would be interesting to have a simultaneous representation result as

in (14) in more general spaces in order to obtain strong consistency for this kind of

functionals in these spaces. Regrettably, it is well known that this representation

does not exist even in the two-dimensional case. In [26] it is shown that certain

families of probability distributions (distributions with the same dependence struc-

ture) admit a simultaneous representation with respect to c

2

-costs but this is not

enough to apply the arguments given above.

To avoid this problem in [23] the so-called Skorohod-Lebesgue spaces were in-

troduced. These spaces can be considered as a general (and minimal) framework to

develop the previous scheme in abstract spaces.

The idea is the following. As stated in (14), in the one-dimensional case, the

quantile function provides simultaneous representations for OTPs and, by Proposi-

tion 2.9 also gives a simultaneous Skorohod representation for weak convergence. In

[13] it is shown that Proposition 2.9 can be generalized to separable Banach spaces.

Then for a separable Banach space U there exists a U -valued r.v. X, such that for

any probability measure Q on U , there exists a �xed function T

Q

with T

Q

(X)

d

= Q

and such that the weak convergence of fP

n

g to P implies

T

P

n

(X) ! T

P

(X); a.s.

These simultaneous Skorohod representations are not uniquely de�ned. But,

once one of them is �xed, a distance between P

1

and P

2

can be de�ned by

SL

r

(P

1

; P

2

) := E[kT

P

1

(X)� T

P

2

(X)k

r

]

r

�

; r

�

= min(1; 1=r);

for all probability measures P

1

and P

2

on U with

R

kxk

r

dP

i

< 1, i = 1; 2. If we

denote byM

r

(U) the family of all probability measures on U with �nite expectation

of the r-th power, then (M

r

(U); SL

r

) is a separable metric space which is called the

Skorohod-Lebesgue space of order r. The d

r

metric (which is the C

r

-Kantorovich

functional) is topologically equivalent to SL

r

(see [23]) and with this construction

the arguments which were sketched for the one-dimensional case can be carried out

exactly in the same way to prove the strong a.s. continuity of functionals of the form

H(P

!

n

). This scheme includes the results related to almost sure stability of sums of

r.v.s mentioned in the preceding section. A new application still to be developed

13



is the fact that Skorohod-Lebesgue spaces provide a common framework for the

comparison of all d

r

-distances.

While in the one-dimensional case the Skorohod representation problem and the

OTP share the same solution namely the quantile function, for higher dimensions

the solution is not be the same. This can be seen from the fact, that C

r

-functionals

do not admit simultaneous representations while Skorohod representations can be

chosen simultaneously. In [93] the conditions under which OTPs can be used to

obtain Skorohod representations are analyzed. In other words, if (X;T

n

(X)) is an

OTP between P and Q

n

; n = 0; 1; : : : and if fQ

n

g converges weakly to P , when does

fT

n

g converge to the identity?. This problem is solved in the case of a separable

Hilbert space U with the cost function c

2

. If the space is �nite dimensional, then fT

n

g

converges almost surely to the identity without additional assumptions. However, if

the dimension is in�nite, then this convergence is only in probability and a counter-

example for the a.s. convergence is readily constructed. Theorem 2.8 generalizes

this result in the �nite dimensional case. This result has been extended in [42].

2.4 Rate of convergence in the Central Limit Theorem

An interesting application of the minimal l

p

-metrics, de�ned as solutions of the

transportation problems with respect to c(x; y) = d

p

(x; y) (cf. the introduction to

section 2), are to general forms of the Central Limit Theorem and to the rate of

convergence related to it. Recently some versions of these results have been found

for martingales with values in separable Banach spaces U (cf. [73]).

We explain the idea at �rst in the independent case. Let (X

i

) be iid, U -valued

random variables and de�ne

Z

n

= n

�1=�

n

X

i=1

X

i

(16)

the normalized sequence, assuming that X

i

is centered at zero. Let # be a (symme-

tric) �-stable random variable with values in U , i.e.

n

�1=�

n

X

i=1

#

i

d

= #; #

d

= �#;

where (#

i

) are iid copies of #. We considere the convergence of Z

n

to # with respect

to the Kantorovich metric (the minimal l

1

-metric identical to d

1

):

l

1

(P

1

; P

2

) = inf

�

Z

kx� ykdP (x; y);P 2M(P

1

; P

2

)

�

: (17)

To formulate a rate of convergence theorem for Z

n

, we introduce the following

smoothed (of order r) version of l

1

:

l

r

(P

1

; P

2

) := sup

h>0

h

r�1

l

1

(X + h#; Y + h#) (18)

14



and, similarly, for the total variation metric �, we de�ne the smoothed metric:

�

r

(P

1

; P

2

) = sup

h>0

h

r

�(X + h#; Y + h#) (19)

where �(X;Y ) := �(P

X

; P

Y

); in (18) and (19) # is assumed to be independent of

X and Y .

For the rate of convergence result we need the �niteness of the following distances:

l

1

:= l

1

(X

1

; #); l

r

:= l

r

(X

1

; #)

� := �(X

1

; #) and �

r

:= �

r

(X

1

; #). We have the following theorem describing the

estimates of right orderunder the above conditions.

Theorem 2.10 (Stable Limit Theorem - Rate of Convergence)

Let 1 � � � 2 and assume that

a) Ek#k <1 and

b) l

1

+ l

r

+ �

1

+ �

r

<1 for some r > �, then

l

1

(Z

n

; #) � C

�

l

r

n

1�r=�

+ �

r

n

�1=�

�

(20)

where �

r

:= max(l

1

; �

1

; �

r

1

r��

).

The proof of Theorem 2.10 is based on a generalization of the Bergstr�om con-

volution method. It uses essentially the ideality properties of the metrics l

r

; �

r

,

e.g. l

r

(X + Z; Y + Z) � l

r

(X;Y ) for Z independent of (X;Y ) and l

r

(�X;�Y ) =

�

r

l

r

(X;Y ) for � > 0; also by de�nition l

r

(X;Y ) � h

r�1

l

1

(X + h#; Y + h#). Fur-

thermore, basic ingredients of the proof are the following smoothing inequalities:

l

1

(X;Y ) � l

1

(X + "#; Y + "#) + 2"Ek#k (21)

and for X;Y;Z;W independent

l

1

(X + Z; Y + Z) � l

1

(Z;W )�(X;Y ) + l

1

(X +W;Y +W ): (22)

These properties, together with m = [

n

2

], yield the following decomposition

l

1

(Z

n

+ #) � l

1

(Z

n

+ "#; #

1

+ "#) + C � "

� l

1

�

Z

n

+ "#;

#

1

+X

1

+ : : :+X

n

n

1=�

+ "#

�

+

m

X

i=1

l

1

�

#

1

+ : : :+ #

r

+X

j+1

+ : : :+X

n

n

1=�

+ "#;

#

1

+ : : :+ #

j+1

+ : : :+X

n

n

1=�

+ "#

�

+l

1

�

#

1

+ : : :+ "

m+1

+X

m+2

+ : : :+X

n

n

1=�

+ "#; #

1

+ "#

�

:
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The terms in this expression can be estimated by the metric properties above and by

using induction on the number of terms (for details cf. [73]). The �niteness condition

has been established for several examples including certain stochastic processes.

A similar approximation result has been given for martingales in [73] where

the quantities in the bounds are replaced by distances involving the conditional

distributions, as e.g.

�

r

= sup

j

El

r

�

P

X

j

jF

j�1

; P

#

j

�

; (23)

where (X

j

;F

j

) is the martingale. For the proof, it is necessary to introduce G-

dependence metrics de�ned by

�(X;Y=G) = sup

V 2G

�(X + V; Y + V ); (24)

where � is a metric and the supremum is over all G measurable r.v.s V and to study

the smoothing versions and the regularity properties of these metrics. In the one

dimensional case one obtains as a consequence for the �rst time a rate of convergence

result for martingales with respect to the Prohorov distance.

2.5 Convergence of algorithms

The main approaches to the asymptotic analysis of algorithms in the literature deal

with transformation methods (moment generating functions, Mellin transformati-

ons, etc.), the martingale method, the method of branching processes and, for a

more restricted class of stochastic algorithms, the method based on stochastic ap-

proximations. The analysis of algorithms is an important application of stochastics

in computer science which poses di�cult questions and problems; it has also led to

some new developments in stochastic theory (cf. [4] and the references therein).

Based on the properties of minimal metrics introduced at the beginning of this

chapter, a promising new method for asymptotic analysis has recently been introdu-

ced. In [82] R�osler gave an asymptotic analysis of the quicksort algorithm based on

the minimal l

p

-metric. His proof has been generalized by Rachev and R�uschendorf

[72] to a general \contraction method" with a wide range of possible applications.

A series of examples and further developments of the method may be found in some

recent work [16], [17].

The contraction method (in its basic form) uses the following sequence of steps:

1. Find the correct normalization of the algorithms. (Typically by studying the

�rst moments or tails.)

2. Determine the recursion for the normalized algorithm.

3. Determine the limiting form of the normalized algorithms. The limiting equa-

tion is typically de�ned via a transformation T on the set of probability mea-

sures.

4. Choose an ideal metric � such that T has good contraction properties with

respect to �. This ideal metric has to re
ect the structure of the algorithm.
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It also has to have good bounds in terms of interpretable other metrics, and

must allow the estimation of bounds (in terms of moments usually). As a

consequence one obtains the following result.

5. The conjectured limiting distribution is the unique �xed point of T . Finally

one should ensure that the recursion is stable enough for the contraction in

the limit to be made use of in order to establish contraction properties of the

recursion itself for n ! 1. This is technically the most involved step in the

analysis.

6. Establish convergence of the algorithm to the �xed point.

Applications of this method to several sorting algorithms, to the communication

resolution interval (CRI) algorithm, to generalized branching type algorithms, to

bootstrap estimators, to iterated function systems and to learning algorithms have

been given, as well as to others algorithms.

We explain the contraction method for the example of the quicksort algorithm

(cf. also [82]). The de�ning recursion is given by

L

n

d

= n � 1 + L

I

n

+ L

n�I

n

(25)

where I

n

is uniformly distributed on f1; : : : ; ng, L

n

is the number of steps needed

by the quicksort algorithm to sort n numbers and L

n

is an independent copy of L

n

.

The randomness in this problem arises from the assumption that the order of the

numbers is uniform on the set of all permutations. A number is picked up randomly,

all other n � 1 elements are compared with this number and are divided into two

groups, the group of smaller elements and the group of larger elements.

It is easy to establish the asymptotics of the mean l

n

= EL

n

,

l

n

= 2n log n+ n(2
 � 4) + 2 log n + 2
 + 1 + o(1)

where 
 is Euler's constant. Also it can be seen that Var(L

n

) = cn + o(n). De�ne

the normalization

Y

n

=

L

n

� l

n

n

d

=

I

n

� 1

n

Y

I

n

�1

+

n� I

n

n

Y

n�I

n

+ c

n

(I

n

) (26)

with c

n

(j) =

n�1

n

+

1

n

(l

j�1

+ l

n�j

� l

n

). Then taking c(x) := 2x log x+2(1�x) log(1�

x) + 1, the following inequlity holds

sup

x2(0;1)

jc

n

([nx])� c(x)j �

4

n

log n+ 0

�

1

n

�

:

Since

I

n

n

! � , a random variable uniformly distributed on (0; 1) one obtains the

limiting �xed point equation:

Y

d

= �Y + (1� � )Y + c(� ): (27)

17



The right hand side of (27) de�nes the transformation T on the set of all distri-

butions (with �nite p-th moments and expectation zero). It is easy to establish that

T is a contraction with respect to the minimal l

p

-metric, with contraction factor

smaller that 1.

One can readily prove that

l

p

(Y

n

; Y )! 0 (28)

where Y is the unique solution of (27) with �nite p-th moment.

The �xed point equation is not so easy to analyze and an exact solution of it is

still unknown. But it was recently found in [16] that an extremely good approxima-

tion to the distribution of Y can be found in the class of lognormal distributions.

The following simulation from [16] shows that the smoothed empirical density of a

simulation and the lognormal �t show hardly any di�erence, so that the lognormal

can be used in practice.

Figure 1

Quicksort: Lognormal approximation and smoothed empirical density for n = 5000.

The two curves show hardly any di�erence.
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2.6 Numerical approximation of stochastic di�erential equa-

tions

In this section we present numerical solutions of a multi-dimensional stochastic

di�erential equation (SDE) following the results in [35], [36] and applying them in

econometric models for asset returns. The method consists in determining the drift

and di�usion coe�cients at grid points, and then to combine the time discretization

of the SDE with the discretization of the stochastic input-in our case the Wiener

process. We start with the description of the grid, which as we shall see will give us

an \almost" optimal approximation of the SDE.

On the interval [t

0

; T ] de�ne an equidistant grid H with points t

0

=

b

t

0

<

b

t

1

<

� � � <

b

t

bn

= T with step size

b

h. H will be the minimal set of time points at which va-

lues are available for the method, and

b

h will be the period between two neighbouring

observations in the past which in
uence the present drift and di�usion coe�cients

at any time. For any t 2 [t

0

; T ] we de�ne i

H

(t) := maxfi :

b

t

i

� tg as the number of

time steps

b

t one can go back into the past from t. As we shall see this is a standard

framework in the so called ARCH (GARCH) modeling of asset returns. We consider

a SDE where the drift and di�usion depend on the present and the past states:

(E) x(t)� x

0

=

Z

t

t

0

b(x; s)ds+

Z

t

t

0

�(x; s)dw(s)

=

Z

t

t

0

b(x; s)ds+

q

X

j=1

Z

t

t

0

�

j

(x; s)dw

j

(s);

t 2 [t

0

; T ]; x

0

2 IR

d

:

Here, w = (w

1

; : : : ; w

q

)

T

is a q-dimensional standard Brownian motion, and we

use the notations

b(x; s) := b

i

H

(s)

(x(s); x(s�

b

h); x(s� 2

b

h); : : : ; x(s� i

H

(s)

b

h));

�(x; s) = (�

1

(x; s); : : : ; �

q

(x; s))

:= �

i

H

(s)

(x(s); x(s�

b

h); x(s� 2

b

h); : : : ; x(s� i

H

(s)

b

h))

with b

�

2 C(IR

�+1)d

; IR

d

) and �

�

2 C(IR

�+1)d

;L(IR

q

; IR

d

)); � = 0; : : : ; i

H

(T ), where

�

�

j

2 C(IR

�+1)d

; IR

d

); j = 1; : : : ; q, denote the columns of the matrix function �

�

=

(�

�

1

; : : : ; �

�

q

). As usual, we denote by C spaces of continuous functions, by L spaces

of linear mappings, and by k � k the Euclidean norm on IR

n

(n 2 IN) and the corre-

sponding induced norm on L.

For a random variable � on a probability space (
; A; P ) with values in a sepa-

rable metric space (X; d) with the Borel �-algebra B(X), the notation D(�) mean

the distribution P � �

�1

of �. P (X) is the set of all Borel probability measures

(probabilities) on X.

For p 2 [1;1) we de�ne on the set

M

p

(X) :=

�

� 2 P (X) :

Z

X

d(x; �)

p

d�(x) <1; � 2 X

�
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a metricW

p

by

W

p

(�; �) := inf

�

Z

X�X

d(x; y)

p

d�(x; y)

�

1=p

(�; � 2M

p

(X))

where the in�mum is taken over all measures � 2 P (X �X) with marginal distri-

butions � and �. W

p

= d

p

is the L

p

-Wasserstein metric or L

p

-Kantorovich metric

(see (2)). We shall state the convergence results for a sequence of approximations

to the solution x of (E) in terms of W

p

, which is the \ideal" metric for this type of

approximation problems.

The approximate solution of x in (E) can be viewed as a framework for studying

asset pricing models known in ecometrics literature as Autoregressive Conditional

Heteroscedasticity (ARCH) or Generalized ARCH (GARCH) models. We give a

brief description of these models:

Consider an equidistant grid t

0

=

b

t

0

<

b

t

1

< � � � <

b

t

bn

= T with step size

b

h on

the time interval [t

0

; T ]. A univariate ARCH model is de�ned as a discrete time

stochastic process ("

b

t

i

)i = 0; : : : ; bn of the form

"

b

t

i+1

= b�

b

t

i

�

b

t

i

where b�

b

t

i

is a positive measurable function of the time points

b

t

0

;

b

t

1

; : : : ;

b

t

i

and the �

b

t

i

are i.i.d. r.v.s with zero mean and variance one. In a linear ARCH ( ) the variances

�

b

t

i

depend on the squares of the past  values of the process:

b�

2

b

t

i

:= ! +

 �1

X

r=0

�

r

"

2

b

t

i�r

whereas in the more general linear GARCH (�; ) they may also depend on the �

recent variances:

b�

2

b

t

i

:= ! +

 �1

X

r=0

�

r

"

2

b

t

i�r

+

�

X

r=1

�

r

b�

2

b

t

i�r

:

In these models it is assumed that ! > 0; �

r

� 0; �

r

� 0 for all r. One can

embed these models into the constructed approximation for the SDE (E). (see [36]).

We need the following general assumptions concerning (E):

(A1) There exists a constant M > 0 such that

for all j = 1; : : : ; q; � = 0; : : : ; i

H

(T ) and x

0

; : : : ; x

�

2 IR

d

kb

�

(x

0

; : : : ; x

�

)k �M(1 + maxkx

�

k) and

k�

�

j

(x

0

; : : : ; x

�

)k �M:

(A2) There exists a contant L > 0 such that

for all j = 1; : : : ; q; � = 0; : : : ; i

H

(T ) and x

0

; : : : ; x

�

; y

0

; : : : ; y

�

2 IR

d

kb

�

(x

0

; : : : ; x

�

)� b

�

(y

0

; : : : ; y

�

)k � L max

0����

kx

�

� y

p

k; and

k�

�

j

(x

0

; : : : ; x

�

)� �

�

j

(y

0

; : : : ; y

�

)k � L max

0����

kx

�

� y

p

k:
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(A1) and (A2) assure the existence and uniqueness of the solution of (E). The

boundedness of �

j

in (A1) seems to be essential for the proof of Theorem 2.11.

As mentioned above, the approximate solutions are based on a \double grid" { a

coarse grid for the time discretization and a �ne grid, for the chance discretizaiton

which yields a lower convergence speed than the time discretization. In fact, we

consider a grid class G(m;�; �). Here m : (0; T � t

0

] ! [1;1) is a monotone

decreasing function, and �; � > 0 are constants. Then each elementG of G(m;�; �)

consists of two kinds of grid points:

(i) the time discretization points t

k

; k = 0; : : : ; n; with t

0

< t

1

< � � � < t

n

= T and

(ii) the chance discretization points u

k

i

; i = 0; : : : ;m

k

; k = 0; : : : ; n � 1 with t

k

=

u

k

0

< u

k

1

< � � � < u

k

m

k

= t

k+1

; k = 0; : : : ; n� 1.

Now G is required to satisfy the following assumptions:

(G1) t

k

� t

k�1

=

T�t

0

n

=: h � 1 for all k = 1; : : : ; n and

b

h=h 2 IN,

(G2) 1 � m

k

� m(h)

�

for all k = 0; : : : ; n� 1,

(G3) u

k

i

� u

k

i�1

=

h

m

k

� �

h

m(h)

for all k = 0; : : : ; n� 1; i = 1; : : : ;m

k

.

Here (G1) means that the coarse grid is equidistant with step size h and contains

the master grid H. (G2) ad (G3) say that each interval of the coarse subgrid is sub-

divided in an equidistant way by the points u

k

i

, both the number of the subdivisions

and the step size of the full grid being bounded by functions of h.

For a grid G of G(m;�; �) we de�ne

[t]

G

:= t

k

and i

G

(t) := k; if t 2 [t

k

; t

k+1

); k = 0; : : : ; n� 1; and

[t]

�

G

:= u

k

i

if t 2 [u

k

i

; u

k

i+1

); i = 0; : : :m

k

� 1; k = 0; : : : ; n� 1:

We construct the approximate solution of (E) in three steps. The �rst step is a

pure time discretization. (Here only the coarse subgrid is involved.)

(E1) y

E

(t) = x

0

+

R

t

t

0

b(y

E

; [s]

G

)ds +

P

q

j=1

R

t

t

0

�

y

(y

E

; [s]

G

)dw

j

(s); t 2 [t

0

; T ].

In the second step, a continuous and piecewise linear interpolation of the trajec-

tories in (E1) between the points of the whole �ne grid yields the method (E2):

(E2) by

E

is continuous, and linear in the intervals (u

k

i�1

; u

k

i

], i = 1; : : : ;m

k

, k =

0; : : : ; n� 1, with by

E

(u

k

i

) = y

E

(u

k

i

); i = 0; : : : ;m

k

; k = 0; : : : ; n� 1.
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In the third step, the Wiener process increments over the �ne grid are replaced

by other i.i.d. r.v.s: Let � 2 P (IR) be a measure with mean value 0 and variance 1,

and let

f�

k

js

: j = 1; : : : ; q; s = 1; : : : ;m

k

; k = 0; : : : ; n� 1g

be a family of i.i.d. r.v.s with distribution D(�

0

11

) = �. Then we can de�ne the

following method (E3) yielding continuous trajectories which are linear between

neighbouring grid points:

(E3) z

E

(u

0

0

) = x

0

; and

z

E

(u

k

i

) = x

0

+

P

k�1

r=0

hb(z

E

; t

r

) + h

i

m

k

b(z

E

; t

k

)

+

P

q

j=1

h

P

k�1

r=0

q

h

m

r

�

j

(z

E

; t

r

)

P

m

r

s=1

�

r

js

+

q

h

m

k

�

j

(z

E

; t

k

)

P

i

s=1

�

k

js

i

for all i = 1; : : : ;m

k

; k = 0; : : : ; n� 1:

For this last step, the Wiener process w and the r.v.s �

k

ji

will have to be de�ned

anew on a common probability space.

According to the evolution of the method (E3) via (E1) and (E2), each step will

be represented by one convergence theorem, yielding then immediately the main

result given in terms of the W

p

-metric.

Theorem 2.11 Suppose (A1) and (A2) hold. Suppose also that p 2 [1;1) and

� 2 P (IR) has the properties:

Z

1

�1

xd�(x) = 0;

Z

1

�1

x

2

d�(x) = 1

and

Z

1

�1

e

tx

d�(x) <1 for all t with jtj � �; � > 0:

Moreover, let (w(t))

t2[t

0

;T ]

be a q-dimensional standard Wiener process and f�

k

ji

:

j = 1; : : : ; q; i = 1; : : : ;m

k

; k = 0; : : : ; n � 1g a set of i.i.d. r.v.s with distribution

D(�

0

11

) = �.

Then for the solution x of the SDE and its numerical analog (E3), we have the

following rate-of-convergence result:

W

p

(D(x);D(z

E

)) � Cfh

1=2

+

1 + lnm(h)

p

m(h)

g;

where C is an absolute constant.

The bound in Theorem 2.11 gives convergence rates with respect to h for the

method (E3) and for any grid sequence in G(m;�; �). These rates consist of two

summands, one depending on h and the other depending on m(h), representing the

rates of time and chance discretization, respectively. Obviously, it is not desirable

that one of both summands converges faster than the other for this would only

increase the costs in relation to the e�ect. Namely, if the second summand converged

faster than the �rst, this would mean that m(h) increases too fast and consequently
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{ because of (G3) { to have too small step sizes of the whole �ne grid, i.e. to

have too many points u

k

i

in relation to the t

k

in each grid and, therefore, to use a

random number generator too often. If the �rst summand converged faster than the

second, then m(h) would increase too slowly, i.e. the intervals [t

k

; t

k+1

] would not

have enough intermediate grid points u

k

k

, so that the chance discretization would

not keep up with the time discretization. Therefore, it is desirable to tune the rates

of both summands, i.e. to equal the powers of h in both summands. This means to

choose m(h) to be increasing like 1=h.

Theorem 2.12 Under the assumptions in Theorem 2.11 and with

maxfsup

0<s�1

sm(s); sup

0<s�1

1

sm(s)

g � K we have:

W

p

(D(x);D(z

E

)) � C � h

1=2

(1� lnh):

This result is almost optimal; the right order-bound should be h

1=2

, see the

discussion in [36].

3 Mass-transshipment problems

3.1 Dual representation and topological properties

In this section we shall study the Kantorovich-Rubinstein mass-transshipment pro-

blem. This can be stated as follows: Given a topological space U , a Radon measure

� with total mass 0 on U , and a cost function c: U � U ! <, it is required to �nd

the minimum

�

C

c

(�) := min

Z

U�U

c(x; y)dQ(x; y) (29)

over the set D(�) of �nite nonnegative Borel measures Q on the product U � U ,

subject to the balancing condition �

1

Q� �

2

Q = �, i.e.

Q(B � U) �Q(U �B) = �(B) for all Borel sets B � U:

Recall that a �nite Borel measure � on S is called a Radon measure if it is inner

regular, i.e. �(B) = supP (C) where the supremum is taken over all compact sets

C � B. For any probabilities P

1

and P

2

on U with � := P

1

� P

2

�

C

c

(P

1

; P

2

) :=

�

C

c

(�)

is called the Kantorovich-Rubinstein functional. A relation between the Kantorovich

functional

C

c

(P

1

; P

2

) = min

�

Z

U�U

c(x; y)dQ(x; y) : �

1

Q = P

1

; �

2

Q = P

2

�

; (30)
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and the Kantorovich-Rubinstein functional

�

C

c

can be obtained in the following way.

For a symmetric cost function c(x; y) � 0, de�ne the reduced cost function

ec(x; y) = inf

(

n�1

X

i=1

c(x

i

; x

i+1

);n 2 IN; x

i

2 U; x

1

= x; x

n

= y

)

; (31)

ec(x; y) is the minimal cost of a transshipment from x to y which is carried out in

several steps. Obviously, ec(x; y) � c(x; y) and ec satis�es the triangle inequality:

ec(x; y) � ec(x; z) + ec(z; y) for all x; y; z 2 U . Furthermore, ec is a (semi-)metric and

it is obviously the largest (semi-)metric dominated by c. By a slightly modi�ed

form of Theorem 2.2 for the case of a semi-metric cost function, C

ec

admits a dual

representation in the form of the Kantorovich metric

C

ec

(P

1

; P

2

) = sup

n

Z

U

fd(P

1

� P

2

) : f : U ! R bounded and continuous, and

f(x)� f(y) � ec(x; y);8x; y 2 U

o

:

Moreover, as we shall see later in this section

�

C

c

has the same dual representation

(under some regularity conditions on U and c) implying

�

C

c

(P

1

; P

2

) = sup

�

Z

fd(P

1

� P

2

) : f(x)� f(y) � c(x; y);8x; y

�

= sup

�

Z

fd(P

1

� P

2

) : f(x)� f(y) � ec(x; y);8x; y

�

= sup

�

�

�

�

Z

fd(P

1

� P

2

)

�

�

�

:

�

�

�

f(x)� f(y)

�

�

�

� ec(x; y);8x; y

�

= C

ec

(P

1

; P

2

): (32)

This gives a natural explanation of the relevance of

�

C

c

for transportation pro-

blems. A somewhat di�erent interpretation of

�

C

c

can be found in Kemperman

(1983) (multistage shipping). In linear programming the discrete analog is known

as the network 
ow problem. Kantorovich and Rubinstein (1957) studied a modi-

�cation with exactly n-stages of transportation. In terms of r.v.s we may also give

the following representation:

�

C

ec

(P

1

; P

2

) = C

c

(P

1

; P

2

)

= inffEec(X

1

;X

2

) 8pairs of r.v.s (X

1

;X

2

) with marginals P

1

= P

X

1

and P

2

= P

X

2

g

= inffE[c(X

1

;X

2

) + c(X

2

;X

3

) + : : :+ c(X

n�1

;X

n

)] : 8 r.v.s X

1

; : : : ;X

n

with

P

X

1

= P

1

; P

X

n

= P

2

and P

X

i

arbitrary for 2 � i � n� 1g

= inf

�

Z

c(x; y)Q(dx; dy);Q 2 D(P

1

� P

2

)

�

; (33)
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where Q =

n�1

X

i=1

P

X

i

;X

i+1

. Obviously

�

C

c

is a semi-metric on P(U) if c is symmetric.

If c(x; y) = d

p

(x; y), p > 1, U = <

k

, then ec(x; y) = 0 and, therefore,

�

C

c

(P

1

; P

2

) = 0.

This indicates a striking di�erence between C

c

and

�

C

c

. The duality theorem for the

Kantorovich-Rubinstein problem

�

C

c

(P

1

; P

2

) =

sup

n

Z

fd(P

1

� P

2

); f : U ! <

1

f(x)� f(y) � c(x; y);8x; y 2 S

o

(34)

has been proved by Kantorovich in [45] for the case that S is compact and c is

continuous. In [53] this result is proved for the case that U is homeomorphic to a

Baire subset of a compact space, c : U � U ! (�1;1] is bounded from below, for

all � the sets f(x; y) 2 U � U ; c(x; y) � �g are analytic, i.e. are the projection of a

Borel set in (U � U) � Y for a Polish space Y and

�

C

c

= lim

N!1

C

�

c^N

.

Finally, a strengthened version of the duality theorem for symmetric, nonnegative

cost functions c(x; y) on a separable metric space (U; d) is given in [77] under the

following boundedness and continuity conditions:

C.1 c(x; y) = 0 if x = y,

C.2 c(x; y) � �(x) + �(y);8x; y, for some � : U ! <

+

mapping bounded sets into

bounded sets,

C.3 supfc(x; y);x; y 2 B

�

(a); d(x; y) � �g ! 0 as � ! 0 for each a 2 U;B

�

(a) the

�-ball with center a.

De�ning

kfk

c

:= sup

�

jf(x)� f(y)j

c(x; y)

;x 6= y

�

for f : U ! <, the following strengthened representation holds:

�

C

c

(P

1

; P

2

) = sup

�

�

�

�

Z

fd(P

1

� P

2

)

�

�

�

; kfk

c

� 1

�

= sup

�

Z

fd(P

1

� P

2

); f(x)� f(y) � c(x; y);8x; y

�

; (35)

assuming

R

jxjdP

i

(x) <1; i = 1; 2. While obviously in general

�

C

c

(P

1

; P

2

) � C

c

(P

1

; P

2

);

it follows that for c(x; y) = d(x; y); C

d

(P

1

; P

2

) =

�

C

d

(P

1

; P

2

).

The cost function

c

p

(x; y) = d(x; y)max

�

1; jy � aj

p�1

�

; p � 1; x; y 2 <;

25



satis�es C.1 - C.3. From the above dual representation for

�

C

c

one obtains the explicit

representation

�

C

c

p

(P

1

; P

2

) =

Z

1

�1

max

�

1; jx� aj

p�1

�

jF

1

(x)� F

2

(x)jdx; (36)

where the F

i

are the distribution functions (d.f.s) of P

i

. Except for p = 1, an optimal

measure Q

�

satisfying

Z

c

p

(x; y)Q

�

(dx; dy) =

�

C

c

p

(P

1

; P

2

)

is not known. For p � 1

�

C

c

p

is identical to the Fortet-Mourier metric (cf. [69])

FM

p

(P

1

; P

2

) = sup

�

�

�

�

Z

U

fd(P

1

� P

2

)

�

�

�

; f 2 C

p

�

; (37)

where

C

p

=

�

g : U! <

1

; sup

r�1

r

1�p

sup

�

jg(x)� g(y)j

d(x; y)

; x 6= y; d(x; a) � r; d(y; a) � r

�

� 1

�

:

Inequalities between the L

p

-minimal metric l

p

= C

1=p

c

p

, the Fortet-Mourier metric

�

C

c

p

and other metrics on P(U) are studied in [69]. In particular for any P

0

2

P(U);D(P

0

; l

p

) := fP 2 P(U); l

p

(P;P

0

) < 1g is l

p

-complete and for P

0

= �

a

the

following convergence criterion holds in D(�

a

; l

p

):

l

p

(P

n

; P )! 0,

�

C

c

p

(P

n

; P )! 0

, P

n

! P (weakly) and

Z

d

p

(x; y)(P

n

� P )(dx)! 0: (38)

For P

0

6= �

a

, no corresponding characterization is known.

3.2 Explicit representation

In the one dimensional case the explicit representation of the Kantorovich-Rubinstein

functional in (36) has been extended to the following general result in [75].

Theorem 3.1 Assume that c(x; y) = jx�yj�(x; y); x; y 2 <

1

and that for x < t < y

�(t; t) � �(x; y) holds. Furthermore, assume that �(x; y) is symmetric, continuous

on the diagonal and t! �(t; t) is locally bounded, then under the conditions of the

duality theorem

�

C

c

(P

1

; P

2

) =

Z

�(t; t)jF

1

(t)� F

2

(t)jdt (39)

It is interesting to note that the solution (39) depends only on the behaviour

of the cost function on the diagonal. There are indications that an exact optimal

transshipment plan does not exist for these kind of problems (cf. [10]). In the

multivariate case an analogous explicit result has been obtained in [54] for the case

of di�erentiable cost functions.
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Theorem 3.2 Suppose that U is a domain in <

n

and c : U � U ! <

1

a bounded

function with analytic level sets fc � �g; c(x; x) = 0;8x 2 U , c being continuously

di�erentiable in some open neighbourhood of the diagonal. If

�

C

c

(P

1

; P

2

) > �1

then

�

C

c

(P

1

; P

2

) =

Z

u

0

d(P

1

� P

2

) (40)

with u

0

(x) =

R


(x

0

;x)

grad

�

c(�; �)j

�=�

d�, where 
 is a piecewise smooth curve from x

0

to x.

Again the optimal value depends only on the gradient grad

�

c(�; �) of the cost

function c = c(�; �) at the diagonal � = �. The di�erentiability of c at the diagonal

is crucial for the derivation of this result. It excludes the important case c(x; y) =

kx� yk.

In [54] the following upper bound for the transportation cost has been found.

Theorem 3.3 Let c

p

(x; y) = kx � yk

p

= (

P

jx

i

� y

i

j

p

)

1=p

; x; y 2 <

n

, then for

probability measures P

1

; P

2

with Lebesgue densities f; g,

a)

�

C

c

p

(P

1

; P

2

) �

Z

<

n

kyk

p

jI

H

(y)jdy (41)

holds, with h := f � g and I

H

(y) :=

R

1

�

t

�(n+1)

h(

y

t

)dt;

b) If there exists a continuous function g : <

n

! <

1

almost everywhere di�eren-

tiable and satisfying

rg(y) = (sgn (y

i

I

H

(y))) a:s: for p = 1

rg(y) =

�

sgn (y

i

I

H

(y))

�

jy

i

j

kyk

q

�

q=p

�

for p > 1

(42)

then in (41) the equality holds.

Condition (42) is ful�lled in dimension one. A simple su�cient condition in the

case p = 1 for (42) is I

H

� 0 a.s. which is a stochastic ordering condition. From the

derivation it seems that the bound in (41) in the case p = 2 should be much sharper

than the classical inequality

C

�

c

2

(P

1

; P ) � 4

Z

kyk

2

jf(y)� g(y)jdy (43)

due to Zolotarev [95].

3.3 Applications of the Kantorovich-Rubinstein problem

From the series of applications of the Kantorovich-Rubinstein theorem we single out

two recent types, one in the �eld of mathematical economics and the other in the

�elds of representations of metrics as minimal metrics.
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3.3.1 Utility functions

Let (S;�) be a topological space with closed preorder �, i.e. f(x; y);x � yg is closed

in S � S. De�ne the strict order relation x � y if x � y and if not y � x and call

an isotone function u : S ! <

1

a utility function if x � y implies u(x) < u(y). A

fundamental result in mathematical economics due to Debreu asserts the existence

of a continuous utility function for a closed, total preorder on separable metrizable

space. It is not di�cult to show that the assumptions that S is metrizable and

separable, and the preorder is closed cannot be abandoned. The following result

proved in [53], [55] shows that the restricting assumption that the preorder is total

can be omitted for locally compact spaces.

Theorem 3.4 (Utility Representation)

Let (S;�) be a separable, metrizable locally compact space with a closed semiorder

�, then S admits a continuous utility function.

For the proof, the duality theorem is used to establish the following extension

theorem (cf. [53]):

Suppose that S is compact, F � S is closed and c is lower semicontinuous,

such that v(x) � v(y) � c(x; y) for x; y 2 F and some v 2 C(F ). Then, a

continuous extension of v to S exists with v(x) � v(y) � c(x; y) for x; y 2 S if

c

0

(x; y) := minfc(x; y); a

v

(x) � b

v

(y)g is lower semicontinuous, on S � S, where

a

v

(x) := inffv(z) + c(x; z); z 2 Fg, b

v

(x) := supfv(z)� c(x; z); z 2 Fg.

The following parametrized version of this result has also been established in

[53].

Theorem 3.5 If S is metrizable, separable locally compact, 
 is a metrizable topo-

logical space and for ! 2 
, �

!

is a preorder on S such that f(!; x; y);x �

!

yg is

closed in 
�S�S, then there exists a continuous utility function u : 
�S ! [0; 1].

3.3.2 Minimal representation of metrics

An important property of a probability metric is the possibility of �nding a minimal

representation of it. Consider for example

�(P

1

; P

2

) =

Z

<

1

jF

1

(x)� F

2

(x)jdx;

for the probability measures P

i

on <

1

, i = 1; 2.

Then � has the representation

�(P

1

; P

2

) = l

1

(P

1

; P

2

) := inffEjX � Y j;X

d

= P

1

; Y

d

= P

2

g

as a minimal l

1

-metric.

This representation allows us to obtain rate of convergence results in limit theo-

rems for the �-metric based on the inherent regularity structure of minimal metrics.

A further example is the representation of the Fortet-Mourier metric (cf. (37)).
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The metric

�

n

(P

1

; P

2

) :=

Z

1

�1

�

�

�

�

Z

x

�1

(x� t)

n�1

(n� 1)!

(P

1

� P

2

)(dt)

�

�

�

�

dx

was introduced by Zolotarev [95]. It is an ideal metric of order n. For n = 1,

�

1

= l

1

but for n > 1, �

n

does not allow a representation as a minimal metric with

respect to a Monge-Kantorovich transportation problem. A representation for �

n

as a minimal metric with respect to a Kantorovich-Rubinstein type problem has,

however, recently been found in [68].

For a signed Borel measure m on <

k

with m(<

k

) = 0, with �nite n-th moments

and with

R

(x

1

: : : x

k

)

j

m(dx) = 0; j = 1; : : : ; n, de�ne the signed measure m

n

as

m

n

 

n

Y

j=1

(�1; x

j

]

!

=

Z

x

1

�1

� � �

Z

x

k

�1

k

Y

i=1

(x

i

� t

i

)

n

n!

m(dt

1

; : : : ; dt

k

)

for x

j

� 0 and by the corresponding \survival function" for components x

j

� 0.

m

n

 

Y

j2J

(�1; x

j

]�

Y

j2J

c

[x

j

;1)

!

=

Z

(�1;x

J

]

Z

[x

J

c

;1)

Y

j2J

(x

j

� t

j

)

n

n!

Y

j2J

c

(t

j

� x

j

)

n

n!

m(dt

1

; : : : dt

k

)

where x

j

= (x

j

)

j2J

� 0 and x

J

c

= (x

j

)

j2J

c

> 0. Also denote B

n

(m) := fb; b a non-

negative Borel measure on <

k

�<

k

with b(A�<

k

)� b(<

k

�A) = m

n

(A) for all Ag.

Then any b 2 B

n

(m) has an absolutely continuous marginal di�erence measure

4b = b(� � <

k

)� b(<

k

� �) with

@

(n�1)k

@x

(n�1)

1

: : : @x

(n�1)

k

p

4b

(x) = F

m

;

where p

4b

is the density of 4b, and F

m

the distribution function of m.

One can now introduce a version of the Kantorovich-Rubinstein norm

kmk

n

:= inf

�

Z

cdb; b 2 B

n

(m)

�

:

The following duality theorem holds (see [68]).

Theorem 3.6 The norm kmk

n

is given by kmk

n

=supfj

R

fdmj; f 2 L

n

g, where L

n

is the class of n-th integrals g

n

(x) :=

R

x

0

Q

(x

j

�t)

n�1

(n�1)!

g(t)dt of Lipschitz functions g.

In the case k = 1 and for the cost function c(x; y) = jx � yjmax(h(jx � aj),

h(jy � aj)), h an increasing function on t � 0, h(t) > 0, this leads to

kmk

n

=

Z

<

1

�

�

�

�

Z

x

�1

(x� t)

n

n!

dF

m

(t)

�

�

�

�

h(jx� aj)dx:
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In particular, we obtain a minimal representation for the �

n

-metric; namely, if

c(x; y) = jx� yj; x; y 2 <,

�

n

(P

1

; P

2

) = kP

1

� P

2

k

n

:

If c(x; y) = jx� yj; x; y 2 <

k

(k � 1),

Z

k;n

(X;Y ) := kP

X

� P

Y

k

n

is an ideal metric of order kn+1. This dependence of the order of the ideality upon

the dimensionality may be considered as a drawback of Z

k;n

. In [40], [41] a di�erent

approach was proposed leading to the following dual representation for ideal metrics

of order r > 0 independent of the dimensionality of <

k

. For a given � 2 IN, and any

s � �, let M

�

s

be the set all signed Borel measures � on <

n

such that

Z

<

n

x

�

1

1

� � � x

�

n

n

d�(x

1

; : : : ; x

n

) = 0 and

Z

jxj

s

dj�j(x) <1

for every multiple index � = (�

1

; : : : ; �

n

) 2 ZZ

n

+

such that �

1

+ : : :+ �

n

� k � 1.

Next, let �

�

be the set of signed Borel measures 	 on <

2n

, viewed as \transship-

ment plans", satisfying the balancing condition

Z

<

n

fd� =

Z

<

2n

4

k

h

f(x)d	(x; h);

where

4

k

h

f(x) =

k

X

i=0

(�1)

k�i

(

k

i

)f(x+ ih)

is the k-th di�erence of f with step h for x; h 2 <

n

. De�ne the following minimal

functional on M

�

r

k�k

k;r

= inf

 2�

�

Z

khk

r

dj	j(x; h):

To state the dual representation for k�k

k;r

let �

k

r

be the set of all locally bounded

functions f on <

n

such that for some C � 0; j4

k

h

f(x)j � Ckhk

r

over all x; h 2 <

n

.

�

k

r

is endowed with the seminorm kfk

�

k

r

= inf C. In [40], [41] the following duality

theorem is proved:

Theorem 3.7 Let n 2 IN; k 2 IN; s = n+ k � 1 and �� 1 < r � k. Then for every

� 2M

�

r

k�k

k;r

= sup

�

Z

<

n

fd� : kfk

�

k

r

� 1

�

:

Moreover, the above supremum is attained; there is an f 2 �

k

r

with kfk

�

k

r

= 1 such

that k�k

k;r

=

R

fd�.
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The minimal functional k�k

k;r

de�nes an ideal metric of order r regardless of the

dimensionality on <

n

. In fact, let K

r

(P;Q) be the analog :

K

r

(P;Q) = sup

�

�

�

�

Z

<

n

fd(P �Q)

�

�

�

: kfk

�

k

r

� 1

�

:

of the Kantorovich metric on <

n

. From Theorem 3.7 one can easily check the

following:

(i) K

r

is an ideal metric of order r and, for k � 1 < r � k, �

r

� c

1

K

r

� c

2

�

r

for

some positive constants c

1

and c

2

;

(ii) if P �Q 2M

�

n+k�1

, then K

r

(P;Q) admits the dual representation

K

r

(P;Q) = kP �Qk

k;r

and moreover,

K

r

(P;Q) � A

Z

<

n

kxk

r

djP �Qj(x) <1:

3.3.3 Stability of stochastic programs

In this part we study the stability of the following stochastic optimization problem:

P (�) : min

�

Z

IR

s

f(x; z)�(dz) : x 2 C

�

where f : IR

m

� IR

s

! IR := IR [ f�1;+1g is a normal integrand (i.e. f(�; z) is

lower semicontinuous, for all z 2 IR

s

, and f is Borel measurable), f(�; z) is continuous

on C;8z 2 �;C � IR

m

is nonempty, closed and � is a Borel probability measure on

IR

s

. The optimal value of P (�) is de�ned by

'(�) := inf f

Z

IR

s

f(x; z)�(dz) : x 2 Cg;

and the corresponding solution set is

 (�) := argmin f

Z

IR

s

f(x; z)�(dz) : z 2 Cg;

see [80], [81] and the references therein. Typically the probability � is incompletely

determined.

We start with an example of an \ideal" metric

1

for studying quantitative stability

of P (�). Let (Z; d) be a separable metric space, P (Z) the set of all Borel probability

1

The results in this section represent the main part of the lecture \Quantitative Stability of

Stochastic Programs via Probability Metrics", by S.T. Rachev and W. R�omisch given at the 3rd

Int. Conf. on \Approximation and Optimization" in the Caribbean, Puebla (Mexico), Oct. 8-13,

1995.
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measures on Z and � 2 Z a �xed element playing the role of an \origin". For any

h : Z ! IR and any r > 0, de�ne the Lipschitz norm:

Lip

h

(r) := sup

�

jh(z)� h(ez)j

d(z; ez)

: z 6= ez; d(z;�) � r; d(ez;�) � r

�

:

Given a nondecreasing function H : IR

+

! IR

+

with H(0) = 0 de�ne the semi-

norm of h as

khk

H

:= supf Lip

h

(r)(maxf1;H(r)g)

�1

: r > 0g:

Now we are ready so de�ne the Fort�et-Mourier metric

FM

H

(P;Q) := sup

�

�

�

�

�

Z

Z

h(z)(P �Q)(dz)

�

�

�

�

: khk

H

� 1

�

in

P

H

(Z) :=

�

P 2 P (Z) :

Z

Z

c

H

(z;�)P (dz) <1

�

;

where c

H

(z;�) = d(z;�)maxf1;H(d(z;�))g. The Fort�et-Mourier metric arises in

a natural way from the Kantorovich-Rubinstein Mass-Transshipment problem:

FM

H

(P;Q) = inf

�

Z

Z�Z

c

H

(z; ez)�(dz; dez) : � 2 D(P;Q)

�

for any P;Q 2 P

H

(Z), where D(P;Q) denotes the set of all bounded Borel measures

� on Z � Z satisfying the \balancing" constraint �(� � Z)� �(Z � �) = (P �Q)(�).

If the function H satis�es the property

�

H

:= sup

t6=s

j tmaxf1;H(t)g � smaxf1;H(s)g j

j t� s j maxf1;H(t);H(s)g

<1;

then

FM

H

(P

n

; P )! 0 for P

n

; P 2 P

H

(Z)

if and only if (P

n

) converges weakly to P and

R

Z

c

H

(z;�)(P

n

� P )(dz) ! 0 (cf.

Corollary 4.3.4 in [69]). For example, �

H

< 1 is valid for H(t) = t

a

; a > 0: On

the real line Z = IR; d(z; ez) =j z � ez j, the Fort�et-Mourier metric admits an explicit

representaiton (Theorem 5.4.1 in [69], see also [70]).

FM

H

(P;Q) =

Z

1

�1

H(j z �� j) j F

P

(z)� F

Q

(z) j dz;

where F

P

denotes the distribution function of P.

In the next theorem, we use the Fort�et-Mourier metric to evaluate the stability

of P (�) with respect to perturbations of the original distribution P .

Theorem 3.8 Let H : IR

+

! IR

+

be a nondecreasing function with H(0) = 0; P 2

P

H

(IR

s

) and  (P ) be nonempty and bounded. Assume that
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(i) the function f(�; �) is convex for each � 2 IR

s

, and

(ii) there exists an open, bounded subset V of IR

m

and a constant L

0

> 0 such that

 (P ) � V and

jf(x; �) � f(x;

e

�)j � L

0

maxf1;H(maxfk�k; k

e

�kg)g k� �

e

�k

whenever x 2 V and �;

e

� 2 IR

s

:

Then the solution set mapping  from (P

H

(IR

s

); FM

H

) is upper semicontinuous

at P and there exist constants L > 0 and � > 0 such that

j '(P ) � '(Q) j� FM

H

(P;Q) whenever Q 2 P

H

(IR

s

); FM

H

(P;Q) < �:

The stability results can be applied to the empirical analysis of P (�): Consider

for example the approximation of P (�) by its sample version

P

n

(�) : min

(

F

n

(x) =

1

n

n

X

i=1

f(x; �

i

) : x 2 C

)

;

where (�

i

) are i.i.d. copies of �. Let ' and '

n

denote the optimal values of P (�) and

P

n

(�), respectively, and let  and  

n

denote the corresponding solution sets. App-

lying the rate-of-convergence results for empirical measures in terms of the Fort�et-

Mourier metric (see [69]), Theorem 3.8 provides bounds for the distance between

' and '

n

. The stability analysis can then be used to estimate the sensitivity of a

portfolio of asset returns having minimal risk with preassigned mean returns.

4 Transportation problems with additional or re-

laxed constraints

Several modi�cations of the transportation problem have been studied allowing

bounds for the admissible supply and demand distributions, or capacity constraints

for the admissible transportation plans (cf. [75]). Let P

1

; P

2

be probability measures

on <

1

with distribution functions (d.f.s) F

1

; F

2

and let F(F

1

; F

2

) denote the class of

joint d.f.s F with marginals F

1

; F

2

. The classical Hoe�ding-Fr�echet characterization

of F(F

1

; F

2

) states that a d.f. F is in F(F

1

; F

2

) if and only if

F

�

(x; y) := (F

1

(x) + F

2

(y)� 1)

+

� F (x; y) � minfF

1

(x); F

2

(y)g =: F

+

(x; y): (44)

If c(x; y) satis�es the \Monge" conditions, i.e. c is right continuous and

c(x

0

; y

0

)� c(x; y

0

)� c(x

0

; y) + c(x; y) � 0 for x

0

� x; y

0

� y; (45)
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then for all F 2 F(F

1

; F

2

)

Z

cdF

+

�

Z

cdF �

Z

cdF

�

: (46)

An equivalent form in terms of the random variables X;Y with F

X

= F

1

; F

Y

= F

2

is

Ec

�

F

�1

1

(U); F

�1

2

(U)

�

� Ec(X;Y ) � Ec

�

F

�1

1

(U); F

�1

2

(1� U)

�

(47)

where U is uniformly distributed on (0; 1) and F

�1

i

(u) = inffy : F

1

(y) � ug is the

generalized inverse of F

1

(the quantile function).

Consider for given d.f.s F

1

; F

2

the set

H(F

1

; F

2

) := fF ;F is a d.f. on <

2

with marginals

f

F

1

;

f

F

2

; where

f

F

1

� F

1

;

f

F

2

� F

2

g

(48)

with bounds on the marginal d.f.s.

We study the transportation problem:

minimize

Z

c(x; y)dF (x; y); subject to F 2 H(F

1

; F

2

); (49)

or, equivalently,

minimize Ec(X;Y ); subject to F

X

� F

1

; F

Y

� F

2

: (50)

Theorem 4.1 (cf. [75])

Suppose that c(x; y) is symmetric, c satis�es the Monge condition (45) and c(x; x) =

0 for all x and de�ne H

�

(x; y) := minfF

1

(x);maxfF

1

(y); F

2

(y)gg, then H

�

2 H(F

1

; F

2

)

and H

�

solves the relaxed transportation problem (49). Furthermore,

Z

cdH

�

=

Z

1

0

c

�

F

�1

1

(u);min

�

F

�1

1

(u); F

�1

2

(u)

��

du:

We remark that Theorem 4.1 suggests a greedy algorithm for the solution of the

corresponding discrete transportation problem:

minimize

P

n

i=1

P

n

j=1

c

ij

x

ij

subject to: x

ij

� 0

P

j

s=1

P

n

r=1

x

rs

�

P

j

s=1

b

s

=: G

j

P

j

r=1

P

n

s=1

x

rs

�

P

i

r=1

a

r

=: F

i

(51)

where the sum of the \demands"

P

n

s=1

b

s

equals the sum of the \supplies"

P

n

r=1

a

r

.

We assume that the (c

ij

) are symmetric, c

ii

= 0 and c satis�es the discrete Monge

condition

c

i;j

+ c

i+1;j+1

� c

i;j+1

� c

i+1;j

� 0: (52)

The restrictions describe production and consumption processes based on priorities

with capacities s

1

; : : : ; s

n

such that what remains in stage i of the production (or
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consumption) process can be transferred to some of the subsequent stages i+1; : : : ; n.

The proposed greedy algorithm for this problem is as follows. Denote H

i

:=

maxfF

i

; G

i

g; 1 � i � n; �

1

:= H

1

; �

i+1

:= H

i+1

�H

i

; i � n�1, then (51) is equivalent

to the standard transportation problem

minimize

PP

c

ij

x

ij

subject to

P

n

j=1

x

ij

= a

i

;

P

n

i=1

x

ij

= �

j

; x

ij

� 0;

(53)

and the North-West corner rule applied to these new equality restrictions solves

(51). For a detailed example and comparison cf. [75].

For a second example, let � be a �nite Borel measure on the plane and for any

two probabilities P

1

and P

2

on <

1

and A

i

�B

i

2 B

2

; i 2 I de�ne

M

�

(P

1

; P

2

) := fP 2 M(P

1

; P

2

);P (A

i

�B

i

) � �(A

i

�B

i

); i 2 Ig; (54)

the class of transportation plans with upper bounds on the capacity of sets A

i

�B

i

.

By sharpness of the classical Fr�echet bounds (cf. [83])

minfP (A

i

�B

i

);P 2M(P

1

; P

2

)g = maxfP

1

(A

i

) + P

2

(B

i

)� 1; 0g (55)

we impose the necessary assumptions

�(A

i

�B

i

) � max(0; P

1

(A

i

) + P

2

(B

i

)� 1) (56)

in order to avoid trivial cases.

Theorem 4.2 (cf. [63], [75]) De�ne

P

�

(A�B)= min

(

inf

A

i

�A

B

i

�B

f�(A

i

�B

i

) + P

1

(AnA

i

) + P

2

(BnB

i

)g;minfP

1

(A); P

2

(B)g

)

;

(57)

then the generalized upper Fr�echet bound

h

�

(A�B) := sup fP (A�B);P 2M

�

(P

1

; P

2

)g

satis�es

a) h

�

(A�B) � P

�

(A�B),

b) If P

�

de�nes a measure, then P

�

2M

�

(P

1

; P

2

) and h

�

(A�B) = P

�

(A�B),

c) If fA

i

�B

i

; i 2 Ig = f(�1; x]� (�1; y];x; y 2 <

1

g, then P

�

de�nes a mea-

sure and the bound in a) is sharp.

Again, as in the �rst example, a greedy algorithm can be constructed for this

problem (cf. [75]). The (generalized) transportation problem can be considered as
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a (generalized) moment problem with in�nitely many moment type conditions spe-

cifying the marginal distributions. From this point of view some explicit moment

type problems have been considered with moment type conditions on the marginal

distribution functions. In [69] the problem of minimizing (maximizing)EkX

1

�X

2

k

p

is considered under the restrictions EkX

i

k

q

j

= a

ij

; i = 1; 2; j = 1; : : : ; n. This corre-

sponds to a weakening of the marginal constraints.

An interesting problem related with moment type marginal constraints is con-

sidered in [49]. The problem arises in the context of computer tomography. Let

Q

1

; Q

2

be probability measures on <

m

with identical marginal distributions in a

�nite number n of directions #

1

; : : : ; #

n

.

We ask what can be said about the closeness of Q

1

; Q

2

if they coincide in distri-

bution in an increasing number n of directions? It is known that with respect to the

supremum distance �, Q

1

; Q

2

may di�er considerably (this is known as \computer

tomography paradox"). In a recent paper [49] it was shown that this paradox disap-

pears when some weaker metrics like the �-metric and the L�evy-Prohorov distance

are used.

Consider the case m = 2, and de�ne

�(P;Q) := min

T>0

max

�

max

ktk�T

�

�

�

Z

e

iht;xi

(P �Q)(dx)

�

�

�

;

1

T

�

(58)

� metrizes the topology of weak convergence [49].

Theorem 4.3 (cf. [49])

Let P;Q be probability measures on <

2

which have the same marginals in directions

#

1

; : : : ; #

n

no two of which are collinear. Suppose, that P has support in the unit

disc, then

�(P;Q) �

�

2

s!

�

1

s+1

with s := 2

�

n� 1

2

�

: (59)

Note that the right hand side satis�es

�

2

s!

�

1

s+1

�

e

s

as s ! 1. The assumption

of coinciding marginals in directions #

1

; : : : ; #

n

can be replaced by the assumption

of coinciding moments up to order n� 1 in these directions, and compactness of the

support can be replaced by a Carleman type condition. De�ne

�

k

:= sup

#2S

1

Z

hx; #i

k

P (dx); k = 0; 1 : : :

�

s

:=

(s�2)=2

X

j=1

�

�

1

2j

2j

(60)

Theorem 4.4 If #

1

; : : : ; #

n

are not collinear directions in <

2

, P has moments of

any order and P;Qhave identical moments up to order n�1 in directions #

1

; : : : ; #

n

,

then for some absolute constant C

�(P;Q) � C�

�1=4

s

�

�

0

+ �

1=2

2

�

1=4

(61)
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For some extensions to higher dimensions and related results we refer to [50].

Finally we list some recent references of the Monge-Kantorovich problems in va-

rious areas of applied probability.

Acknowledgement: The authors would like to thank the editor and the reviewer

for many remarks and suggestions concerning the style and the presentation of the

paper.
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