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CONVERGENCE OF THE ITERATIVE PROPORTIONAL
FITTING PROCEDURE

By LUDGER RUSCHENDORF
Institut fiir Mathematische Stochastik, University of Freiburg

The iterative proportional fitting procedure (IPFP) was introduced in
1940 by Deming and Stephan to estimate cell probabilities in contingency
tables subject to certain marginal constraints. Its convergence and statis-
tical properties have been investigated since then by several authors and
by several different methods. A natural extension of the IPFP to the case
of bivariate densities has been introduced by Ireland and Kullback. It has
been conjectured that also in the general case the IPFP converges to the
minimum discrimination projection on the class of distributions with
given marginals. We verify this conjecture under some regularity condi-
tions.

1. Introduction. The adjustment of distributions to a priori known
marginals is a problem which has received a lot of attention from a variety of
probabilists and statisticians, and it has been realized that this problem has
some fundamental applications in various fields. The iterative proportional
fitting procedure (IPFP) is an algorithm to construct approximatively an
adjustment of this kind. It was introduced by Deming and Stephan (1940)
and it has been studied mainly in the finite discrete case. Its justification is
closely related to the Kullback-Leibler distance I, and it has been proved
that the IPFP converges to the I-projection on the set of distributions with
fixed marginals in the finite discrete case by several authors, including
Brown (1959), Bishop (1967), Sinkhorn (1967), Kullback (1968), Ireland and
Kullback (1968), Bishop and Fienberg (1969), Fienberg (1970), Haberman
(1974, 1984) and Csiszar (1975).

Generalizations to the continuous case of the IPFP have been introduced
by Ireland and Kullback (1968) and Kullback (1968) and, with modified
information on marginal moments, by Haberman (1984). However, a conver-
gence proof has remained an open problem since then.

The IPFP is analogous to the alternating projection algorithm (also called
the Gauss—Seidel algorithm or backfitting algorithm), which is one of the
fundamental numerical algorithms for solving systems of equations. While
the IPFP leads to multiplicative approximations, the alternation algorithm
produces additive approximations. It has been studied extensively after its
introduction by von Neumann (1950) and Aronszajn (1950) in the framework
of Hilbert spaces, and it has been extended to sup-norm and LP-norm
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ITERATIVE PROPORTIONAL FITTING 1161

approximation in spaces of continuous functions and LP*-integrable functions,
respectively, by Diliberto and Strauss (1951) and many others [cf. the survey
in Light and Cheney (1985)].

Both algorithms have found important applications in several fields, such
as contingency tables [cf. Haberman (1974)], tomography [cf. Hamaker and
Solmon (1978)], in ridge-type regressions models [ACE, cf. Breiman and
Friedman (1985), Stone (1985) and Buja, Hastie and Tibshirani (1989)], in
connection with Hoeffding’s decomposition [cf. Riischendorf (1985)], restricted
least squares estimation [cf. Dykstra (1983), page 838], probabilistic expert
systems [cf. Jirousek (1991)] and many others.

The IPFP constructs, in the limit to a probability measure u, a closest
probability measure » with given marginals », and v,. In the case that u is
unknown there is also a statistical version of this problem: based on a
sequence of data (X,,Y)),...,(X,,Y,) with distribution u, estimate the clos-
est probability » with marginals v;. A natural procedure is to use a (kernel-)
estimate @, of wu and then project i, to the set of distributions with
marginals »; and »,. Statistical properties of these estimators (consistency,
asymptotic normality and efficiency) have been considered in the literature
mainly in the discrete case [cf. Haberman (1974)]. In the continuous case an
adjustment to marginal moments and its statistical properties were discussed
in Haberman (1984).

Use of the Kullback-Leibler distance has been justified in the literature
from several viewpoints; for some general arguments see Good (1963). Its use
for multiplicative approximations of densities and density estimation, respec-
tively, is discussed in Huber (1985) and Friedman, Stuetzle and Schroeder
(1984). Schrédinger bridges have a justification in terms of a large-deviation
formula including the I-projection on a marginal class [cf. Riischendorf and
Thomsen (1993)]. It is well known that the Kullback—Leibler distance ap-
pears in asymptotics of maximum likelihood tests under a departure from the
correct model and is related to maximum likelihood estimators in log-linear
models [cf. Haberman (1974)].

The aim of this paper is to prove convergence of the IPFP to the I-
projection on the set of distributions with fixed marginals. It is interesting to
note that, for the related problem of determining the minimum distance
between two convex sets of probability measures w.r.t. I, convergence of the
corresponding alternation algorithm has been proved in great generality in
an interesting paper by Csiszar and Tusnady (1984) generalizing the classical
result of Cheney and Goldstein (1959) in metric spaces. Note that the set of
distributions with fixed marginals is the intersection of convex sets where one
marginal is fixed. In spite of this similarity the convergence of the IPFP
remained an open problem for a long time. For the proof of convergence we
use geometric properties of I established in Kullback (1959) and Csiszar
(1975) together with some intermediate consideration of a weaker topology,
namely, the topology of setwise convergence (r-topology). The case of un-
known u and the statistical properties of the estimators in this case are not
considered in this paper.
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2. The iterative proportional fitting procedure. Let (E,, &, ), i =
1,2, be two probability spaces; let u € M( u;, u,) be the class of p-measures
on the product (E,#) = ®(E,, &) with marginals u;, i = 1,2; and let », €
MY(E;, &) be probability measures continuous w.r.t. u, and with densities
r;=dv;/du;, i =1,2. Assume finally that p < u, ® u, with density A& =
dp/(dpy ® py). In this case we shall also use the notation u = A M1 ® .

The aim of the IPFP is to find in the limit an I-projection of u on
M(v,, v,), that is, a closest element of M(v,, v,) to u w.r.t. Kullback-Leibler
distance

dv
I(Vw) = flna dv.
For this purpose we assume generally in this paper (without mentioning it
further) that the following holds:
(A0) inf{I(vlp); v € M(vy, vy)} < .

Under assumption (A0), Riuschendorf and Thomsen (1993) proved that a
unique I-projection v* € M(v,, v,) exists and is of the form

(2.1) v¥* =a(x)b(y)p,
for some nonnegative functions a = a(x) > 0, b = b(y) > 0. Furthermore, a

and b are uniquely determined by the Schrédinger equations [arising from
the marginal condition v* € M(v,, v,)I:

a(x) [ h(%,)b(y) po(dy) = ry(2)[ p),
(2.2)
b(y) [ h(%, y)a(x) my(dx) = ro(¥)] ps).

From assumption (AQ) we conclude that

(2.3) I(v*|n) = [(Ina + Inb) dv* < =,

which implies that

(2.4) Ina +1Inb eF*(v*).

At this point it is natural to make the following assumption:
(A1) F =ZY(v)) 7Y (v,) L (v*) is closed.

By Kober’s criterion for closedness of sum spaces, assumption (Al) is equiva-
lent to

(2.5) [Ifegldv > c[Ifldvy,

for some ¢ >0andall fegeF, fog(x,y) =f(x)+ g(y) [cf. Rischendorf
and Thomsen (1993)]. In particular, (A1) implies that

(2.6) Ina € L'(v,), InbelLll(y,).
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The I-projection in (2.1) is the unique element v* in M(v,, v,) which has a
product density a(x)b(y) w.r.t. u. The aim of the IPFP is to construct the
I-projection v* by alternately matching one marginal distribution to the
target marginals v, and v,, that is, we construct a sequence u©@, u®, u®, ...
such that all elements in this sequence have a product density w.r.t. u, and
p@, u®, .. match the first marginal »;, while u®, u®,... have fitted the
second marginal v,. [Equivalently, we approximate solutions of equations
(2.2) by iteratively solving the first equation of (2.2) in a and then the second
equation of (2.2) in b, starting with some initial functions @, and b,,.

More explicitly, the IPFP is defined by the following recursion:

dv,
by=1, a0=r1=:i—;1-,
_ ro(y)
27 P = e Mg ()’
rl(x)

a(x) =
() = TR ) bu(3) ()
and, generally,

- ro(y)
(2 8) bn+1(y) - fh(x, y)an(x),uq(dx) ’
| — ri(x)
an+1(x) -

Jh(x, ¥) b, 1(y) ue(dy) '

Note that the recursion is well defined a.s. since a, =r; > O[v,;] and
h > 0[ ul], and, therefore, b, is well defined and b, = r, (ie., b, and r, have
the same support). This yields by induction that a; = ry, b; = r,, for all i.
Define the sequence of probability measures
(2.9) pem =qa ® b, u, perth =g ®b, ., u, n >0,

where a, ® b,(x,y) = a,(x)b,(y) and define the marginal densities of
a(x)b(y)uldx, dy) by

R(x,a,b) = a(x) [ h(x,5)b(y) pa(dy),
(2.10)
C(y,@,6) = b() [ (%, y)a(%) my(dx).

Then by definition we obtain for the marginals u{™ = ,( u™), where =; are
the projections on the ith component,

pe™ = m (1) = R(:,a,, b))y =1y py = vy,
@n+1) _
%) =v
(2.11) 2
@n+1) _
My = dq2,+1 M1,
/‘1'(22’1) =p2n Mo
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Where q2n+1 = an f bn+1(y)h(" y)/“('2(dy) = R(’ an’ bn+ 1) and p2n =
b, [a,(x)h(x, Iudx) = C(,a,,b,). This implies in particular that u®™
has correct first marginal v,, while u®"* has correct second marginal v,.

From the construction it is clear that u® is the I-projection of u on M(v,),
the measures with (correct) first marginalv,, u¥ is the I-projection of u® on
M(vy), u® is the I-projection of u® on M(v,) and so on.

In the finite discrete case E, = {1,...,n}, E, ={1,..., m}, w{GQ, )} = u, j,
v{(i, )} = v, ;, the problem and the IPFP-algorithm specializes to the familiar
case of contingency tables. If A =1 (e, w=pu; ® uy), then u® =r u,
u® =r; ® ry u and so we are done already after two steps. For examples like
w; = v; the uniform distribution on [0,1] and A,(x, y) = c;e ™Y, hy(x, y) =
co(1 + xy), we see using Maple or Mathematica that after about six steps the
marginal densities are close to the uniform distribution (cf. the final remarks
in Section 4). Note, however, some critical remarks in Haberman (1974)
indicating that the “speed” of convergence may be slow already in the discrete
case.

It is relatively easy to see that the marginals of u(® converge to the correct
ones.

PRrOPOSITION 2.1. The following hold:

@ ICuPlyvy) — 0, ICus|vy) — 0;
®) 1u — vl > 0, | 1§ — vyll > 0, where || || is the total variation dis-
tance.

ProoF. Since du®"/du®" Y =a,/a,_,,

a, a

@n)|,@n-1Y _ @n) _ n
(2.12) I( p®m|u@r=D) ]1nan_1d# flnan_ldvl.
Similarly, du®"*/du®™ =5, ., /b, and
b b
@2n+1)|,@2n)\ — n+l @n+1) _ ntl
(213)  I(p®O|uev) = [In b, du [In b, dv,.

From the “Pythagorean law” for the Kullback—Leibler distance I [cf.
Csiszar (1975), Theorems 2.3 and 3.14], we obtain

n
(219 I = 1(10) + 5 10009,
C =0
where u" == u and v* is the I-projection of w on M(v,, »,).

(a) From (2.14) we obtain that
(2.15) L IO P) < I(v*|p) <,
i=0

and, therefore,
(2.16) I( p®lut=b) > 0.
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This implies by the monotonicity theorem [cf. Liese and Vajda (1987)
Corollary 1.29] that
I( M(12n+1)|yl) — I(ﬂ-l( #‘(2n+1))|771( M(Zn))) < I( M(2n+1)|/~1'(2n)) - 0.

Similarly, I( uZ™|v,) — 0.
(b) This follows from part (a) and the well-known inequality

(2.17) IP - Qll < (2I( PIQ))">. 0

REMARK. From Proposition 2.1 it is clear that I(y|u(™) — 0 for some
v € MYE, %) implies that » € M(v,, v,), and from the Pythagorean law

(2.18) I(Wu™) = I(vlv*) + I(v*|u™)

(v* is the I-projection of u™ too!); therefore, v = v*. So the problem of
convergence of u(™ to the I-projection is equivalent to proving convergence of
w™. At this point the paper of Kullback (1968) is incomplete, since his
formula (2.30) only yields (in our terminology)

(2.19) | u¥+m) — M) >0 Vm,as N >,
which is not enough to imply convergence
(2.20) | u™ — vl > 0 for some v € M'(E,«).

[For this remark cf. also the paper of Csiszar (1975).]

3. Convergence of the IPFP. Convergence of the IPFP is established
in this section under various conditions. We introduce the following bounded-
ness assumption on A and v;:

(B1) For some 0 < ¢ < o, fh(x, YIv(dx) = ery(y)l pyl.

Condition (B1) is satisfied if, for example, for some function u, with
0<C~=fu1dV1<°°,

(3.1) h(x,y) = uy(2)ry(y)[ 1]
In particular, (B1) is satisfied if
(3.2) h/ry>c>0[ u].

THEOREM 3.1. If condition (B1) holds and if (In b,) C L*(v,) is uniformly
integrable, then the following hold:

(@) ICu™|u) = I(v*|p);
®) [ u™ = v*|| > 0 and I(v*|u™) - 0.

The uniform integrability condition on (In 6,) € L'(v,) is ensured by the
following conditions:

(B2) 0<c<a/ry<C <»forsome0 <c¢<C <o
(B3) 0<c<h(x,y)/ry(y) <C <o forsome 0 <c<C <,
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PROPOSITION 3.2.

(a) Condition (B3) implies (B2).
(b) The conditions In b € L'(v,) and (B2) imply that (Inb,) C L(v,) is
uniformly integrable.

Note that by (2.6) the condition In b € L'(v,) is implied by condition (A1).
A direct criterion for condition (A1) is given in the following proposition (for
some further criteria cf. Riischendorf and Thomsen (1993)], using the follow-
ing condition:
(B4) h(x,y) = c(rx)/a(x)v(y) pu; ® wuyl, for some function v > 0 with
f vdpy > 0.

ProPOSITION 3.3.

(a) Condition (B4) implies (Al).
(b) Condition (B3) implies (B4) and (B1).

Altogether, we have established the following sequence of relations:

(B3) —» (B4) — (Al) » (Inb € LY);
(B3) - (B1), (B2) and (B3) - ((In b,) is u.i.).

As corollary we obtain the following convergence result.

COROLLARY 3.4. Under condition (B3) or under conditions (Al), (B1) and
(B2), the IPFP (™) is convergent to the I-projection v* in total variation and
also I(v*|u™) - 0.

A modification in the steps of the proofs allows us to obtain a convergence
result under a condition weaker than (B3). The statement of Theorem 3.1 and
the following propositions remains useful, since they allow us to modify the
assumptions and are also used in the proof of the following theorem.

THEOREM 3.5. If h/r, >c > O ul, then the IPFP (™) converges to the
I-projection v* in total variation and also I(v*|u™) — 0.

4. Proofs and final remarks. For the proof of Theorem 3.1 we need to
bound the “variation” of b, and a,, respectively.
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LEmMMA 4.1. For all n € N, the following hold:

(@ [Ina,dv, + [Inb, dv, < I(v*|p) <
(b) [(Inab — Ina,b,)dv* < I(v*|u) < x;
(¢) under condition (Al),

supf Inbd,ldvy < o,

(4.1) *
supf Ina,l dv, <.

n

Proor. (a) From (2.14) we conclude that

n
(4.2) Y I(p@p D) < I(v*lp) VYV neN.
i=0
Therefore,
2n ) )
Y I( ]l D) = [fln dv, ]
i=0

= flnandv1 + flnbndvz
<I(v*lu) <.

(b) This follows from (2.14).

(c) From (2.14), In ab € £ (v*) (ab is synonymous for a ® b), and from
part (b) we conclude that In ab — In a,b, € £ (v*) and [ |In ab —
Ina,b,ldv* < I(v*|u) + ¢y, for some constant c [cf. the corresponding argu-
ment in Liese (1975)]. Therefore,

(43) [Ina,b,ldv* < [Ilnabldv* + f|1n ab —Ina,b,|dv*
< 2I(v*|u) + 2¢,.

From assumption (A1) we conclude that
f IIn a,|dv, < c(I(v*lp) + c),

flln b,ldvy < c(I(v*|u) + co). O

LEMMA 4.2. For all n € N, the following hold:

@ I(u®M\w) = [Ina,dv, + [Inb(b,/b,. ) dv,.
®) I(u?**Vy) = [Ina,a,/a,. ;)dv, + [Inbd, dv,.
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Proor.
I(u®Plp) = [In(a,b,) du® = [Ina, du@” + [Inb, dug™

= [Ina,dv, + [Inb b g

n
bn+1

by (2.12) and (2.13).
(b) The proof of part (b) is similar. O

Next we have

LeMMA 4.3. Under condition (B1) the following hold v;a.s.:

dM(lZn—l) 1 dM(22n)
4.4 —_— > —, < ln.
(4.4) ar, . v, ¢ foralln

ProoF. Condition (B1) is equivalent to b,/b; < ¢ a.s. Observe that
bn fhan d/‘l‘l Ap_1 fhbn d/‘l‘2
= an = .
byir  [ha, ydp, an, [hb, 1 du,

Therefore,
a1 _ Jhb1(bo/by) dpy ﬁ _ Jhay(a,/ay) dpy

<c¢ an <c
a [hby dp, b, Jha dp,

By induction we obtain, for all n € N,

(4.5)

This implies, by (2.10),

duf"d  dufnd a1
du@m - d - =
31 g1 a, ¢
and .
dpg” _ du§” by a
dugm dvy b1

As a consequence of condition (B1) we formulate the following crucial
uniform integrability property.

LEMMA 4.4. If condition (B1) holds and if sup, [|Inbd,|dv, < «, then
(a, ® b,) € L u) is uniformly integrable.
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Proor. Consider the continuous, convex function ¢(x) = xIln x. Since
lim, . (¢(x)/x) = «, by the criterion of Valle Poussain [in the modified form
of Liese (1975)] it is enough to establish that

(4.6) sup[ e(a,b,) du <.
From Lemma 4.2 we have
[ e(a,b,) dp = I(u®Ip)
= [Ina,dv,+ |Inb,dvy+ [Inb, -I-)ﬁ— - 1] dv,
n+1
<I(v*p) + (¢ + 1) [ Inb,ldv,

<I(v*u) + (c+ 1) sup[ [In &,| dv,. O

Now we are able to prove Theorem 3.1.

PROOF OF THEOREM 3.1. (a) Uniform integrability of (In b,) € L'(v,) im-
plies, by Lemma 4.4, uniform integrability of (a, ® b,) € L'( ). Therefore,
the sequence (u?™) = (a, b, n) is relatively compact in the 7-topology [i.e.,
with respect to the weak topology o (L}( ), L*( w))]. Since I( u@"*D|u™) - 0
this implies that also (™) is relatively 7compact and 7-sequentially com-
pact.

Let (u(™) be a rconvergent subsequence, u™ —_v. We can assume
w.l.o.g. that (m) C 2N. Then from the lower semicontinuity of I w.r.t. =
convergence we obtain

I(vlp) < liminf I( u™|p)
(4.7) < limsup 7( ™)
=1imsupfln(akbk)akbk du, m = 2k.
Since

(4 8) dl/2 _ d/.L(22n+1) B d,ufz"”) B bn+1
' dug™  dugm  dp®v b, ’

n

we conclude (from the proof of) Proposition 2.1,

b
I(volu§™) = [1n 2“ dvy = 0.
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Therefore,
dug™

bn+1 -1
dv,

b,

/ 1|dv, = [

which implies that b, ,,/b, — 1, v,-stochastically.
Uniform integrability of (Inb,) c L'(»,) and boundedness of b,/b,. ,
implies

dvy —> 0,

. by,
(4.9) lim sup [ In b;-—— dv, = limsup [ In b, dv,.
bk+1

From (4.7) and Lemmas 4.1 and 4.2, therefore, it follows that

(4.10)  I(vlp) < limsup(fln aydv, + [Inb, dvz) <I(v*|p).

This implies, by the uniqueness of the I-projection, that v = v*. So v* is the
only limit point of (™) in the -topology and, therefore, u™ —_ v*. By (4.7)
and (4.10) we obtain I( u™|u) — I(v*|w).

(b) Since I(u™|u) - I(v*|u) = inflI(v|pn); v € M(v,, vy}, we conclude
from the proof of Theorem 2.1 in Csiszar (1975) that || u™ — »*|| - 0. From

b
I(u®lw) = [Ina, dv, + [Inb,-—"—dv, > I(v*Ip)
n+1

and

bn
‘flnbn( —1) dv,y| = 0,

bn+1

we finally obtain, using (2.14), that I(»*|u™”) - 0. O

ProOOF OF PrOPOSITION 3.2. (a) Under condition (B3),

C|bdv
r A = f 2
(4.11) 2= fbhduz = [b—dv,
a ry
>c [bdv,.

On the other hand,

1, & 1 1r,
(4.12) fbdvzs-c-fbgd%:ZfbhdM:Z;

and [bdv, > (1/CXr,/a), thatis, 0 < [bdv, < . This proves part (a).
(b) From a, = r; we obtain, by (2.2),
21_ _ [hadp, _ [ hao(a/a,) duy an 4 Jhby(b/by) dp,
b [hay dpy Jhag du, a [ hby du, '
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Therefore, ¢ < b,/b < C and 1/C < a,/a < 1/c. By induction this implies,
for all n € N,
b, 1 a, 1
(4.13) CSTSC, ES;S-C—.
Therefore, |In b,| < [In b| + ¢’ and (In b,) is uniformly integrable. O

PROOF OF PROPOSITION 3.3. (a) Consider any f€.2X(v,) and g €2 (v,)
with the normalization that the median of f is zero, med, f = 0.Then

[1rG) + g = o | [ 17() + £()b(3)0(9) ) |o(5) ()
= o[ 1) + ) () |p) o) )
> c’f Ifldv,.

The last inequality follows from the assumption that med, f= 0. This
inequality implies closedness of F' by Kober’s criterion [cf. Riischendorf and
Thomsen (1993)].

(b) Condition (B3) implies condition (B2) (i.e., ¢ < h/r; < C) using Propo-
sition 3.2. Furthermore, with v(y) = ro(y), [vdu, = 1 and condition (B4)
holds. From (3.2) we finally infer (B1) using condition (B3). O

PrOOF OF THEOREM 3.5. From h/r, > ¢ we conclude (as in Proposition
3.2) that r;/a >c[bdvy, = 1/C > 0 (since b > O[v,]). This implies (as in
Proposition 3.2) that b, < Cb V n € N. Since [bdv, < © we conclude that
(b)) cLMv,) is unlformly integrable.

We then use the following lemma, which is an extension of Lemma 3.1 of
Csiszar (1975).

LEMMA 4.5. Let (f,) be measurable; let (e'») ¢ LN@Q) be uniformly inte-
grable; and let I(P,|Q) — 0. Then |[f, dP, — [f, dQ| — 0.

Proor. We follow the idea of the proof of Csiszar (1975). Let p, =
dP,/dQ and A, =A, x ={lf,| <K}. Then [P, — QI > 0 and, therefore,

[ fr d(P, — Q)I — 0. Since (If,|) c IXQ) is uniformly integrable, it is suf-
ficient to show that, for any £ > 0,

lim supf If,,| dP, = lim supf If,lp, dQ < & for some K = K(¢).
AL Aj
From the inequality ab < alog a + e®, a, b > 0, we infer

[ Vp.d@< [ p,lnp,dQ+ [ e"dQ.
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Furthermore, lim sup [, e/ d@ < £/2 for K > K(&) by uniform integrability
of (¢'™), and, finally, lim | ac P, In p, dQ = 0 by Fatou’s lemma and the
assumption that [p, In p, dQ@ - 0 [cf. the argument in Csiszar (1975)]. O

Continuing the proof of Theorem 3.5, we apply Lemma 4.4 to f, =1nb,,
P, = u®v, @ = v,. By our assumption, explf,| = explln b,| =
exp(In, b,)exp(In_ b,) = 16, Vv 1|, A 1| = |b,| is uniformly integrable.
Therefore,

-0

‘j Inb, duf™ — [Inb, dv,

This implies that (cf. the proof of Proposition 3.2)

lim sup I( u®»|u) = llmsup[f Ina,dv, + fln b,d (2")]

= limsup[flnan dv, + fln b, dv2] <I(v*lu) < .

In particular, (a,b,) € L'( ) is uniformly integrable and (as in the proof of
Theorem 3.1) any "limit point of (u™) is v*, that is, u™ — v* in total
variation and I(v*|u™) - 0. O

REMARKS.

(a) Some simple examples can be calculated using Maple or Mathematica.
Consider the case u; = v; the uniform distribution on [0, 1] and the density
h(x,y) = £(1 + xy), that is, we want to fit the measure u = hu,; ® p, with
density A to uniform marginals. Then the marginals of u have Lebesgue
densities k,(x) = £(1 + x/2) and hy(y) = (1 + y/2).

We obtain the following for the marginal densities of the IPFP:

2.14307 + 1.00312x 2.136 + 0.999825y
FO(x) = () = ,
2.14453 + x 2.13592 + y
2.1364 + 1.00001x 2.1638 + 0.999999y
FO(x) = L FO0) - :
2.1364 + x 2.13639 + y
and we obtain the following for the joint density:
' 1+ xy
® = 5.5641
f®(x,y) = 556419 (2.1864 + x) - (2.13639 + y)’
1+ xy

fO(x,y) = 556411

(2.13638 + x) - (2.13638 + y)

So after few steps one has a good approximation to the joint density, and the

marginals are nearly identical to the target marginals equal to constant 1.
For the calculation of complicated examples of the IPFP in the continuous

case one has to use numerical integration or simulation since the number of
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terms in exact integration formulas explodes after few terms. Simulation
methods are used also in the related projection pursuit algorithm and its
implementation (in S-PLUS).

Our convergence result suggests that it should be possible also to use
discrete approximations to continuous densities, that is, to do the calculations
in an approximate contingency table. For contingency tables, examples and
empirical evidence of convergence are reported in Haberman (1974).

(b) Some extensions of the convergence results can be given to the multi-
variate case, in particular to the case (E, %) = ® ik=1 (E;, &), pne€
M(py,..., pn,) a measure with marginals u, on E;. The problem is to find the
I-projection of w on M(v,,...,v;,), where v; < w;, u < u; ® -+ ® u,. Some
of the techniques of this paper can be extended also to the case of multivari-
ate joint marginals. Details will be given in a separate paper.

(¢) It would be of interest also to have a convergence result for the
associated statistical problem with unknown distribution u and to study the
asymptotic properties of the corresponding estimators.
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