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1 Introduction

Fair allocation (also referred to as fair division) is a classic and relevant problem at the interface

of mathematics, economics, and game theory. It has a long history and extensive literature, for

which we refer for instance to Chevaleyre et al. (2017), Kurokawa et al. (2018), and Moulin (2019).

Fair allocation problems are generally distinguished into the two cases of divisible and indivisible

goods. The literature on cake cutting, for instance, is concerned with divisible goods (Brams and

Taylor 1996, Robertson and Webb 1998), but in this paper we focus on the more challenging case

when the items to be allocated are indivisible (Bouveret et al. 2016, Lang and Rothe 2016).

By fair allocation of indivisible goods we refer in the following to the problem of allocating a finite

set of desirable goods to a finite number of agents. Each object is assumed to be indivisible (it loses

its value if broken or divided into pieces) and non-sharable (the same item cannot be allocated

to more than one agent). The need for fair allocation of a set of objects among several agents

arises naturally in many scenarios, from inheritance and divorce settlements to border disputes and

medical supplies.

The purpose of fair allocation is to find an allocation among the agents that satisfies an a-priori

fixed optimality property, which is referred to as a fairness criterion. In the specialized literature,

there exists a broad variety of fairness notions; see for instance Thomson (2011), Lang and Rothe

(2016), and Bouveret and Lemâıtre (2016) for surveys. In this paper, we focus on the widely used

notion of envy and on the newly introduced criterion of minimum social inequality.

An allocation is said to be envy-free (Foley 1967) if no agent prefers the bundle of goods received

by any other agent to the own one. The notion of envy-freeness is compelling, but an envy-free

allocation might not exist in practice (just consider the problem of allocating a diamond and a

rock to two agents). In the cases where a null level of envy is not attainable, it still makes sense

to minimize the maximal envy among any pair of agents (Lipton et al. 2004). A minimum envy

allocation always exists (but might be difficult to find).

In this paper, we introduce a novel notion of fairness which consists in minimizing the social

inequality of the economic system, that is in making the utilities gained by the agents as similar as

possible (under each agent’s belief). When each agent believes that all agents have gained exactly

the same level of utility, we speak of perfect social equality. Similarly to a no-envy allocation, a

perfect social equilibrium is not always attainable. In the latter case, one can aim to obtain the

allocation with the minimum possible level of inequality, i.e., the allocation yielding the minimum

possible variance of the utilities allocated to each agent.

We show that the two notions of envy and social equality have interesting mathematical re-

lationships. It is immediate to see that a perfect social equality allocation is also envy-free. In

general, we establish that the level of envy present in a minimum inequality allocation is bounded

from above by the level of inequality.

When there are exactly two players, a variety of practical methods for allocating indivisible
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goods are available; see the comparison study given in Kilgour and Vetschera (2018). General

fair allocation algorithms for fairness criteria different from those treated here are also described

in Vetschera (2010), Caragiannis et al. (2019), Kurokawa et al. (2018), and Ghodsi et al. (2018).

Lipton et al. (2004) provide a polynomial time algorithm that computes allocations with bounded

maximum envy and an algorithm for the so-called minimum envy-ratio problem. These authors

notice that finding an allocation with minimum possible envy is in general not solvable in polynomial

time unless P = NP; see also Bouveret et al. (2005).

In this paper, we deviate from the existing literature by reformulating the problem of fair alloca-

tion as a rearrangement problem of multiple matrices. The rationale behind our new mathematical

framework is to replace the notion of an allocation of goods with that of a column rearrangement

of a finite set of matrices. This reformulation leads us to provide two novel numerical algorithms,

called MinCov and MinCovTarget. The MinCov algorithm is capable of finding an allocation with

minimum (null) social inequality whereas the MinCovTarget introduces a target parameter which

allows us to interpolate between the social inequality and the minimum envy criterion.

The numerical results shown in this paper are promising and are also supplemented with some

theoretical evidence. We show excellent figures for the criteria of minimum social inequality (Min-

Cov) and minimal envy (MinCovTarget). With respect to minimal envy, allocations provided by

the MinCovTarget algorithm are at least as good as those delivered by approximate Maximum

Nash Welfare (MNW) allocations, and in some cases outperforming MNW. Allocations provided

by MinCovTarget also indicate approximate Pareto-optimality for moderate target values.

If compared to existing approaches, our algorithms are straightforward to implement, fast, and

do not have restrictions on the number of agents/goods considered. The interest reader can retrieve

the code for the applications shown in this paper at

https://github.com/cdries/FAIG.

2 Fair allocation as a rearrangement problem

Following Chevaleyre et al. (2017) and Bouveret and Lemâıtre (2016), from which we slightly adapt

the notation, we define in what follows an additive MultiAgent Resource Allocation (a-MARA) as

a triple setting (N ,D,X) where N = {1, . . . , n} is a finite set of n > 2 agents, D = {1, . . . , d}
is a finite set of d > 1 indivisible and non-shareable objects, and X is matrix representing the

additive utility function of each agents over the set of goods. These assumptions apply to a broad

range of real-world situations such as some inheritance disputes where the items are indivisible, of

different values to each of the parties, and the agents might not be able to compensate the others

financially. Notice that these assumptions do not prevent the treatment for instance of medical

divisions receiving different units of consumptions goods as these kinds of problems can always be

modelled with non-sharable goods by introducing several units of the same good.
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Denote by P({1, . . . , d}) the set of all subsets of {1, . . . , d}. In what follows, any such subset

of {1, . . . , d} is called a bundle. An allocation κ : {1, . . . , n} → P({1, . . . , d}) maps agent i to the

bundle κ(i) he receives, satisfying κ(i) ∩ κ(j) = ∅, i 6= j, and ∪ni=1κ(i) = {1, . . . , d} (each good

is owned by exactly one agent, and nothing is thrown away). Agents’ valuations of the goods are

stored in a n×d value matrix X = (xij), in which xij > 0 is the utility given by agent i ∈ {1, . . . , n}
to object j ∈ {1, . . . , d}. We use positive values xij > 0 without loss of generality, since one can

always add a constant C (e.g. C = −minxij + 1) to all entries of X = (xij). Specifically, we

assume that agents’ preferences are cardinal and additive, meaning that the utility of agent i in

receiving the bundle κ(i) is given by

ui(κ(i)) =
∑
j∈κ(i)

xij .

Now, consider the trivial allocation in which the first agent receives all goods (hence all other

agents receive nothing) and define the n matrices Xk = (xkij), k = 1, . . . , n, as

xkij =

xkj , if i = 1,

0, if i 6= 1.
(1)

Notice that the k-th matrix Xk contains only valuations made by the k-th agent. In particular,

the first row of Xk contains the values that the k−th agent assigns to the goods received by the

first agent, while all other rows contains only nulls (under this allocation, the first agent receives

all goods and all other agents receive nothing).

Example 2.1. We provide an illustration of our set-up for d = 4 objects to be allocated to n = 2

agents. The first row of the value matrix X contains the valuations of the items made by the first

agent and the second row contains those of the second agent. Assume X is given by

X =

(
6 10 9 8

5 12 13 3

)
.

The matrices X1 and X2 correspond to the trivial allocation κ(1) = {1, 2, 3, 4} (the first agent

receives all goods) and κ(2) = ∅ (the second one receives nothing). They are thus given by

X1 =

(
6 10 9 8

0 0 0 0

)
, X2 =

(
5 12 13 3

0 0 0 0

)
.

Now, letA be the set of all vectors π = (π1, . . . , πd) in which the components πj are permutations
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of {1, . . . , n}. Given a vector of permutations π ∈ A, define Xk,π = (xk,πij ) by

xk,πij = xkπj(i)j , (2)

i.e., each πj permutes the elements of the j-th column of all matrices Xk to obtain the matrices

Xk,π, k = 1, . . . , n. In what follows, we call any π ∈ A a rearrangement and each matrix Xk,π a

rearranged matrix.

Denote by sk,πi =
∑d

j=1 x
k,π
ij , i = 1, . . . , n, the row sums of Xk,π, k = 1, . . . , n, and by sk their

mean value, i.e.,

sk =

∑n
i=1 s

k,π
i

n
=

∑n
i=1

∑d
j=1 x

k,π
ij

n
=

∑n
i=1

∑d
j=1 x

k
ij

n
.

Notice (from the last equality) that sk, the average value of the goods according to agent k, does

not depend on the specific allocation π.

It is easy to see that a rearrangement π ∈ A unambiguously defines an admissible allocation κπ

via

j ∈ κπ(i) ⇐⇒ πj(i) = 1. (3)

Hence, the j-th item belongs to the i-th agent if and only if the j-th position of the i-th row in the

matrices Xk,π takes value xkij > 0 (and thus does not take value zero). For instance, the identity

rearrangements πj(i) = i, i = 1, . . . , n, j = 1, . . . , d, lead to the previously described allocation in

which κ(1) = {1, . . . , d} and κ(i) = ∅, i 6= 1. For a given π ∈ A, the elements in the i-th row of

the matrix Xk,π represent the values given by the k-agent to the bundle κπ(i), received by the i-th

agent. Hence, the utility gained by agent i – according to the valuation of agent k – is given by the

i−th row sum of Xk,π, i.e.,

uk(κπ(i)) = sk,πi .

In particular, the k-th row of the matrix Xk,π describes the bundle received by agent k, i.e.,

sk,πk = uk(κπ(k)) is the total utility the k-th agent gains for the goods that are allocated to the

agent. Note that each column of Xk,π contains exactly one non-zero entry, coherently with the fact

that each item is allocated to exactly one agent.

Example 2.1 (continued). Consider the allocation κπ(1) = {3, 4}, κπ(2) = {1, 2}, i.e., the first

agent receives the third and fourth item, whereas the second agent receives the other ones. The

corresponding matrices Xk,π are given by

X1,π =

(
0 0 9 8

6 10 0 0

) ∣∣∣∣∣ s1,π1 = 17

s1,π2 = 16
, X2,π =

(
0 0 13 3

5 12 0 0

) ∣∣∣∣∣ s2,π1 = 16

s2,π2 = 17
.

with rearrangement π = (π1, π2, π3, π4) fully characterized by π1(2) = 1, π2(2) = 1, π3(1) = 1,

π4(1) = 1 (see also (3)). Under this allocation, both agents have an utility equal to 17 (s1,π1 =

s2,π2 = 17) and they believe (according to their own evaluation) that the other agent has utility
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equal to 16 (s1,π2 = s2,π1 = 16).

3 Fairness criteria

The objective of fair allocation is to find an allocation that satisfies some optimality criteria that are

generally referred to as fairness criteria. In the literature, there does not exist a single compelling

definition of fairness, rather a broad variety of notions and rules have been introduced in economics

and decision theory; see for instance Thomson (2011) and Lang and Rothe (2016) for surveys.

Below, we discuss some fairness criteria that will be used in the remainder of the paper.

As we have seen in (3), each rearrangement π ∈ A corresponds to a unique allocation κπ, and

vice versa. In the remainder of the paper, we identify the notation κπ with the corresponding

rearrangement and use the same symbol π to refer to either a rearrangement or the corresponding

allocation.

Minimum (social) inequality allocations. An intuitive criterion for assessing the fairness of

an economic allocation is to measure the level of equality that it can ensure among agents. For

a given agent k (k = 1, . . . , n), we aim to obtain an allocation π that yields utilities sk,πi that are

as similar as possible; in this case, according to the valuation of the k-th agent, all other agents

obtain approximately the same utility. Let Vk(π) denote the variance of agents’ utilities under the

allocation π as measured by agent k, that is

Vk(π) =

∑n
i=1(s

k,π
i − sk)2
n

.

To obtain an allocation that ensures minimum inequality among all agents, we thus aim to solve

the optimization problem

V ∗ = min
π∈A

V (π), (4)

where the variance functional V (π), defined as

V (π) =

∑n
k=1 Vk(π)

n
, (5)

measures the level of social inequality under the allocation π.

Since the number of possible allocations is finite, the minimum in (4) is attained and there

always exists an allocation π∗ satisfying V (π∗) = V ∗. Any such π∗ will be called a minimum

(social) inequality allocation. In general, V ∗ > 0. In the particular case that V ∗ = 0, each agent

believes that all agents experience exactly the same level of utility and we speak of perfect social

equality. We note that the notion of social inequality is different from the notion of equitability

(Brams et al. 2013). Under an equitable allocation, each agent assign the same utility to the bundle

received, i.e., si,πi = sj,πj , i, j ∈ {1, . . . , d}. When the total utility given by each agent to the d items
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is normalized to, say, 100, then a perfect social equality allocation is also equitable.

The notion of minimum inequality introduced above is novel. We will now establish its con-

nection with other fairness criteria and provide evidence that a minimum inequality allocation

performs very well also with respect to other well-established notions of fairness. We first recall

these fairness notions and then explore their connection with minimum inequality allocations.

Envy-free allocations. One of the most widely used notions of fairness is that of envy-freeness

(Foley 1967). An allocation π is said to be envy-free if no agent prefers the bundle received by any

other agent to his own, that is, if

sk,πk > sk,πi , for all k ∈ {1, . . . , n} and i 6= k.

An envy-free allocation is, for instance, obviously attained in the case in which all the sk,πi are

constant and thus equal to their average value sk; that is, when V ∗ = 0 (perfect social equality).

Lemma 3.1 (Sufficient condition for an envy-free allocation). If for all i, k ∈ {1, . . . , n} it holds

that

sk,πi = sk, (6)

then the allocation π is envy-free.

Equivalently, if V (π) = V ∗ = 0, then π is an envy-free allocation. However, we stress that

condition (6) is only sufficient to obtain an envy-free allocation, but not necessary. There might

be envy-free allocations that do not satisfy (6), and, in general, an envy-free allocation might not

even exist (consider the classical example of allocating one diamond and (n− 1) rocks). Therefore,

it makes sense to look for allocations such that the envy among agents is as low as possible.

Minimum envy allocations. Following Lipton et al. (2004), we define the envy e(π) of an

allocation π as the maximal envy among any pair of agents, i.e.,

e(π) = max{eij(π); i, j ∈ {1, . . . , n}}, (7)

where

eij(π) = max{0, si,πj − s
i,π
i }.

If eij(π) = 0, then agent i does not envy agent j. It is then immediate to observe that an allocation

π is envy-free if and only if e(π) = 0. We say that π is a minimum envy allocation if e(π) is

minimum over the (finite) set of all possible allocations. Again, we note that a minimum envy

allocation always exists.

Even if the functional V (π) in (5) does not measure the fairness of an allocation in terms of

envy, we now show that the level of inequality V ∗ = V (π∗) associated with a minimum inequality
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allocation π∗ yields an upper bound for the minimum level of envy. To this end, denote by π∗∗ a

minimum inequality allocation with minimum envy, that is V (π∗∗) = V ∗ and e(π∗∗) 6 e(π∗) for all

π∗ satisfying V (π∗) = V ∗. The proofs of the following propositions are relegated to the Appendix.

We first state a result for agents with homogeneous preference, i.e., for agents that assign the

same values x1, . . . , xd to the d objects.

Proposition 3.2 (Bound for envy - homogeneous preferences). Let π∗∗ be a minimum inequality

allocation with minimum envy. If the agents have homogeneous preferences, then it holds that

e(π∗∗) 6
√

2nV ∗. (8)

In particular, the envy e(π) of a minimum envy allocation π is bounded by
√

2nV ∗.

If one considers the general case of agents who may have inhomogeneous preferences, one still

obtains an upper bound for the minimum envy in terms of V ∗.

Proposition 3.3 (Bound for envy - inhomogeneous preferences). Let π∗∗ be a minimum inequality

allocation with minimum envy and let Vmin = min16k6n Vk(π
∗∗) and Vmax = max16k6n Vk(π

∗∗) > 0.

It holds that

e(π∗∗) 6 n

√
2

1 + (n− 1)C
V ∗, (9)

where C = Vmin
Vmax

.

Remark 3.1. We point out the following remarks.

(a) When V ∗ = 0, any π∗ is an envy-free allocation. However, we stress that while an envy-

free allocation might not exist (depending on the value matrix X), an optimal allocation π∗∗

with minimum envy always does. Since this minimum level of envy is bounded by V ∗ =

minπ∈A V (π), it thus makes sense to look for allocations that minimize V (π).

(b) If Vmin = 0, Proposition 3.3 provides the rough bound e(π∗∗) 6 n
√

2 V ∗. In this case, in a

similar way as in the proof of the proposition, one can still obtain the better bound

e(π∗∗) 6 n

√
2

1 + (r − 1)c
V ∗,

where r = #{k : Vk(π
∗∗) > 0}, c = vmin

Vmax
, vmin = min{Vk(π∗∗) : Vk(π

∗∗) > 0}.

(c) We conjecture the following sharp bound to hold in the general case of inhomogeneous prefer-

ences:

e(π∗∗) 6 n

√
n

2(n− 1)
V ∗;

see the Appendix for further details.
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Proportional allocations. Another widely used notion of fairness is proportionality. First, for

a given allocation π, we say that the i−th agent has a fair share if, according to the own valuation,

the agent has received at least 1/n−th of the total utility of the goods; formally, this is true if

si,πi > si.

If all agents receive a fair share, an allocation π is called proportional. It is immediate to note that

that an envy-free allocation is also proportional (the converse is not true in general).

Maximum Nash Welfare. An allocation π that maximizes the product of agents’ utilities

U(π) =
n∏
i=1

si,πi , (10)

is called a Maximum Nash Welfare (MNW) allocation. Caragiannis et al. (2019) provides evidence

that a MNW allocation performs well with respect to other fairness criteria. In particular, in

Theorem 3.2 of the above paper, the authors show that a MNW allocation is envy-free up to one

good.

4 Algorithms for fair allocation

Whereas there is a wide literature of algorithms for the case of cake-cutting problems (i.e., divisible

items), for which we just mention Procaccia (2016), the fairly natural case of allocating indivisible

goods has been somewhat neglected in its full generality, perhaps because of its more complicated

nature.

In this section, we introduce two novel algorithms to treat numerically the problem of fair

allocation without any restrictions on the number of agents/goods considered. These algorithms

rely on the matrix formulation of the problem described in Section 2. In Section 5, we provide

evidence that our methods are fast and yield high quality allocations, also in high-dimensional

cases.

4.1 Minimum Covariance Algorithm (MinCov)

The first algorithm that we introduce is called the Minimum Covariance Algorithm (MinCov). This

algorithm is based on the observation that the n matrices Xk = (xkij) defined in (1) satisfy

xkij = βkj x
1
ij ,

where βkj = xkij/x
1
1j , k = 1, . . . , n, j = 1, . . . , d.

The MinCov algorithm uses rearrangements π = (π1, . . . , πd) having the property that there
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exist j1 ∈ {1, . . . , d} such that πj(i) = i for i ∈ {1, . . . , n} and j 6= j1. The matrices Xk,π are

thus obtained from the matrices Xk by permuting (potentially all) elements in the j1-th columns

without affecting the others; we denote such rearrangements as π(j1).

Note that the variance functional in (5) can be written as:

V (π) =

∑n
k=1 Vk(π)

n
=

∑n
k=1

∑n
i=1(s

k,π
i − sk)2

n2
=

∑n
k=1

(∑n
i=1(s

k,π
i )2 − n(sk)2

)
n2

.

In order to minimize V (π), one has to minimize only the term in the last expression that depends

on the rearrangement π chosen, that is
∑n

k=1

∑n
i=1(s

k,π
i )2. Defining, for some index j1 ∈ {1, . . . , d},

sk,πi(−j1) =
∑

j 6=j1 x
k,π
ij , one has to minimize

n∑
k=1

n∑
i=1

(sk,πi )2 =

n∑
k=1

n∑
i=1

(
xk,πij1 + sk,πi(−j1)

)2
=

n∑
k=1

n∑
i=1

[(
xk,πij1

)2
+
(
sk,πi(−j1)

)2
+ 2

(
xk,πij1 s

k,π
i(−j1)

)]
.

If one uses rearrangements π(j1) that permute the j1-th column only, one has to minimize the

covariance term

C(π) =
n∑
k=1

n∑
i=1

(
xk,πij1 s

k,π
i(−j1)

)
. (11)

Since by assumption x
k,π(j1)
ij1

= βkj1x
1,π(j1)
ij1

, it follows that π(j1) should be chosen such that

C(π) =
n∑
k=1

n∑
i=1

(
x
k,π(j1)
ij1

s
k,π(j1)
i(−j1)

)
=

n∑
k=1

n∑
i=1

(
x
1,π(j1)
ij1

βkj1s
k,π(j1)
i(−j1)

)
=

n∑
i=1

(
x
1,π(j1)
ij1

n∑
k=1

βkj1s
k,π(j1)
i(−j1)

)

is minimum. Since the scalar product of two vectors is minimized if the vectors are oppositely

ordered (Hardy et al. 1952), one should choose π(j1) such that X
1,π(j1)
j1

, the j1-th column of X1,π(j1),

becomes oppositely ordered to
∑n

k=1 β
k
j1
S
k,π(j1)
(−j1) , where we set Sk,π(−j1) = (sk,π1(−j1), . . . , s

k,π
n(−j1)). These

considerations lead to the MinCov algorithm.

Minimum Covariance Algorithm (MinCov)

1. Let Xk, k = 1, . . . , n, be given n× d matrices and let niter be a positive integer.

2. Randomly select j1 ∈ {1, . . . , d} and determine the rearrangement π(j1) such that the vector

X
1,π(j1)
j1

becomes oppositely ordered to
∑n

k=1 β
k
j1
S
k,π(j1)
(−j1) . Ties are treated as first coordinate

comes first.

3. Re-label Xk,π(j1) as Xk and repeat Step 2. until niter iterations have been performed.

4. Output the matrix Xk so obtained and the corresponding final rearrangement π.
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At each iteration of MinCov, the inequality V (π) of the system is strictly reduced unless the

selected column of X1 is already properly ordered (in this latter case, there is no change). If

the number niter of iterations is set large enough, the output rearrangement π can be expected

to provide a value V (π) close to the optimal one, V ∗, and hence can be used to approximate

a minimum inequality allocation π∗. The following example illustrates the different steps of the

algorithm.

Example 4.1 (Illustration of MinCov). As in Example 2.1, we consider the value matrix

X =

(
6 10 9 8

5 12 13 3

)
,

with corresponding matrices X1 and X2 given as

X1 =

(
6 10 9 8

0 0 0 0

) ∣∣∣∣∣ s11 = 33

s12 = 0
, X2 =

(
5 12 13 3

0 0 0 0

) ∣∣∣∣∣ s11 = 33

s12 = 0
.

We apply MinCov. For pedagogic reasons we do not randomly select j1 ∈ {1, . . . , d} but we proceed

sequentially.

Iteration 1: Take j1 = 1 and let π(0) be the identity rearrangement. Compute β11 = 1, β21 = 5
6 ,

and

S
1,π(0)
(−1) =

(
27

0

)
, S

2,π(0)
(−1) =

(
28

0

)
,

2∑
k=1

βk1S
k,π(0)
(−1) =

(
27 + 5

628

0

)
.

Change the order of elements in the first column of the matrices X1 and X2, i.e., choose π(1) such

that the rearranged matrices Xk,π(1) are given by

X1,π(1) =

(
0 10 9 8

6 0 0 0

) ∣∣∣∣∣ s
1,π(1)
1 = 27

s
1,π(1)
2 = 6

, X2,π(1) =

(
0 12 13 3

5 0 0 0

) ∣∣∣∣∣ s
2,π(1)
1 = 28

s
2,π(1)
2 = 5

.

Relabel X1,π(1) as X1 and X2,π(1) as X2.

Iteration 2: Take j1 = 2. Compute β12 = 1, β22 = 12
10 , and

S
1,π(0)
(−2) =

(
17

6

)
, S

2,π(0)
(−2) =

(
16

5

)
,

2∑
k=1

βk2S
k,π(0)
(−2) =

(
17 + 12

1016

6 + 12
105

)
=

(
36.2

12

)
.

Hence, we choose π(2) such that the rearranged matrices Xk,π(2) are given by

X1,π(2) =

(
0 0 9 8

6 10 0 0

) ∣∣∣∣∣ s
1,π(2)
1 = 17

s
1,π(2)
2 = 16

, X2,π(2) =

(
0 0 13 3

5 12 0 0

) ∣∣∣∣∣ s
2,π(2)
1 = 16

s
2,π(2)
2 = 17

.
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Relabel X1,π(2) as X1 and X2,π(2) as X2.

At this point one can check that further iterations will not lead to a change in the output

matrices X1 and X2. The bundle each agent receives with associated values can be observed from

the first row of the first matrix and the second row of the second matrix, respectively. In particular,

the final allocation κ is given by κ(1) = {3, 4} and κ(2) = {1, 2}.

4.2 Minimum Covariance Algorithm with Target (MinCovTarg)

The MinCov algorithm can be used to find approximate minimum inequality allocations π∗. Since

by Propositions 3.2–3.3, the level of envy of such rearrangements is bounded by the total inequality

V (π∗) present in the economic system, one could expect π∗ to perform reasonably well when an

envy-based fairness criterion is used.

However, there might still be room for improvement when considering a specific fairness criterion

such as envy-freeness or minimum envy. In fact, for any minimum inequality allocation π∗ there

are at least n! other minimum inequality allocations π with V (π) = V ∗ obtained by permuting the

rows in the corresponding rearranged matrices Xk,π∗(without changing the value of V ∗). In other

words, one could simply shuffle the n bundles received by the agents under π∗: each shuffle affects

the list of goods allocated to each agent, and thus the corresponding subjective utility, but not the

total inequality of the economic system. Hence, we are missing a rule to determine which bundle

is allocated to each agent, which does not matter when using inequality as fairness criterion, but

does so for other fairness criteria.

On these grounds, we propose an extension of MinCov, named Minimum Covariance Algorithm

with Target (MinCovTarget) which is able to find envy-free allocations, if they exist, or at least

allocations with minimum envy.

Minimum Covariance Algorithm with Target (MinCovTarget)

1. Let Xk, k = 1, . . . , n, be given n× d matrices and let niter be a positive integer.

2. Define the matrices Yk, k = 1, . . . , n, as the matrices Xk with an additional column tk that

contains only zeros, except on the k-th row, where the negative of a target value τk is set.

3. Run MinCov for niter iterations on the matrices Yk, with the exception that the columns tk

are never selected for rearrangement.

4. Remove from the obtained matrices the last column in order to obtain the output matrices

Xk and the corresponding output rearrangement π.

Since MinCov produces matrices with row sums that are as equal as possible, it follows that,

by adding the extra column with negative values, the output matrices Xk, k = 1, . . . , n, will show
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a tendency to have a larger k-th row sum (i.e., the utility of the k-th agent, according to the own

valuation, is greater than the utility of all others). Hence, MinCovTarget offers a trade-off between

the criteria of social inequality and envy. The target values τk must be calibrated depending on the

initial value matrix X. Choosing (too) large target values results in individually better allocations

but would neglect the fairness criteria. For agent valuations that are standardized or not too

inhomogeneous, one can choose a single target value τk = τ, k = 1, . . . , n. If τk = 0, k = 1, . . . , n,

MinCovTarget reduces to MinCov and proxies a minimum inequality allocation. Note that the

negative target values in MinCovTarget are just artificial variables used to modify the variance

function and do not represent goods to be allocated to the agents.

4.3 Maximum Nash Welfare Algorithm (MNW)

For the sake of comparison, we introduce an auxiliary algorithm to show how our two main al-

gorithms behave with respect to Maximum Nash Welfare. Finding MNW allocations is computa-

tionally hard and only approximate solutions can be obtained. To obtain such approximation, we

proceed with a so-called local trades approach. This approach consists in applying a sequence of

random local trades between two agents: the single trade is performed only if it improves the Nash

welfare objective. This leads to the following algorithm that we refer to as the Maximum Nash

Welfare Algorithm (MNW).

Maximum Nash Welfare Algorithm (MNW)

1. Randomly allocate each item to one of the n agents and let niter be a positive integer.

2. Randomly select j ∈ {1, . . . , d} and i ∈ {1, . . . , n}. Allocate item j to agent i only if it strictly

increases the utility U(π) in (10); otherwise do nothing.

3. Repeat Step 2. until niter iterations have been performed.

4. Output the allocation π so obtained.

Note that this algorithm is different from the (yet approximate) algorithm for the MNW problem

developed in Caragiannis et al. (2019). There, the utility objective (10) is first approximated and

then mixed integer linear programming (MILP) is used to obtain an approximation for the MNW

allocation.

4.4 Local Trades Algorithm

The same local trades approach can be used to minimize social inequality or envy. To distinguish

its application to different objective functions in what follows, we refer to this approach as the

Local Trades Algorithm (LocalTrades).

13



Local Trades Algorithm (LocalTrades)

1. Randomly allocate each item to one of the n agents and let niter be a positive integer.

2. Randomly select j ∈ {1, . . . , d} and i ∈ {1, . . . , n}. Allocate item j to agent i only if this

strictly decreases the variance V (π) in (5) (alternatively, the envy e(π) in (7)) of the allocation

so obtained; otherwise do nothing.

3. Repeat Step 2. until niter iterations have been performed.

4. Output the allocation π so obtained.

5 Numerical study

In this section, we apply the four algorithms introduced so far to find fair allocations under the

various fairness notions considered. For the sake of comparison, in all our numerical experiments

we fix the number of iterations niter for each algorithm, and we also run each algorithm until no

improvement is observed for a given number of iterations, which is set equal to the number d of

items to be allocated. In this latter case we say that the algorithm has converged.

Here it is important to remark again that the problem of allocation for the rules considered

is NP-hard, and one cannot expect our algorithms to terminate by finding a global solution, but

rather a local one. Moreover, the algorithms differ substantially with respect to the number of

iterations that are needed to satisfy the stopping rule of convergence. MinCov and MinCovTarget

converge very quickly whereas MNW and LocalTrades require a higher number of iterations. These

considerations seem to indicate that our approaches are more suitable to treat high-dimensional

cases, where approximate MILP approaches like in Caragiannis et al. (2019) might be computa-

tionally more involved. Finally note that in all our (high-dimensional) experiments convergence

was always reached within 106 iterations.

Set-up. We consider that the number d of items to be allocated is a multiple of the number of

agents, i.e., d = kn, k ∈ N. This is done just for illustrative reasons as our algorithms do not have

restrictions on the (possibly high) number of items/agents to be used. The values x1j , j = 1, . . . , d,

assigned by the first agent to the d items are drawn independently from a uniform distribution

U(0, 100). The utilities of the other (n− 1) agents are also randomly drawn as

xij ∈ U [x1j(1− ε), x1j(1 + ε)], i = 2, . . . , n, j = 1, . . . , d, (12)

for some fixed ε > 0. In what follows, we use ε = 0.5, but different values for ε yield similar results.

Next, we slightly adjust the simulated values of agent utilities so that the total utility given by
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each agent to the d items is normalized to 100 and an envy-free allocation is guaranteed to exist.

To ensure that the envy-free solution cannot be directly observed from X we randomize the order

of columns herein. Finally, we allocate the items randomly to the different agents to obtain an

initial configuration and apply the various algorithms. We repeat this procedure 1000 times. For

the algorithm MinCovTarget, we set a single target value τk = 20, k = 1, . . . , n.

5.1 Minimum social inequality

Table 1 provides detailed statistics about the social inequality of the final allocation found by the

various algorithms. Note that under the initial (random) allocation each agent receives on average

d/n items. As each item received has an expected value of 100/d, it follows that under the initial

allocation the variance V (π) is proportional to 1/(nd), which is consistent with the pattern observed

in the table.

Table 1 shows that LocalTrades yields reasonably good solutions, but MinCov is outperforming

and yields solutions with very low variance (inequality). Starting from a random allocation of the

different goods, MinCov is able to reduce social inequality by a factor of 10. The performance of

MNW and MinCovTarget, which are not specifically designed to yield low values for the variance,

is poor with MNW showing the worst performance for this criterion.

The outperformance of MinCov becomes evident in Figure 1, which shows the percentage of

times that a given algorithm performs best for the minimum inequality criterion. The figure includes

the cases (n, d) = (10, 100) and (n, d) = (100, 1000). For almost all 1000 initial configurations,

MinCov provides the fairest allocation.

5.2 Minimum envy

Similarly as above, Figure 2 shows the percentage of times that one of the four algorithms used

performs best when minimum envy is used as a fairness rule. It is evident that MinCovTarget is

the champion algorithm in providing the best allocation, with MNW being a close competitor.

Indeed, we found a tie most of the times when both methods turned out to find an allocation

with zero envy. This is also confirmed by a detailed inspection of the simulation results, which

reveals that for the case (n, d) = (10, 100), MincovTarget finds in 97.5% of the simulations a no-

envy solution, whereas MNW in 95.5% of the cases. When (n, d) = (100, 1000), we have a no-envy

solution in 85.0% of the simulations for MinCovTarget and 76.9% for MNW, indicating that the

outperformance of MinCovTarget is increasing with dimensionality. It is noteworthy to mention

that in 67.5% of the cases both methods find a no-envy solution and thus that in 96.2% of the cases

at least one of the methods find a non-envy solution, suggesting that it appears useful to run both

MNW and MinCovTarget for minimizing envy.

Figure 3 shows for each algorithm, how many agents on average have received a fair share, as

well as how many believe they have received the best bundle (i.e., that they obtain goods with a
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min. med. max. mean min. med. max. mean
Panel A: d = 1000 n = 10 n = 100

Initial 0.87 1.28 1.82 1.31 0.12 0.14 0.16 0.14
MNW 2.64 7.06 7.95 6.66 0.02 0.04 0.05 0.04
LocalTrades 0.00 0.00 0.02 0.01 0.00 0.01 0.02 0.01
MinCov 0.00 0.00 0.02 0.00 0.00 0.01 0.01 0.01
MinCovTarget 2.78 6.53 8.34 6.09 0.00 0.02 0.03 0.02

Panel B: d = 100 n = 10 n = 25

Initial 8.47 12.55 17.76 12.76 4.17 5.43 7.06 5.47
MNW 4.39 8.63 13.12 8.69 1.28 1.99 2.93 2.01
LocalTrades 0.35 0.88 1.80 0.94 0.24 0.60 1.03 0.61
MinCov 0.24 0.63 1.35 0.68 0.19 0.51 0.87 0.52
MinCovTarget 2.32 6.23 11.36 6.42 0.33 0.93 2.15 1.01

Table 1: We compute the n variances of the row sums of n matrices for the initial configuration
as well as after application of the various algorithms. The algorithms are run until there are
no improvements in objective value for d consecutive updates. We store the minimum, median,
maximum, and average variance (i.e., social inequality). Each shown statistic represents the average
over 1000 replications of the individual summary statistics.
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(b) Minimum inequality obj. – n = 100, d = 1000.

100 500 2500 converged

niter

be
st

 m
et

ho
d 

(%
, m

in
im

um
 in

eq
ua

lit
y)

0

20

40

60

80

100

100 500 2500 converged

niter

be
st

 m
et

ho
d 

(%
, m

in
im

um
 in

eq
ua

lit
y)

0

20

40

60

80

100
MNW
LocalTrades
MinCov
MinCovTarget

Figure 1: Best method for finding minimum inequality allocations, for different combinations of
(n, d), and number of iterations used. Rates of success against minimum inequality are computed
over 1000 different random initial configurations. LocalTrades is here applied to the minimum
inequality objective function.

total utility that is greater than that for all other agents). Note that an allocation is envy-free if

and only if all agents believe to have received the best bundle. From Figure 3, we observe that

both MinCovTarget and MNW generally find a proportional allocation (i.e., providing a fair share
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(a) Minimum envy obj. – n = 10, d = 100.
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(b) Minimum envy obj. – n = 100, d = 1000.
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Figure 2: Best method for finding minimum envy allocations, for different combinations of (n, d),
and different number of iterations used. Rates of success against minimum envy are computed
over 1000 different random initial configurations. LocalTrades is here applied to the envy objective
function.

to all the agents) and provide all agents with the best deal after a sufficient number of iterations

(recall from Figure 2 and its discussion that both MNW and MinCovTarget often find envy-free

allocations). Inspection of the simulation results reveals that, when (n, d) = (100, 1000), in 99.7%

of the cases 99 or 100 agents receive a best deal (for both MNW and MinCovTarget). Note that

MinCovTarget however outperforms MNW with regards to the number of cases it provides a best

deal to all 100 agents (85% versus 76.9%).

With respect to minimal envy and best deal, MinCov and LocalTrades show similar results but

are clearly outperformed by MNW, and in particular by MinCovTarget.

A natural question is how sensitive the MinCovTarget algorithm is when varying the target

value, which in our study was set equal to 20. Figure 4 displays the envy e(π) (left part of the

Figure) as well the level of social inequality V (π) (right) of the output allocation π produced when

varying the target value between 0 and 120. As expected, the use of a positive target values is

required to lower the envy in the system.

In practice, one needs to calibrate the target values in a range where they are not too small to

select allocations with minimum inequality but possibly high envy, and not too large to prioritize

no-envy over minimal inequality allocations. A satisfying observation in this respect is that the

MinCovTarget algorithm is robust as there is a wide range of target values for which a low level of

envy can be accompanied by a relatively low value of inequality.

Since running the MinCovTarget algorithm is fast, one could always produce similar plots as in
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(a) Fair share – n = 10, d = 100.
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(b) Best deal – n = 10, d = 100.

50 100 500 converged

niter

ag
en

ts
 w

ith
 la

rg
es

t s
ha

re

0

2

4

6

8

10

50 100 500 converged

niter

ag
en

ts
 w

ith
 la

rg
es

t s
ha

re

0

2

4

6

8

10

MNW
LocalTrades
MinCov
MinCovTarget

(c) Fair share – n = 100, d = 1000.
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(d) Best deal – n = 100, d = 1000.
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Figure 3: Average number of agents with fair share and number of agents with largest share for
different combinations of (n, d), and different number of iterations used. Averages are computed
over 1000 different random initial configurations. LocalTrades is here applied to the envy objective
function.

Figure 4 to calibrate the value(s) of the target variable to the specific case under study.

5.3 Maximum Nash Welfare

In this section, we also compare the value of Nash welfare produced by our algorithms. We found

that for the case (n, d) = (10, 100), MNW yields on average a value of 28.4 for the (log) Nash

welfare logU(π); MinCovTarget is a close second-best with an average value equal to 28.2. The

other algorithms perform less well. For the case (n, d) = (100, 1000), MinCovTarget yields even

slightly higher values for logU(π) than MNW. These observations are also consistent with Figure
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(a) Envy obj. – n = 10, d = 100.
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(b) Inequality obj. – n = 10, d = 100.
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(c) Envy obj. – n = 100, d = 1000.
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(d) Inequality obj. – n = 100, d = 1000.
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Figure 4: Average values of the minimum inequality functional V (π) and of the envy attained
after application of MinCovTarget versus the choice of a homogeneous target value, for different
values of (n, d) and number of iterations. Averages are computed over 1000 different random initial
configurations.

5, where one can see that for higher dimensional cases MinCovTarget find allocations with higher

Nash Welfare.

Again, this seems to suggest that for high-dimensional setting as one implied for instance by

the allocation of different units of medicine/vaccines to various medial divisions/hospitals, Min-

CovTarget could provide an alternative to algorithms aiming at maximizing Nash welfare.

Interestingly enough, the analysis of the Nash welfare also allows us to conclude that the Min-

CovTarget algorithm yields solutions that exhibit Pareto optimality. To see why this is true, note

that the property of Pareto optimality is guaranteed for MNW solutions (as they solve for a product

of utilities). For the case of MinCovTarget Pareto optimality is only guaranteed when the values

of the target parameters τk, k = 1, . . . , n, are set high enough, as can be seen directly from the

definition. As both methods lead to similar values for the Nash welfare, we can conclude that in
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(a) Nash Welfare. – n = 10, d = 100.
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(b) Nash welfare. – n = 100, d = 1000.
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Figure 5: Best method for finding MNW allocations, for different combinations of (n, d), and
different number of iterations used. Rates of success against MNW are computed over 1000 different
random initial configurations. LocalTrades is here applied to the envy objective function.

our simulations MinCovTarget leads approximately to Pareto optimal solutions also for moderate

values of the target.

Finally, Figure 6 shows how the computation times of the different algorithms scale with the

number of items and agents. In Figure 6a, we fix the number of agents at n = 10 and vary the

number of items from d = 100 to d = 1000.

For the different algorithms the number of goods has a negligible impact on the time per iteration

but affects the number of iterations to obtain convergence. We find that the total computation

time to convergence is linear in the number of goods.

In Figure 6b, we vary the number of agents but keep the number of items fixed at d = 1000.

In this case, we observe quadratic growth in time for all algorithms (MNW apart, for which it

remains linear) since at each iteration the envy between all pairs of agents needs to be computed.

The Figure shows that even in case of large number of items/agents, final allocations are obtained

within a second.

6 Conclusions

This paper introduces a new mathematical framework for the fair allocation of indivisible goods.

We show that this classical problem can be cast as the problem of finding an optimal column

rearrangement of multiple matrices. This formulation leads to the design of two new algorithms

(MinCov and MinCovTarget) that are suitable to deal with the novel notion of social inequality, but
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(a) Varying number of goods.
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(b) Varying number of agents.
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Figure 6: Computation times to convergence of the various algorithms designed for fair allocation.

also produces promising results with respect widely used criteria like minimum envy, proportionality

and Nash welfare.

In our simulations, MinCov provides allocations that reduce social inequality by an order of

magnitude if compared to a random assignment, whereas MinCovTarget yields excellent results in

finding envy-free allocations (envy-free allocations are obtained in almost all cases) or allocations

with minimum envy. Numerical results show that MinCovTarget allocations are at least as good

as (and especially in higher dimensions outperforming) MNW allocations with respect to minimal

envy and Nash welfare.

We remark that the problems at hand are NP-hard, hence finding the global optimum is out

of reach unless for low-dimensional instances where linear programming or full enumeration (i.e.,

considering all possible rearranged matrices) can be performed. As a consequence one can always

provide examples (especially low-dimensional ones) under which the algorithms stop at a local

minima different from the global one, or where different random paths lead to substantially different

results. However, for moderately high-dimensional problems where exact techniques cannot be

applied, numerical illustrations show that our algorithms provide excellent results for a variety of

different fairness rules and utility criteria.

In conclusion, the MinCov and MinCovTarget algorithm are straightforward to implement, find

an allocation within seconds and are able to deal with the fair allocation problem for an arbitrary

number of agents/objects.
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A Proofs of Propositions 3.2–3.3

The proofs of Propositions 3.2–3.3 require the following lemma.

Lemma A.1. Let x1, x2, . . . , xn, be n real numbers in increasing order having mean x =
∑n

i=1 xi/n.

For ξ > 0, let

R = {j ∈ {1, . . . , n− 1}; xn − xj > ξ}.

If #R = r, with 1 6 r 6 n− 1, then

V (x1, . . . , xn) =

∑n
i=1(xi − x)2

n
>

r

n(r + 1)
ξ2.

Proof of Lemma A.1. First, note that∑n
i=1(xi − x)2

n
=

1

n2

∑
i<j

(xi − xj)2.

We can assume that xj = xn − ξ, 1 6 j 6 r, otherwise the value of V (x1, . . . , xn) would be larger.

Hence, for fixed xn ∈ R, consider the problem

min
xr+1,...,xn−1∈R

1

n2

∑
i<j

(xi − xj)2.

It is easy to verify that the solution of the above minimum is attained by the only point satisfying

first order conditions; that is, x∗r+1 = · · · = x∗n−1 = xn − r
r+1ξ. Under the assumptions of the

Lemma, we then obtain∑n
i=1(xi − x)2

n
> min

xr+1,...,xn∈R

1

n2

∑
i<j

(xi − xj)2 =
r

n(r + 1)
ξ2.

A.1 Proof of Propositions 3.2

Assume that e(π∗∗) > 0 (otherwise (8) trivially holds) and that it is attained by agent i envying

the bundle received by agent j 6= i, i.e.,

e(π∗∗) = si,π
∗∗

j − si,π∗∗i > 0.

Given the agents’ homogeneous preferences, for each agent k ∈ {1, . . . , n} we have that

sk,π
∗∗

j − sk,π∗∗i = e(π∗∗). (13)
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Using Lemma A.1 with r = 1, it follows that

Vk(π
∗∗) >

e(π∗∗)2

2n
, k ∈ {1, . . . , n}

and

V ∗ = V (π∗∗) =

∑n
k=1 Vk(π

∗∗)

n
>
e(π∗∗)2

2n
,

from which the inequality (8) follows.

We conclude the proof by showing that the upper bound in (8) is sharp in the sense that, in general,

it cannot be lowered for agents with homogeneous preferences. Indeed, consider d = n − 1 items

to be allocated among n agents. The first item is valued (by everyone) M , the others M/2. The

allocation with minimum V prescribes that each item is allocated to one of the agents, with a

single agent – say agent 1 – not receiving anything. In this case one finds V ∗ = M2/(2n) and that

the maximal envy attained by agent 1 (because one of the other agents received the first item) is

e(π∗∗) = M =
√

2nV ∗.

A.2 Proof of Propositions 3.3

Assume that e(π∗∗) > 0 (otherwise (9) trivially holds) and that it is attained by agent i envying

the bundle received by agent j 6= i. Let Vmin = min16k6n Vk(π
∗∗), Vmax = max16k6n Vk(π

∗∗) > 0,

and C = Vmin/Vmax. In a similar way as in the proof of Proposition A.1, it follows that

Vi(π
∗∗) >

e(π∗∗)2

2n
. (14)

Note that, for j 6= i, one has

Vj(π
∗∗) > Vmin = C Vmax > C Vi(π

∗∗). (15)

Using (14) and (15), one obtains

V ∗ =

∑n
k=1 Vk(π

∗∗)

n
>

(1 + (n− 1)C)

n
Vi(π

∗∗) >
e(π∗∗)2

2n

(1 + (n− 1)C)

n
,

which is (9).

A.3 Conjecture in Remark 3.1(c)

Let π∗∗ represent a minimum inequality allocation with minimum envy. Then, we conjecture that

e(π∗∗) 6 n

√
n

2(n− 1)
V ∗. (16)
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Figure 7

Assume that e(π∗∗) > 0 (otherwise (16) trivially holds) and partition the set of agents into the

two subsets

R = {k ∈ {1, . . . , n} : |sk,π∗∗i − sk,π∗∗j | < e(π∗∗), for all i 6= j},

and R = {1, . . . , n} \ R. Also, let r = #R. Bundles evaluations of agents in R differ by less than

e(π∗∗); thus, only agents belonging to R can have an envy of at least e(π∗∗), and hence r > 1. If

r = 1, with R = {k} one could swap the bundle received by agent k with the bundle of the envied

agent, canceling the envy of the first one, leaving the variance unchanged, and decreasing the envy

of the allocation. Hence, 2 6 r 6 n.

Now consider the matrix S = (si,π
∗∗

j ), where the element (i, j) is the valuation by agent i of the

bundle received by agent j under the allocation π∗∗. Re-labelling the agents, we can always write

S =

(
SR R SR R
SR R SR R

)
,

so that the rows/columns of agents in R appear first. Suppose that we put a cross on cell (i, j) to

mean that agent i receives the bundle j. The allocation π∗∗ is then illustrated by putting a cross

on the main diagonal of the matrix S. We have already noted above that any allocation derived

from π∗∗ by a permutation of the bundles is still optimal and, by definition of π∗∗, must have at

least the same envy. Any such allocation can be illustrated by putting exactly one cross in each

column and in each row of S; see Figure 7, left. There are n! such allocations.

Suppose also that we we label with e those bundles that, if assigned to agent i (i.e., if marked
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with a cross) will result in envy of at least e(π∗∗). Formally, cell (i, j) is marked with an an e when

max
k 6=j

(
si,π

∗∗

k − si,π∗∗j

)
> e(π∗∗). (17)

By definition of R, such e’s cannot appear in the last n− r rows of matrix S. On the other hand,

each of the first r rows must have at least one e. Since we can always put (n − r) crosses on the

last (n− r) rows with no e’s, one needs n− r columns of e plus an additional column of e to force

one cross to appear over an e in the first r rows. Summarizing, if one requires π∗∗ to be an optimal

allocation with minimum envy equal to e(π∗∗), we conjecture that the least number of e that can

be used is illustrated in Figure 7, right, where the last (n− r + 1) columns contain an e up to the

r-th row. It is immediate to see that if one removes just one e from this configuration, then one can

re-allocate the bundles to obtain zero envy. Using (17) with Proposition 3.2 and the proof thereof,

one obtains

Vr(π) >
n− r + 1

n− r + 2

e(π∗∗)2

n
, r ∈ R,

and

V (π) =

∑n
k=1 Vk(π)

n
>

∑r
k=1 Vk(π)

n
> r

(
n− r + 1

n− r + 2

)
e(π∗∗)2

n2

> min
26r6n

r

(
n− r + 1

n− r + 2

)
e(π∗∗)2

n2
= 2

(
n− 1

n

)
e(π∗∗)2

n2
,

from which (16) follows.

Notice that the upper bound in (16) is attained in the following case. Consider a single item to

be allocated among n agents.

The value placed on the item by the first two agents is M , while all other agents give a value

ξ > 0 arbitrarily close to 0. A minimum variance allocation is obtained by providing the only

item to any k-th agent. In this case, one the minimal variance can be made arbitrarily close to

V ∗ = 2(n−1)
n3 M2, and the maximal envy attained by either of the first two agents, is represented by

e(π∗∗) = M = n
√

n
2(n−1)V

∗.
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Bouveret, S., M. Lemâıtre, H. Fargier, and J. Lang (2005). Allocation of indivisible goods: a general model

25



and some complexity results. In Proceedings of the 4th international joint conference on Autonomous

Agents and Multiagent Systems, pp. 1309–1310.

Brams, S. J., M. A. Jones, and C. Klamler (2013). N-person cake-cutting: There may be no perfect division.

The American Mathematical Monthly 120 (1), 35–47.

Brams, S. J. and A. D. Taylor (1996). Fair Division: From Cake-Cutting to Dispute Resolution. Cambridge

University Press.

Caragiannis, I., D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang (2019). The unreasonable

fairness of maximum nash welfare. ACM Transactions on Economics and Computation (TEAC) 7 (3),

1–32.

Chevaleyre, Y., U. Endriss, and N. Maudet (2017). Distributed fair allocation of indivisible goods. Artificial

Intelligence 242, 1–22.

Foley, D. (1967). Resource allocation and the public sector. Yale Econ. Essays 7, 45–98.

Ghodsi, M., M. Hajiaghayi, M. Seddighin, S. Seddighin, and H. Yami (2018). Fair allocation of indivisible

goods: Improvements and generalizations. In Proceedings of the 2018 ACM Conference on Economics

and Computation, pp. 539–556.
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