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Abstract

We study the impact of dependence uncertainty on E(X1X2 · · ·Xd) when Xi ∼ Fi for all i.

Under some conditions on the Fi, explicit sharp bounds are obtained and a numerical method is

provided to approximate them for arbitrary choices of the Fi. The results are applied to assess

the impact of dependence uncertainty on coskewness. In this regard, we introduce a novel notion

of “standardized rank coskewness,” which is invariant under strictly increasing transformations

and takes values in [−1, 1].
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1 Introduction

A fundamental characteristic of a multivariate random vector (X1, X2, . . . , Xd) concerns the k-th

order mixed moment

E
(
Xk1

1 Xk2
2 · · ·X

kd
d

)
=

∫
Rd
xk11 x

k2
2 · · ·x

kd
d dF (x1, x2, . . . , xd),

where ki, i = 1, 2, . . . , d, are non-negative integers such that
∑d

i=1 ki = k and F is the joint distri-

bution function of (X1, X2, . . . , Xd); see e.g., Kotz et al. (2004). A classic problem in multivariate

modeling is to find sharp bounds on mixed moments under the assumption that the marginal dis-

tribution functions of the Xi are known but not their dependence. The solutions in case d = 2

are well-known but for higher dimensions a complete solution is still missing. In this regard, it

is well-known that under the assumption that all Xi are non-negative, the sharp upper bound is

obtained in case the variables have a comonotonic dependence. As for the lower bound problem,

Wang and Wang (2011) obtain a sharp bound under the assumption that the Xi are standard

uniformly distributed. To the best of our knowledge, there are no other relevant results available

in the literature.

In the first part of this paper, we determine for the case ki = 1 (i = 1, 2, . . . , d) sharp lower and

upper bounds on mixed moments under some assumptions on the marginal distribution functions

of Xi. When ki 6= 1 and the domain of marginal distributions is non-negative, these bounds are

also solvable under a mixing assumption on the distributions of ki lnXi. Furthermore, we establish

a necessary condition that solutions to the optimization problems need to satisfy and use this result

to design an algorithm that approximates the sharp bounds.

A special case of finding bounds on mixed moments concerns the case of standardized central

mixed moments, such as covariance (second-order), coskewness (third-order) and cokurtosis (fourth-

order). The sharp lower and upper bounds in the case of covariance are very well-known in the

literature, and in the second part of the paper we focus on the application of our results to obtaining

bounds on coskewness. We obtain explicit risk bounds for some popular families of marginal

distributions, such as uniform, normal and Student’s t distributions. Furthermore, we introduce

the novel notion of standardized rank coskewness and discuss its properties. Specifically, as the

standardized rank coskewness takes values in [−1, 1] and is not affected by the choice of marginal

distributions, this notion makes it possible to interpret the sign and magnitude of coskewness

without impact of marginal distributions. In spirit, the standardized rank coskewness extends the

notion of Spearman’s correlation coefficient to three dimensions.

The paper is organized as follows. In Section 2, we lay out the optimization problem. In

Section 3, we derive sharp bounds under various conditions on the marginal distribution functions

and also provide a numerical approach to approximate the sharp bounds in general. We apply our

results in Section 4 to introduce the notion of standardized rank coskewness.
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2 Problem setting

In what follows all random variables Xi ∼ Fi, i = 1, 2, . . . , d, that we consider are assumed to

be square integrable. We denote their means and standard deviations by µi and σi, respectively.

Furthermore, U always denotes a standard uniform distributed random variable. The central

question of this paper is to derive lower and upper bounds on the expectation of the product of

d ≥ 2 random variables under dependence uncertainty. Specifically, we consider the problems

m = inf
∀i Xi∼Fi

E (X1X2 · · ·Xd) ; (2.1)

M = sup
∀i Xi∼Fi

E (X1X2 · · ·Xd) . (2.2)

When d = 2, it is well-known that M is given by E(F−1
1 (U)F−1

2 (U)) (comonotonicity), and m is

given by E(F−1
1 (U)F−1

2 (1 − U)) (antimonotonicity). For general d, the lower bound problem has

a long history when Xi ∼ U [0, 1], (see e.g., Rüschendorf, 1980; Bertino, 1994; Nelsen and Úbeda-

Flores, 2012). Specifically, Wang and Wang (2011) found the following closed-form expression

(Corollary 4.1) for m in the case of Xi ∼ U [0, 1]:

m =
1

(d− 1)2

(
1

d+ 1
− (1− (d− 1)cd)

d +
d

d+ 1
(1− (d− 1)cd)

d+1

)
+(1−dcd)cd(1− (d−1)cd)

d−1,

(2.3)

where cd is the unique solution to log
(

1− d+ 1
c

)
= d − d2c. Clearly, for M we find in this case

that M = E(Ud) = 1
d+1 . When Xi ∼ U [a, b] such that 0 < a < b < ∞ and the inequality

exp{ d
b−a(b(ln b − 1) − a(ln a − 1))} − abd−1 ≤ 0 holds, Bignozzi and Puccetti (2015) found the

analytic result m =
(
bbea

aaeb

) d
b−a

.

However, as far as we know, there are no other results available in the literature for computing

m and M in more general cases. In the following section, we contribute to the literature by solving

explicitly Problems (2.1) and (2.2) under various assumptions on the marginal distributions Fi,

i = 1, 2, . . . , d (Section 3.1), or via an algorithm for arbitrary choices of Fi (Section 3.2).

3 Lower and upper bounds

3.1 Analytic results

We first provide lower and upper bounds when the Fi are symmetric and have zero means. Next

we study the case in which the Fi satisfy some domain constraints or when they are uniform

distributions on (a, b), a < 0 < b. Our results make use of the following two lemmas.

Lemma 3.1 (Maximum product). Let Xi ∼ Fi, denote by Gi the df of the absolute value of Xi
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(i.e., |Xi| ∼ Gi), i = 1, 2, . . . , d, and U ∼ U [0, 1]. Then,

M ≤ E

 d∏
i=1

G−1
i (U)

 . (3.1)

If |X1|, |X2|, . . . , |Xd| are comonotonic and
∏d
i=1Xi ≥ 0 a.s., then (X1, X2, . . . , Xd) attains the

maximum value M and equality holds in (3.1).

Proof. As for the first part of the lemma, note that for any random vector (Y1, Y2, . . . , Yd) such

that Yi ∼ Fi, i = 1, 2, . . . , d, it holds that E(
∏d
i=1 Yi) ≤ E(

∏d
i=1|Yi|). (3.1) then follows from the

well-known fact that the right hand side of this inequality is maximized under a comonotonic

dependence among the |Yi|. As for the second part, since |Xi|
d
= |Yi|, the |Xi| are comonotonic, and∏d

i=1Xi ≥ 0, it follows that E(
∏d
i=1 Yi) ≤ E(

∏d
i=1|Xi|) = E(

∏d
i=1Xi).

Lemma 3.2 (Minimum product). Let Xi ∼ Fi, denote by Gi the df of the absolute value of Xi

(i.e., |Xi| ∼ Gi), i = 1, 2, . . . , d, and U ∼ U [0, 1]. Then,

m ≥ −E

 d∏
i=1

G−1
i (U)

 . (3.2)

If |X1|, |X2|, . . . , |Xd| are comonotonic and
∏d
i=1Xi ≤ 0 a.s., then (X1, X2, . . . , Xd) attains the

minimum value m and equality holds in (3.2).

Proof. The proof is similar to the proof of the previous lemma noting that E(
∏d
i=1Xi) = −E(

∏d
i=1|Xi|)

when
∏d
i=1Xi ≤ 0 a.s..

3.1.1 Symmetric marginal distributions

The following two theorems are main contributions of this paper.

Theorem 3.1 (Upper bound). Let Fi, i = 1, 2, . . . , d, be symmetric with zero means and U ∼
U [0, 1]. There exists a random vector (X1, X2, . . . , Xd) such that the |X1|, |X2|, . . . , |Xd| are

comonotonic and
∏d
i=1Xi ≥ 0 a.s.. Hence, M = E(

∏d
i=1G

−1
i (U)) where Gi denotes the df of |Xi|.

Furthermore, if d is odd, then Xi = F−1
i (Ui) with

U1 = U2 = · · · = Ud−2 = U,

Ud−1 = IJU + I(1− J)(1− U) + (1− I)JU + (1− I)(1− J)(1− U),

Ud = IJU + I(1− J)(1− U) + (1− I)J(1− U) + (1− I)(1− J)U,

(3.3)

where I = 1U> 1
2
, J = 1V > 1

2
, and V

d
= U [0, 1] is independent of U . If d is even, then Xi = F−1

i (Ui)

with

U1 = U2 = · · · = Ud = U. (3.4)
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Proof. (1) d is odd. The random variables Xj , j = 1, 2, . . . , d− 2, can be expressed as follows:

Xj = IJF−1
j (U) + I(1− J)F−1

j (U) + (1− I)JF−1
j (U) + (1− I)(1− J)F−1

j (U).

Furthermore,

Xd−1 = IJF−1
d−1(U) + I(1− J)F−1

d−1(1− U) + (1− I)JF−1
d−1(U) + (1− I)(1− J)F−1

d−1(1− U),

Xd = IJF−1
d (U) + I(1− J)F−1

d (1− U) + (1− I)JF−1
d (1− U) + (1− I)(1− J)F−1

d (U).

It follows that∣∣Xj

∣∣ = IJF−1
j (U) + I(1− J)F−1

j (U)− (1− I)JF−1
j (U)− (1− I)(1− J)F−1

j (U)

= IF−1
j (U)− (1− I)F−1

j (U),

|Xd−1| = IJF−1
d−1(U)− I(1− J)F−1

d−1(1− U)− (1− I)JF−1
d−1(U) + (1− I)(1− J)F−1

d−1(1− U)

= IJF−1
d−1(U) + I(1− J)F−1

d−1(U)− (1− I)JF−1
d−1(U)− (1− I)(1− J)F−1

d−1(U)

= IF−1
d−1(U)− (1− I)F−1

d−1(U),

|Xd| = IJF−1
d (U)− I(1− J)F−1

d (1− U) + (1− I)JF−1
d (1− U)− (1− I)(1− J)F−1

d (U)

= IJF−1
d (U) + I(1− J)F−1

d (U)− (1− I)JF−1
d (U)− (1− I)(1− J)F−1

d (U)

= IF−1
d (U)− (1− I)F−1

d (U),

where we used in the second equations for |Xd−1| and |Xd| that Fd−1 resp. Fd is symmetric. Note

that the |Xi| also write as |Xi| = F−1
i (Z), i = 1, 2, . . . , d, where Z = U if U ≥ 1

2 and Z = 1 − U
if U < 1

2 , i.e., Z = 1
2 + |U − 1

2 |. Next, we show that |X1|, |X2|, . . . , |Xd| are comonotonic and

that
∏d
i=1Xi ≥ 0 a.s.. First, |Xi|, i = 1, 2, . . . , d, are comonotonic because they are all increasing

functions of |U − 1
2 |. Second,

d∏
i=1

Xi =IJ

d∏
i=1

F−1
i (U) + I(1− J)F−1

d−1(1− U)F−1
d (1− U)

d−2∏
i=1

F−1
i (U)+

(1− I)J
d−1∏
i=1

F−1
i (U)F−1

d (1− U) + (1− I)(1− J)F−1
d−1(1− U)F−1

d (U)
d−2∏
i=1

F−1
1 (U),

which is greater than or equal to zero because F−1
i (U) > 0 and F−1

i (1− U) ≤ 0 when U > 1
2 , and

F−1
i (U) ≤ 0 and F−1

i (1 − U) > 0 when U ≤ 1
2 , and where we use that d is odd. Therefore, the

vector (X1, X2, . . . , Xd) with Xi = F−1
i (Ui), in which the Ui are given as in (3.3), attains M .

(2) d is even. The random variables Xi can be expressed as Xi = IF−1
i (U) + (1 − I)F−1

i (U).

Hence, |Xi| = IF−1
i (U)−(1−I)F−1

i (U). It is clear that |X1|, |X2|, . . . , |Xd| are comonotonic, as they

are all increasing in |U − 1
2 |. Furthermore,

∏d
i=1Xi = I

∏d
i=1 F

−1
i (U) + (1− I)

∏d
i=1 F

−1
i (U), which

is greater than or equal to zero (note that d is even). Therefore, the random vector (X1, X2, . . . , Xd)

with Xi = F−1
i (U) attains M .

Theorem 3.2 (Lower bound). Let Fi, i = 1, 2, . . . , d, be symmetric with zero means and U ∼
U [0, 1]. There exists a random vector (X1, X2, . . . , Xd) such that |X1|, |X2|, . . . , |Xd| are comono-
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tonic and
∏d
i=1Xi ≤ 0 a.s.. Hence, m = −E(

∏d
i=1G

−1
i (U)) where Gi is the df of |Xi|. Furthermore,

if d is odd, then Xi = F−1
i (Ui) with

U1 = U2 = · · · = Ud−2 = U,

Ud−1 = IJU + I(1− J)(1− U) + (1− I)JU + (1− I)(1− J)(1− U),

Ud = IJ(1− U) + I(1− J)U + (1− I)JU + (1− I)(1− J)(1− U),

(3.5)

where I = 1U> 1
2
, J = 1V > 1

2
, and V

d
= U [0, 1] is independent of U . If d is even, then Xi = F−1

i (Ui)

with

U1 = U2 = · · · = Ud−1 = U and Ud = 1− U. (3.6)

We omit the proof of the lower bound because it is similar to that of the upper bound. Figure 1

presents the supports of the copulas in (3.3) and (3.5) when d = 3. As the projections of the

support on the planes formed by the x-axis and y-axis, resp. x-axis and z-axis, resp. y-axis and

z-axis form crosses, we label these copulas as cross product copulas. Note that the simulation shows

the densities of the cross product copulas are uniform on each of the segments.

Figure 1: Support of the (cross product) copula that maximizes (left panel) resp. minimizes (right
panel) E(X1X2X3) where Xi ∼ Fi (i = 1, 2, 3) in the case that the Fi are symmetric with zero
means.

Corollary 3.1. Let the Fi be uniform distributions on
[
−
√

3,
√

3
]
. Then M =

(√
3
)d
/(d+1) and

is attained by a random vector (X1, X2, . . . , Xd), where Xi = F−1
i (Ui) in which the Ui are given in

(3.3) (resp., (3.4)) if d is odd (resp., even). Furthermore, m = −
(√

3
)d
/(d+ 1) and is attained by

a random vector (X1, X2, . . . , Xd) where Xi = F−1
i (Ui) in which the Ui are given in (3.5) (resp.,

(3.6)) if d is odd (resp., even).

Proof. With Xi ∼
[
−
√

3,
√

3
]
, we find that |Xi| := V ∼ U

[
0,
√

3
]
. Then we find from Theorem

3.1 that M = E(V d) =
∫ √3

0 vd
√

3
3 dv = 3

d
2

d+1 . In a similar way, we find from Theorem 3.2 that

m = −3
d
2 /(d+ 1).

Remark 3.1. For general distribution functions Fi, i = 1, 2, . . . , d, the upper bound in (3.1) and

the lower bound in (3.2) are typically not attainable. Moreover, the construction Xi = F−1
i (Ui)
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with the Ui as given in (3.3) (d is odd) resp. as given in (3.4) (d is even) does not lead to the

sharp bound M (similar for the case of the lower bound m). To illustrate this point, let the Fi,

i = 1, 2, 3, denote discrete distributions having mass points -1 and 10 with equal probability.

Under a comonotonic dependence among the Xi ∼ Fi, we obtain that E (X1X2X3) = 499.5.

However, under the dependence as in (3.3), we obtain that E (X1X2X3) = 257.5 < 499.5. Moreover,

E
(
|X1||X2||X3|

)
= 500.5 is not attainable.

3.1.2 Marginal distributions under domain restrictions

In this subsection, we provide sharp bounds under various conditions that the domain of Fi is

non-negative or non-positive, or that the Fi are uniforms on (a, b), a < 0 < b.

Proposition 3.1 (Non-negative domain). Let Xi ∼ Fi in which the Fi have non-negative domain.

(1) The upper bound M is attained when (X1, X2, . . . , Xd) is a comonotonic random vector, i.e.,

Xi = F−1
i (U) in which U ∼ U [0, 1].

(2) Under a mixing assumption on the distributions of lnX1, lnX2, . . . , lnXd, i.e.,
∑d

i=1 lnXi = c,

where c is a constant, it holds that m = ec and m is attained by (X1, X2, . . . , Xd).

Proof. The first statement follows from Lemma 3.1 in a direct manner. As for the proof of the second

statement, it holds for any Yi ∼ Fi, i = 1, 2, . . . , d that E
(∏d

i=1 Yi

)
= E

(
exp

(∑d
i=1 lnYi

))
≥

exp

(
E
(∑d

i=1 lnYi

))
where the last inequality follows from Jensen’s inequality. Furthermore, this

inequality turns into an equality when
∑d

i=1 lnYi is constant. This implies the second statement.

Remark 3.2. For k-th order mixed moments andXi ∼ Fi in which the Fi have non-negative domains,

i = 1, 2, . . . , d, we obtain from Proposition 3.1 the lower and upper bound of E
(
Xk1

1 Xk2
2 · · ·X

kd
d

)
.

Under a mixing assumption on the distributions of k1 lnX1, k2 lnX2, . . . , kd lnXd, it holds that

the lower bound is attained by (X1, X2, . . . , Xd). The mixing conditions for this case are given in

Section 3 of Wang and Wang (2016). In particular, this holds true in case k1 = k2 = · · · = kd = l

in which l is an integer and l ≥ 1, and the lower bound is ml, where m is the value in (2.3).

Proposition 3.2 (Non-positive domain). Let Xi ∼ Fi in which the Fi have non-positive domain

and U ∼ U [0, 1].

(1) Let d be an odd number. Under a mixing assumption on the distributions of ln|X1|, ln|X2|, . . . ,
ln|Xd|, i.e.,

∑d
i=1 ln|Xi| = c, where c is a constant, it holds that M = −ec and M is attained by

(X1, X2, . . . , Xd). m is attained when (X1, X2, . . . , Xd) is a comonotonic random vector, i.e.,

Xi = F−1
i (U).

(2) Let d be an even number. M is attained when (X1, X2, . . . , Xd) is a comonotonic random vector,

i.e., Xi = F−1
i (U). Under a mixing assumption on the distributions of ln|X1|, ln|X2|, . . . , ln|Xd|,

i.e.,
∑d

i=1 ln|Xi| = c, where c is a constant, it holds that m = ec and m is attained by

(X1, X2, . . . , Xd).

6



Proof. Its proof is similar to that of Proposition 3.1, we thus omit it. 2

Proposition 3.2 shows that when the Fi have non-positive domain and d is odd, an upper bound

on M is given by − exp

(
E
(∑d

i=1 ln|Yi|
))

, Yi ∼ Fi. Wang and Wang (2011, 2015), Puccetti

and Wang (2015), and Puccetti et al. (2012) provide general conditions on the Fi that ensure the

construction of Xi ∼ Fi such that the distributions of X1, X2, . . . , Xd are mixing and thus allow

to infer sharpness of the bounds above. For early results of this type, see Gaffke and Rüschendorf

(1981) and Rüschendorf and Uckelmann (2002).

Proposition 3.3 (Uniform distributions with non-zero means). Let Xi ∼ Fi, i = 1, 2, . . . , d.

Assume that d is odd and that the Fi are uniform distributions on [a, b] (a < 0 < b). Define

J = 1V > 1
2
, in which V ∼ U [0, 1] is independent of U ∼ U [0, 1]. It holds that:

(1) Let |a| < b and c = −2a
b−a . M is attained by a random vector (X1, X2, . . . , Xd), with Xi = F−1

i (Ui)

in which

U1 =U2 = · · · = Ud−2 = U, (3.7)

Ud−1 =(1− I)[KJU +K(1− J)(c− U) + (1−K)JU + (1−K)(1− J)(c− U)] + IU,

Ud =(1− I)[KJU +K(1− J)(c− U) + (1−K)J(c− U) + (1−K)(1− J)U ] + IU,

and where I = 1U>c and K = 1U> c
2
.

(2) Let |a| > b and c = −b−a
b−a . m is attained by the random vector (X1, X2, . . . , Xd), with Xi =

F−1
i (Ui) in which

U1 =U2 = · · · = Ud−2 = U, (3.8)

Ud−1 =(1− I)[KJU +K(1− J)(1 + c− U) + (1−K)JU + (1−K)(1− J)(1 + c− U)] + IU,

Ud =(1− I)[KJ(1 + c− U) +K(1− J)U + (1−K)JU + (1−K)(1− J)(1 + c− U)] + IU,

and where I = 1U<c and K = 1U> 1+c
2

.

Proof. (1) Note that F−1
i (u) > 0 if and only if u > c

2 . When 1 ≤ j ≤ d − 2, Xj = F−1
j (U).

Moreover,

Xd−1 =(1− I)[KJF−1
d−1(U) +K(1− J)F−1

d−1(c− U) + (1−K)JF−1
d−1(U)

+ (1−K)(1− J)F−1
d−1(c− U)] + IF−1

d−1(U),

Xd =(1− I)[KJF−1
d (U) +K(1− J)F−1

d (c− U) + (1−K)JF−1
d (c− U)

+ (1−K)(1− J)F−1
d (U)] + IF−1

d (U).

The absolute values of Xi are

∣∣Xj

∣∣ =(1− I)[KF−1
j (U)− (1−K)F−1

j (U)] + IF−1
j (U)

7



|Xd−1| =(1− I)[KJF−1
d−1(U)−K(1− J)F−1

d−1(c− U)− (1−K)JF−1
d−1(U)

+ (1−K)(1− J)F−1
d−1(c− U)] + IF−1

d−1(U)

=(1− I)[KF−1
d−1(U)− (1−K)F−1

d−1(U)] + IF−1
d−1(U),

|Xd| =(1− I)[KJF−1
d (U)−K(1− J)F−1

d (c− U) + (1−K)JF−1
d (c− U)

− (1−K)(1− J)F−1
d (U)] + IF−1

d (U)

=(1− I)[KF−1
d (U)− (1−K)F−1

d (U)] + IF−1
d (U).

The above equations for|Xd−1| and|Xd| hold because−F−1
d (c−U) = F−1

d (U) if U ≤ c. Similarly

to Theorem 3.1, we apply Lemma 3.1 to prove this proposition. First, |Xi|, i = 1, 2, . . . , d,

are comonotonic because they are all increasing functions of |U − c
2 | (|Xi| = F−1

i (Z) where

Z = c
2 + |U − c

2 |). Moreover, it verifies that
∏d
i=1Xi ≥ 0 if d is odd. Hence, M is attained by

the random vector (X1, X2, . . . , Xd), where Xi = F−1
i (Ui) with Ui in (3.7).

(2) The proof of (2) is similar to that of (1) and thus omitted. 2

Figure 2 displays the supports of the copulas in (3.7) and (3.8) when d = 3 and a < 0.

Figure 2: Support of the copula (3.7) (resp., (3.8)) that maximizes (left panel) (resp., minimizes
(right panel)) E(X1X2X3) with Fi ∼ U [a,−3a] (resp., Fi ∼ U [a,−a/3]), in which a < 0 and c = 1

2 .

3.2 Algorithm for obtaining sharp bounds

In this subsection, we develop an algorithm to approximate for any given choice of Fi, i = 1, 2, . . . , d,

the sharp bounds m and M . The algorithm is based on the following lemma that establishes

necessary conditions that the solutions to the optimization problems (2.2) resp. (2.1) need to

satisfy.

Lemma 3.3. If (X1, X2, . . . , Xd) solves problem (2.2) (resp., (2.1)), then for any choice of sub-

sets I of {1, 2, . . . , d}, it holds that X1 =
∏
i∈I Xi and X2 =

∏
i/∈I Xi are comonotonic (resp.,

antimonotonic).

Making use of Lemma 3.3, we can now design an algorithm to obtain approximate solutions to

problems (2.1) and (2.2).
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Algorithm 3.1.

1. Simulate n draws uj , j = 1, 2, . . . , n, from a standard uniform distributed random variable.

2. Initialize n × d matrix X = (x1, x2, . . . , xd) where xi = (x1i, x2i, . . . , xni)
T denotes the i-th

column (i = 1, 2, . . . , d) and xji = F−1
i (uj).

3. Rearrange two blocks of the matrix X:

3.1. Select randomly a subset I of {1, 2, . . . , d} of cardinality lower than or equal to d
2 .

3.2. Separate two blocks (submatrices) X1 and X2 from X where the first block X1 contains

columns of X having index in I and the second block X2 consists of the other columns.

3.3. Rearrange (swap) the rows of first block so that the vector x1 = (
∏
i∈I

x1i,
∏
i∈I

x2i, . . . ,
∏
i∈I

xni)
T

is comonotonic (resp., antimonotonic) to x2 = (
∏
i/∈I

x1i,
∏
i/∈I

x2i, . . . ,
∏
i/∈I

xni)
T in the case of

problem (2.2) (resp., (2.1)).

3.4. Compute Λ = 1
n

n∑
j=1

(
d∏
i=1

xji

)
.

4. If there is no difference1 in Λ after 50 steps of Step 3, output the current matrix X and Λ,

otherwise return to step 3.

To illustrate the empirical performance of the algorithm, we compare in case Fi ∼ U [0, 1]

(i = 1, 2, . . . , d) the analytic result of Wang and Wang (2011) for the lower bound m with the

numerical value obtained by applying the algorithm. In Table 1, we report the cases d = 3, 5, 10, 50

and n = 1000, 10000, 100000. We observe that the approximate value is not significantly different

d Analytic value n = 1000 n = 10000 n = 100000

3 5.4803× 10−2 5.4869× 10−2

(1.6× 10−4, 0.01s)

5.4869× 10−2

(5.0× 10−6, 0.06s)

5.4796× 10−2

(1.6× 10−6, 0.75s)

5 6.8604× 10−3 6.9259× 10−3

(3.5× 10−5, 0.01s)

6.8844× 10−3

(1.1× 10−5, 0.08s)

6.8616× 10−3

(3.3× 10−6, 1.13s)

10 4.5410× 10−5 4.8185× 10−5

(4.9× 10−7, 0.01s)

4.5924× 10−5

(1.4× 10−7, 0.15s)

4.5372× 10−5

(4.4× 10−8, 1.89s)

50 1.9287× 10−22 6.2708× 10−22

(4.5× 10−23, 0.02s)

2.2119× 10−22

(3.7× 10−24, 0.34s)

1.9654× 10−22

(9.56× 10−25, 8.73s)

Table 1: Let Fi ∼ U [0, 1] for i = 1, 2, . . . , d. We compare the analytic value for m from Wang and
Wang (2011) with the numerical value obtained using Algorithm 3.1 (mean across 1000 experiments)
for n = 1000, 10000, 100000. The numbers between parentheses represent the standard errors and
average time consumption.

1On the one hand, if the dimension d is large and the algorithm converges slowly, the stop criteria we use is that
the relative change in the value of Λ is less than 0.01%. On the other hand, for small dimensions (typically when d
is less than 30), it is possible to perform steps 3.2, 3.3 and 3.4 for all possible subsets instead of only 50 randomly
chosen subsets. The necessary condition from Lemma 3.3 is then guaranteed to be satisfied.

9



from the analytic value (especially when n is big). The run time increases if d and n increase.

The standard errors illustrate that the algorithm we use is relatively stable. To summarize, our

proposed algorithm appears to be a simple, fast and stable method to numerically solve problems

(2.1) and (2.2).

4 Application to coskewness uncertainty

In this section, we apply the results obtained so far to the study of risk bounds on coskewness among

random variables Xi with given marginal distributions Fi (i = 1, 2, 3) but unknown dependence.

To begin with, the coskewness of X1, X2 and X3, denoted by S(X1, X2, X3), is given as

S(X1, X2, X3) =
E((X1 − µ1)(X2 − µ2)(X3 − µ3))

σ1σ2σ3
,

and we thus aim at solving the following problems

S = inf
Xi∼Fi, i=1,2,3

S(X1, X2, X3), (4.1)

S = sup
Xi∼Fi, i=1,2,3

S(X1, X2, X3). (4.2)

Note that Xi ∼ Fi ⇐⇒ Yi = Xi−µi
σi
∼ Hi where H−1

i =
F−1
i −µi
σi

. Hence, solving Problems (4.1) and

(4.2) under the restriction Xi ∼ Fi (i = 1, 2, 3) is equivalent to solving the optimizations problems

(2.1) and (2.2) for the case Xi ∼ Hi. That is, standardization of the marginal distributions Fi,

i = 1, 2, 3, does not affect the bounds.

4.1 Risk bounds on coskewness

The following proposition follows as a direct application of Theorem 3.1 resp. Theorem 3.2.

Proposition 4.1. Let Xi ∼ Fi in which the Fi are symmetric, i = 1, 2, 3, and U ∼ U [0, 1]. The

maximum coskewness S of X1, X2 and X3 under dependence uncertainty is given as

S = E
(
G−1

1 (U)G−1
2 (U)G−1

3 (U)
)

(4.3)

where Gi is the df of |(Xi − µi)/σi| and is attained when Xi = F−1
i (Ui) with Ui as in (3.3); the

minimum coskewness S is given as

S = −E
(
G−1

1 (U)G−1
2 (U)G−1

3 (U)
)

(4.4)

and is attained when Xi = F−1
i (Ui) with Ui as in (3.5).

Thanks to Proposition 4.1, we can compute the risk bounds on coskewness for different choices

of symmetric marginal distributions.
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Uniform marginal distributions: Let Fi ∼ U [ai, bi], i = 1, 2, 3. Standardization of the Fi

leads to marginal distributions Hi ∼ U
[
−
√

3,
√

3
]
. Hence, an application of Corollary 3.1 to the

case d = 3 yields that S = 3
√

3
4 and S = −3

√
3

4 .

Normal marginal distributions: Let Fi ∼ N(µi, σ
2
i ), i = 1, 2, 3. After standardization we

find that S = E
(
G−1(U)3

)
= 2E

(
Z31Z>0

)
where G is the df of |Z| with Z ∼ N(0, 1). Integration

yields that S = 2√
2π

∫ +∞
0 z3e−

z2

2 dz = 2
√

2π
π .

Similar calculations can also be performed for other symmetric marginal distributions. In Table

2, we report risk bounds on coskewness according to Proposition 4.1 for various cases. Note that

except for the parameter ν, all parameters in the table have no impact on the bounds because they

are location and scale parameters.

Marginal Distributions Fi Minimum Coskewness Maximum Coskewness

N(µi, σ
2
i ) −2

√
2π
π

2
√

2π
π

Student(ν), ν > 3 −4(ν−2)
√

(ν−2)πΓ( ν+1
2

)

(3−4ν+ν2)πΓ( ν
2

)

4(ν−2)
√

(ν−2)πΓ( ν+1
2

)

(3−4ν+ν2)πΓ( ν
2

)

Laplace(µi, bi) −3
√

2
2

3
√

2
2

U [ai, bi] −3
√

3
4

3
√

3
4

Table 2: Maximum and minimum coskewness for various choices of the marginal distributions.
Γ(x) denotes the gamma function.

Proposition 4.2. When Fi, i = 1, 2, 3, are symmetric, then S and S are opposite numbers.

Proof. We omit the proof since it is an immediate consequence of Theorems 3.1 and 3.2.

Based on these new bounds, we define hereafter a novel concept of standardized rank coskewness.

4.2 Standardized rank coskewness

An important feature of the coskewness is that it depends on marginal distributions. In the same

spirit as Spearman (1904) for the rank correlation, we propose to define the standardized rank

coskewness among given variables X1 ∼ F1, X2 ∼ F2 and X3 ∼ F3 as the coskewness of the

transformed variables F1(X1), F2(X2), and F3(X3).

Definition 4.1 (Standardized rank coskewness). Let Xi ∼ Fi, i = 1, 2, 3, such that Fi are strictly

increasing and continuous. The standardized rank coskewness of X1, X2 and X3 denoted by

RS(X1, X2, X3) is defined as RS(X1, X2, X3) = 4
√

3
9 S(F1(X1), F2(X2), F3(X3)). Hence,

RS(X1, X2, X3) = 32E

((
F1(X1)− 1

2

)(
F2(X2)− 1

2

)(
F3(X3)− 1

2

))
. (4.5)

Proposition 4.3. Let Xi ∼ Fi for i = 1, 2, 3. The standardized rank coskewness RS(X1, X2, X3)

satisfies the following properties:
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(1) −1 ≤ RS(X1, X2, X3) ≤ 1.

(2) The upper bound of 1 is obtained when the Xi are of the form Xi = F−1
i (Ui) in which the Ui are

given in (3.3). The lower bound of −1 is obtained when the Xi are of the form Xi = F−1
i (Ui)

in which the Ui are given in (3.5).

(3) It is invariant under strictly increasing transformations, i.e., when fi, i = 1, 2, 3, are arbitrary

strictly increasing functions, we have RS(X1, X2, X3) = RS(f1(X1), f2(X2), f3(X3)).

(4) RS(X1, X2, X3) = 0 if X1, X2 and X3 are independent.

Note that Xi ∼ Fi (i = 1, 2, 3) exhibit maximum resp. minimum standardized rank coskewness

when they have a cross product copula specified through (3.3) resp. (3.5). Specifically, the properties

in (1)-(4) are a strong motivation for the introduction of the newly introduced notion of standardized

rank coskewness. One shortcoming of the new definition like the traditional coskewness is that the

last property in Proposition 4.3 is sufficient but not necessary.

4.3 Asymmetric marginals

When the Fi are not symmetric, one can still obtain explicit bounds on coskewness providing the

Fi satisfy some domain conditions; see Propositions 3.1-3.3. In the general case, one can invoke

Algorithm 3.1 to obtain approximations for the sharp bounds. We examine hereafter the example

of lognormal distributions, i.e., Fi ∼ logN(0, 1) for i = 1, 2, 3.

Figure 3: With Fi ∼ logN(0, 1) (i = 1, 2, 3) and n = 100000, the support of the copula that
maximizes (resp. minimizes) coskewness is displayed in the left (resp. the right) panel. In this case,
M ≈ 5.71 and m ≈ −0.97.

From Algorithm 3.1, we obtain that maximum and minimum coskewness are approximately

equal to 5.71 resp. −0.97 when n = 100000. The supports of the corresponding copulas are

displayed in Figure 3. Note that using the copulas coming from (3.3) resp. (3.5) would only lead

to a coskewness equal to 4.79 resp. 0.21.
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5 Conclusion

In this paper, we find new bounds for the expectation of a product of random variables when

marginal distribution functions are fixed but dependence is unknown. We solve this problem

explicitly under some conditions on the marginal distributions and propose an algorithm to solve

the problem in the general case. We introduce the novel notion of standardized rank coskewness,

which unlike coskewness, is unaffected by marginal distributions and thus appears useful for better

understanding the degree of coskewness that exists among three random variables.
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