Ordering risk bounds in factor models

Jonathan Ansari * Ludger Riischendorf T
October 11, 2018

Abstract

Conditionally comonotonic risk vectors have been proved in [4] to yield
worst case dependence structures maximizing the risk of the portfolio sum
in partially specified risk factor models. In this paper we investigate the
question how risk bounds depend on the specification of the pairwise cop-
ulas of the risk components X; with the systemic risk factor. As basic tool
we introduce a new ordering based on sign changes of the derivatives of
copulas. This together with discretization by n-grids and the theory of
supermodular transfers allows us to derive concrete ordering criteria for
the maximal risks.

Keywords products of copulas, supermodular ordering, risk bounds,
conditionally comonotonic distributions, mass transfer theory, elliptical
distributions, Archimedean copulas

1 Introduction

In recent years a lot of effort has been undertaken to base the evaluation of risk
bounds for the joint portfolio S = Zle X; of a risk vector X = (Xq,...,X4)
on reliable information on the marginals F; of X; and on the joint dependence
structure of X . Considering law-invariant convex risk measures W it is well-
known that V¥ is consistent with respect to the convex order, i.e.

S1<ee S22 = U(51) < P(5y) (1)

assuming generally that S; € L!(P) are integrable and defined on a non-atomic
probability space (2,.A, P). Thus it is sufficient to determine (sharp) upper
bounds w.r.t. <., in order to determine (sharp) upper risk bounds for Z?:l X;.

In the case that there is only marginal information but no further dependence
information on the risk vector X available, an upper bound for the joint portfolio
S =%, X, in convex order is given by the comonotonic sum §¢ = 3¢ | X¢ =
Z?Zl F71(U) with U ~ U(0,1) uniformly distributed on (0,1),

S <ew S°. 2)
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For many applications, the comonotonic upper bound ¥(S¢) of the risk ¥(S5)
is too wide to be useful. Therefore, in recent years various approaches have
been investigated to introduce additional dependence information and structural
information in order to tighten the risk bounds.

A promising approach in this direction, the partially specified risk factor
models, have been introduced in [4]. It is assumed in this approach that the risk
vector X is described by a factor model

Xi=fi(Z,&), 1<i<d,

for functions f;, where Z is a systemic risk factor and ¢; are individual risk
factors. It is assumed that the joint distributions H; of (X;,Z), 1 < i < d,
are known. The joint distributions of (g;) and Z however are not specified,
in contrast to the usual independence assumption in factor models. This means
that both the copulas Cx, z of (X;, Z) and the marginal distributions of X; ~ F;
and Z ~ G are known, but the dependence structure of (X1,...,X4)|Z = z is
not specified.

The common systemic risk factor Z however can be used to reduce the
dependence uncertainty (DU). It has been shown in [4, Proposition 3.2] that in
the partially specified risk factor model a sharp upper bound in convex order is
given by the conditionally comonotonic sum, i.e. for U ~ U(0,1) independent
of Z holds

d
S <ex S =) Fxl,(U). (3)
1=1

Furthermore, SY, is an improvement of the comonotonic sum 5S¢, i.e.
S5 <ex SC. (4)

In this paper, we assume that Z is a real-valued random variable. Then, the
upper bound SY, depends only on the specified marginals F; and G and on the
bivariate copulas C* = C x;,z € Ca, where C4 denotes the set of d-copulas. The
conditionally comonotonic sum S% thus solves the optimization problem

d
S%zmax{ZXi, X, ~F, Z~G, CXi,chi} : (5)

i=1

where the max is w.r.t. convex order <., .

In the following, we investigate how the solution in varies in dependence
on the constraints C?. More generally, we aim to determine criteria for copula
classes S* C Cy of bivariate copulas and classes F; of univariate distribution
functions such that a solution of the maximization problem

d
maX{ZXi, Xi~F, Z~G, Cx, z 631} wrt <.z (6)

i=1



exists and can be determined for all F; € F; and for all continuous distribution
functions G . Equivalently, maximization problem [f] can be formulated as

d
max {Zfz(Uz)7 U; ~ U(Ov 1)7 Z ~ Ga CVUi,Z S Sl} w.rt., <.z (7)
=1

for classes S? of copulas, transformation functions f; € G; = {Fi_l\Fi € F;} and
continuous distribution functions G .

After the problem formulation and motivation we introduce in Section [2| the
upper product of bivariate copulas which describes the dependence structure
of conditionally comonotonic random vectors. We develop several tools for ap-
proximation of these products. In particular, we deal with the approximation
by n-grid copulas. In Section [3] we reduce ordering properties of the portfolio
sums in partially specified factor models by approximation to ordering proper-
ties on n-grid models. As a basic new tool, we introduce the ordering <ga of
sign changes of the derivatives of the copulas. In our main result, Theorem [3.10}
we show that the <ga-ordering is sufficient for ordering upper products and
thus for ordering risk bounds in factor models. For the ordering of the n-grid
copulas we make essential use of the ordering results by mass transfer theory
as developed in [I3]. The partially quite technical proofs are deferred to the ap-
pendix. In Section [d, we give an application to financial data. We improve the
standard DU interval for the Average Value-at-Risk of a portfolio of European
options on different assets by up to 30%.

2 The upper product of bivariate copulas

A d-copula is a distribution function on the d-dimensional unit cube [0, 1]¢ with
uniform univariate margins. Due to Sklar’s Theorem, the distribution of a ran-
dom vector can be separated in its univariate margins and a copula which com-
pletely describes the dependence structure of the random vector. Some specific
copulas that we need in the following are the copulas M¢ € Cy, II? € C4 and
W?2 € Cy which model comonotonicity, independence and countermonotonicity,
respectively. For an introduction to copulas, we refer to [16].
Since the univariate margins are fixed, a solution of and @ only depends
on the copula of (Xy,...,X,). Varying the solution in dependence on the con-
straints C* € C, motivates to introduce upper products of bivariate copulas
which are the copulas of conditionally comonotonic distributions.

For a family C = {C;}/¢cj0,1) C C2 of bivariate copulas and A, B € Cz, the
C-product A x¢ B: [0,1]> — [0,1] of A and B is defined through

1
(A *C B)(Ul,UQ) Z:/O Ct (;A(ul,t), ;B(t,U2)> dt (8)

which again is a bivariate copula (see [8, Proposition 1].



In the case that C; = II? for all ¢, where II? denotes the bivariate independence
copula, there is a correspondence of the C-product with Markov processes (see
[6, Theorem 3.2 and Theorem 3.3]. For our purposes, we are interested in a
d-dimensional extension of the case that C, = M? for all ¢.

An extension of to the case of d-fold products as needed in the partially
specified factor model is given as follows.

Proposition 2.1 Let C = {Ci}cp0,1) C Ca be a family of d-copulas. Then, for
Cl,...,C% € Cy, the C-product xc(C*,...,C%) given through
1
*C<Cl, ey Cd)(ul, ce ,ud) = / Ct (8201(u1,t), ey 620d<ud,t)) dt
0
for (uy,...,uq) €[0,1]¢ is a d-copula, where Oy denotes the first partial deriva-
tive with respect to the second argument.

Proof: Let U;, Z ~ U(0,1) with Cy, z = A’. Then,

/ Do Al (s, £) dt = Al (ug, v) = P(Us < g, Z < v) / Fozeslu)dt  (9)
0 0

Since Fy,|z—; can be considered as a distribution function for all ¢, Lebesgue’s
differential theorem shows that 9,A%(u;,t) = Fy,jz=¢(u;), and 8, A(-,t) can
also be considered as a distribution function for almost all ¢ . From Sklar’s Theo-
rem it follows that Cy(02C1(-,t),...,02C%(-,t)) defines a distribution function

for almost all ¢. Thus also the mixture xc(C?,...,C?) defines a distribution
function. Since 9,C*(1,t) = 1 for all ¢, *c(C?,...,C%) has uniform margins
and thus is a d-copula. |

Note that copulas are almost surely partially differentiable (see [16, Theorem
2.2.7]) and the integral is defined as a Lebesgue-integral.

Remark 2.2 Let (X1,...,Xq4,2Z) be a (d+ 1)-dimensional random vector such
that Fz is continuous. Then, from Sklar’s Theorem, the transformation formula
and Proposition [2.1] it follows that

(Xl,...,Xd) N*c(Cl,...,Cd)(Fxl,...,FXd),

where C* = Cx, z and C = {Ct}ieo,1) for Cr = Cxl,...,Xd\Zngl(t) being the
copula of the conditional vector (X1,...,Xa)|Z = F;'(t).

2.1 Definition of the upper product and elementary prop-
erties

For application to risk bounds in partially specified risk factor models we con-
sider the special case of the *g-product with C = M9 := {M9}5<,<; leading
to the notion of the upper product. Due to Proposition the operator \/ in
the following definition is well-defined.



Definition 2.3 (Upper product) The upper product \/ of bivariate copulas
C,...,C% s defined through \/\_, C' := C'V .- -V C% := spga (Cy, ..., C%) | ie.

\/Cl(ul,...,ud) ::/0 min {826”(%;,15)} dt

1<i<d

for all (uy,...,uq) €[0,1]%.

The following proposition gives some elementary properties of the upper
product. Point (i) explains the choice of the name “upper” product. Point
explains that the upper product describes the case of conditionally comonotonic
copulas and thus gives the connection to risk bounds in partially specified factor

models (see also Remark ().

Proposition 2.4 For C = {Ci}c0,1) C Ca, for Al ... AY D € Cy and for a
random vector (Uy,...,Uq) on (2, A, P) holds:
(i) xc(AY,... A <. VI, AT
(ii)) U= (Uy,...,Us) ~ VL, A" — 3Z~U0,1) andV = (V4,..., V)
such that V < U, Cy,z=A" and V|Z = z is comonotonic for all z .
(iii) In general, the upper product is neither commutative nor associative.
(iv) Marginalization property: For J C (1,...,d), the J-margin of \/g:1 Al s
given by \/,c ; Al
(v) \/;i:1 AP = M9 if and only if A' = A7 for all i # j.
(vi) DV M? = D and M?V D = D* |, where D*(u,v) = D(v,u).
(vii) DV W?2(u,v) = D(u,1 —v) and W2V D(u,v) = D*(1 — u,v).
(viii) A1V -V Ad(u) = 1 — [max;{2A%(u;, t)} dt, where F denotes the sur-

vival function of a distribution function F .

Proof: (fi) follows from C; <, M? (see [20, Theorem 5] or [17, Corollary 3a])
and the closure of the supermodular ordering under mixtures (see [I9, Theorem
9.A.9.(d)]).

({ii): Assume that (Uy,...,Uq) ~ \/; A". Since (©, A, P) is non-atomic there
exist random vectors (W;, Z,€) such that (W;,Z) ~ A* and (Z,&) ~ 1I?. Then,
for V; := FVT/11| (&), the conditional distribution V'|Z = z is comonotonic for all
z by construction. Further, it holds that V;|Z = z ~ Fyy,|z—. . But this means
that

P(Vigui,Zgz):/ PV; < wi|Z = ) dt
0

= / Fyw, z=¢(u;) dt = A(uy, 2) .
0



Further, we obtain
1
P(V; < u; Vi) =/O P(Fv;j‘Z(U) <w Vi |Z=t)dt

1
0
1

Z/ min { Fy, |z (u;) } dt (10)
0 K3
1 d

= / min { D A" (u;, )} dt = \/ A(uy,y ... ug),
o " i=1

where the fourth equality holds with an argument as in @ Hence, it holds

V L U. The reverse direction follows from the equations in (10).
({iii): From follows that \/ is not commutative if D is not symmetric.
({iv): Let u € [0,1]? with u; = 1 for all i ¢ J. Then,

d 1 |
i:\/lA (u) :/0 min {32/1 (ui,t)} dt

1<i<d

icJ

where uy 1= (u;y,...,u;,) for J = (i1,...,0) .
(V): If A" = A7 for all i # j, then

1
\/Ai(ul,...,ud):/ min {0 A" (u;, 1)} dt
i o

1
= / Do A (minf{u;},t) dt = min{u;}
0 3 (2

for all (u1,...,uq) € [0,1]¢.

Assume without loss of generality that A! # A2?. Due to the continuity of
copulas there exist (vy,v2) € (0,1)% and ¢ > 0 such that 9y A (u,t) > 92 A%(u,t)
for all (u,t) € Be((v1,v2)) C (0,1)2. This yields for u; = uy = u that

1
MZ(Ul,U/Q) = U1 Z/ BgAl(ul,t) dt
0

1
> / min{82A1(u1,t),82A2(u2,t)} dt
0

=Alv A2(u1, UQ) .

Then, the assertion follows from .



and (vii): For all (u1,us) € [0,1]* holds

1
DV M?(uy,us) :/ min{&‘QD(ul,t),]l{MZt}} dt
0

:/ 82D(U1,t) dt:D(Ul,Ug).
0

The other cases follow similarly.
(viii): Due to (i) assume that (Us,...,Uq) ~ \/; A® and Z ~ U(0,1) such that
(Uy,...,Uq)|Z =t is comonotonic for all ¢. Then, we obtain

Al\/~-~\/Ad(u):P(Ui>ui V’L)

1
:/ P<Uz > u; Vi IZ:t)dt

0

1

:/ min{P(U; > w;|Z =1)} dt

0 K3

1
_ 1_/ max {P(Us < wiZ = 1)} dt
0

1
=1 —/ max { Do A*(u;,t) } dt,
0

where the third equality holds due to the conditional comonotonicity. |

Remark 2.5 (a) From Pmposition and Sklar’s Theorem it follows that

(b)

(c)

for Z ~U(0,1) the upper product describes the dependence structure of the
solution of (9, i.e.

d
(FxlzOh<ica ~ \/ C (P, ..., Fu) (11)

i=1

for X; ~ F; and Cx, z = C*. More generally, applying the transformation
formula yields that holds true for all Z with continuous distribution
function G = Fy.

The continuity of G is decisive for . Assume for example that G follows
a Dirac distribution. Then, any arbitrary copula C* describes the dependence
structure of (X;,Z), Z ~ G, and hence, knowledge of Cx, z is no infor-
mation. Thus, the worst case distribution in must be given through the
comonotonic random vector X¢ (which coincides with X§ in this case). But
from Proposition we obtain that \/, C' # MY if not all C* coincide.

Point of Proposition induces that the upper product should take
pointwise large values if the arguments are close to each other.

The definition of the upper product yields an invariance property under

Lebesgue-measure preserving transformations of the integrand.



Let A be the Lebesgue measure on 5([0, 1]) . Denote by 7 the set of measur-
able transformations T': ((0,1),5((0,1)),A) — ((0,1),B((0,1)), A) that are mea-
sure preserving, i.e. Tx\ = X, where T*\(A) := \(T~1(A)) for all A € B((0,1))
denotes the distribution of the image of A under 7. Let Tp be the set of all
T € T such that T is bijective and its inverse 7! is measure preserving. Then,
elements of Tp are denoted shuffles, see [9].

The following statement shows that the upper product is invariant under
joint shuffles of the factor variable.

Proposition 2.6 For all T € Tp and C € Cy, the function S7(C): [0,1]* —
[0,1] given through

STUTXuJO::tAUOﬂfuhThlﬂﬂdt

s a bivariate copula. Furthermore, it holds that

d d

\ ¢ =\/sr(Ch).

i=1 i=1

Proof: For fi, fo € T define the function Cy, f,: [0,1]* — [0, 1] through

Crpa(ur,uz) o= MfTH([0,ua]) 0 f7 ([0, ua]) -

Let puc be the probability measure induced by C and denote by K¢ the corre-
sponding Markov kernel such that pc(ds, dt) = Kc(ds,t)dt. Then, from the
disintegration theorem it follows that 0,C(u,s) = K¢ ([0,u],s) almost surely.
Denote by (g1,92) € T x T the measure-preserving decomposition of C' accord-
ing to [10, Theorem 3.1] such that Cy, 45, = C. Then, for all (u,v) € [0,1]?

1,92
holds
Sr(C)(u,v) = 0oC (u, T7H(t)) dA(t) = DoC (u, T™H(t)) dAT (t)
[0,v] [0,v]
:/ EbC(u,s)dA(s)z/ Kc([0,u],s)ds
T=1([0,v]) T=1([o,0])

= pe([0,4], T71([0,0])) = (91, 92) * A ([0,u] N T~1([0,]))
= (glaTOQQ) * /\([O,U] N [O7U])

= A (911 ([0,u]) N (T 0 g2)~ ([0, 0]))
= Cgl,Togz (u, U) )
where the second equality is true because T is A-preserving, the third equality
holds by the transformation formula, the fifth equality holds due to the dis-
integration theorem. The sixth equality holds because C' = Cy, 4, . From [10}
Theorem 3.1] we also get that Cy, 7.4, defines a copula because T'o g, is measure
preserving. This proves the first statement.

Since Sr(C%) € Cq for all i, the upper product \/ Sr(C?) is well-defined.



Hence, the second statement follows from

.\/ Sr(C") (u1,...,uq) = /0 min {0C" (u;, T~ (t))} dt

= /[0 ; min {8C" (u;, T~ (t)) } dAT(2)
:/ min {9,C% (us, 5)} dA(s)
(0,1]
d .
= \/Ol (ul,...,Ud)
for all (u1,...,uq) € [0,1]%. "

2.2 Approximation of upper products of copulas

The ordering properties developed in this paper depend strongly on the approx-
imation of the upper products by upper products of discrete grid copulas. In the
second part of this section we derive this kind of approximations. In the first
part of this section we give some continuity results.

The upper product of copulas depends on the partial derivatives of its ar-
guments. So, approximating the upper product also means approximating the
partial derivatives. As we show in the following example uniform convergence
of (D?),, C Cs is not sufficient for uniform convergence of (\/; Df,),, .

Example 2.7 Let (T),)nen C Tp be a shuffle-of-min approzimation of 112 | i.e.
Sr, (M?) — TI? pointwise (and thus from Arzela-Ascoli’s Theorem also uni-
form), see [11, Theorem 3.1]. Since Sp(I1?) = 11 for all T € Tp, it follows
that

( lim STn(M2)) v ( lim S, (H2)) =12 VI = M2

n—o00 n—oo
£ 112 = M? v II?
= lim (St,(M?)V Sz, (I1)) ,

n—oo

where the last equality follows from Proposition[2.6 Thus uniform convergence
of (D%),, does not imply in general (uniform) convergence of the upper products.

To establish continuity properties of upper products we consider the follow-



ing metrics on Cq (see |21, Lemma 4]).

Dl(A,B):/Ol /01|82A(u,t)82B(u,t)|dtdu, (12)

1ol 3
</ / 0, A(u, t) — 82 B(u, )| dt du) )
0o Jo

1
Do (A,B): = sup / |02 A(u,t) — D2 B(u,t)|dt.
uel0,1] Jo

Dy(A, B) :

Let dsyp be the supremum metric on Cq . Then, the following continuity result
holds true.

Proposition 2.8 Let D be one of the metrics Dy, Do, and Do . Then, the
upper product \/: (C2, D) — (Ca,dsup) is continuous in each place and also
jointly continuous.

Proof: Since the metrics Dy, Dy, and Dy, are equivalent (see [21, Theorem])
assume WLOG that D = D, . Let E! E' € Cy be bivariate copulas for n € N
and 1 < i < d such that Do (E!, E') — 0 for all i. Define f!(t) := 02 E¢ (u;, 1)
and fi(t) := O0pE*(u;,t). Then, f{ — f* in L'. Using the representation
min(z,y) = 3(z +y — |z — y|) it holds for d = 2 that

2/|min{fi,f§} —min{fl,f2}|dt
:/|<f;+f5>—<f1+f2>—<|fz—fz|—|f1—f2|>|dt
S/Ifé*fllﬂfﬁfszI\fiffﬁlfIflff2|| di

gz(/|f;—f1|dt+/|f3—f2dt) o,

and thus E! V E2(uj,uz) — E'V E?*(uj,uz). If d > 2, assume that g. :=
ming—y,.. a—1{f,} = mini—1 a1 {f'} = g" in L'. With g3 (t) := 0B} (ua, 1)
and ¢%(t) := 02 E%(ug,t) it holds as above that

[ 1minfgh. g2}~ minf', g%} dt - 0.

d ; d ;
hence \/;_; E (u1,...,uq) = Vi E*(u1,...,uq).
The assertion follows from Arzela—Ascoli’s Theorem with the equicontinuity
of the set of copulas. [ |

For n € N and d > 1 denote by

Gl ={(i, .. )i, e{l,...,n}, ke {1,....d}} resp.
wa:: (i, i, €{0,...,n} ke {1,...,d}}

10



the (extended) uniform unit n-grid of dimension d with edge length % .

Let C € C4 be a d-copula with associated probability measure uc . Let 8,
be the probability measure on [0,1]¢ which distributes to each cell [u — X, u],
u € G¢, the mass pc([u— +, u]) uniformly to the cell. Let C,, be the cumulative

distribution function associated with S, , i.e.
Cn(ula <o ,Ud) = Bn([oa U]_} XX [07ud]) , ue [07 1]d .

Then, it holds that C,, is a copula for all n, Cp,(u) = C(u) for all u € Gﬁ,o and
C,, — C uniformly. The sequence (C,,),, is called the checkerboard approzimation
of C and C,, is the n-checkerboard copula of C'.

Corollary 2.9 For 1 <i<d, let (D), be the checkerboard approzimation of
D' € Cy. Then, it holds \/?:1 D} — \/;i:1 D' uniformly.

Proof: Defining d-convergence as in [12] Definition 3] it is shown in [21], p. 695]
that the topology of J-convergence is strictly finer than the topology of D .
Then, the statement follows from Proposition 2.8 with the d-convergence of the
checkerboard approximations as shown in [12, Theorem 5]. |

Similar results hold also true for checkmin approximations and Bernstein
approximations of copulas (see [12], Theorem 6 and Theorem 7])

In the following, we make essential use of discrete approximations of the
upper product by so-called grid copulas.

Definition 2.10 For d € N, a (signed) n-grid d-copula (shortly grid copula)

D is the (signed) distribution function of a (signed) probability distribution on
k

GZ,O with uniform univariate margins, i.e. for all i =1,...,d holds D(u) = 7,

forallk=0,...,n, if u; :% and uj =1 for all j #i.
Denote by Can (Cj,,) the set of all (signed) d-dimensional n-grid copulas.

An %—scaled doubly stochastic matriz is defined as an n X n-matrix with non-
negative entries and row resp. column sums equal to % . By an signed %-scaled
doubly stochastic matrix we mean an %—scaled doubly stochastic matrix where
also negative entries are allowed.

The following statement is immediate.

Lemma 2.11 There is a one-to-one correspondence between the set of (signed)
n-grid 2-copulas and the set of (signed) %—scaled doubly stochastic matrices.

Note that also bivariate n-checkerboard copulas can be represented by %—scaled
doubly stochastic matrices.
For a bivariate (signed) n-grid copula £ € Ca,, (€ C5,,) let e, defined through

e(u,v) := ALA2E(u,v), (u,v) € G2,

be its corresponding (signed) probability mass function, where A? denotes the
difference operator of length % with respect to the i-th variable, i.e. A% g(u) :=

11



g(u) — g((u—Le;) v0) for u € G ; and e; being the unit vector with value 1 in
the i-th component. Further, define its corresponding (signed) 1-scaled doubly
stochastic matrix (exi)1<k,i<n by

ew = e(l— %»%) (13)
For every copula D € C; denote by G, (D) its canonical n-grid copula defined
through

Ga(D)(w) := D(5)
for u € [0,1]¢, where [ -] denotes the componentwise ceiling function. Further,
every Dy, € Can (€ Cj,,) can be extended to a (signed) distribution function D
on [0, 1]¢ via

D(u) := D, (el (14)
for u € [0,1]%.

Define the upper product \/: (C2.,)? — Ca., for grid copulas D},..., D

Ca,n through

d ¢

n

d n

V/ Diur,.ovua) = 3 in {A2D (s )}
1=1 =1 - =

A version for signed grid copulas is defined analogously.

We show that the upper product of bivariate copulas can be uniformly ap-
proximated by the upper product of the corresponding grid copula approxima-
tions in the extended version given by .

Proposition 2.12 (Grid copula approximation of the upper product)
Let D', ..., D% € Cy be copulas. Then

d d

\/Gn(Di) BRI \/Di for n — oo.

i=1 =1

Proof: We need to show that \/?:1 Gn(Di)(@) — \/f:1 Di(u) for all u €
[0,1]¢ and n — oo . Define

n

Dy(ug, ... ug) := Z 121};1(1 {AiDi(ui, %)} .

It can be shown that D,, is a copula for all n. We need to show that

d
Da(u) “== \/ D'(w) (15)
i=1

12



for all u = (uy,...,uq) € [0,1]¢. Then, the statement follows from

for all u € [0, 1]¢ with the equicontinuity of (D,,)nen . The proof of the conver-
gence in is given in the appendix. [ ]

3 Ordering risk bounds for > X in partially spec-
ified factor models

To solve maximization problem @ for suitable sets S? we aim to order solutions
of the maximization problem w.r.t. <. for all marginal distributions F;
and in dependence on the constraints C*. We first demonstrate that the usual
ordering conditions (like supermodular ordering) for the constraints C? € Cy
do not imply ordering of the upper product \/, C*. We are, therefore, led to
introduce a new type of orderings defined by the sign changes of the copula
derivatives. The main result in this paper, Theorem states that these new
ordering conditions imply the desired ordering properties of the upper products.
It turns out that the supermodular ordering <, of random vectors is suffi-
cient for convex ordering of the sums independent of the marginal distributions
whereas the weaker concordance ordering <. may lack this property. For an
overview on stochastic orderings, see [15, Example 3.9.7] and [19]. Hence, the
aim is to find conditions on the constraints C*, D* € Cy, 1 < i < d, such that

d

d
\ €' <am \/ D (16)
=1

i=1
because this implies

d

Filz(U) Sea D Fy(U)
=1 =1

for Cx, z = Ct, Cy, z = D? and for all X; ~Y; and Fy continuous.
A necessary condition for is the lower orthant ordering, i.e.

1 1
/ min{9,C* (u;, 1)} dt < / min{do D (u;, 1)} dt Vu € [0,1]¢. (17)
o ? o !

Ordering the constraints with respect to the supermodular ordering is not suf-
ficient to obtain as the following example illustrates.

Example 3.1 (a) The upper product is not componentwise increasing w.r.t.
the supermodular ordering, i.e. A <gsm B for A, B € Cy does not imply
CVA <4y CVB for all C € Cy, because C = A yields CVA = M? >,,, CVB

using Proposition .

13



(b) Consider the following bivariate 4-checkerboard copulas A', A%, A% € C,
given through the %—scaled doubly stochastic matrices

0 2 0 2 01 1 2
1 1 1 1 11 9 1 1 1 11
a = — - a‘ = — -
16 111 1|’ 16 111 1|’
2 0 2 0 2 1 1 0
00 2 2
3 1 1 1 11
a’ = —-
16 1 1 1 1
2 2 00
as in . Then, it holds
I1? <o A' <om A% <o A°. (18)

Define the functions h’ :(0,1) = [-1,1] for i =1,2,3 by

uy,u2 "

h711,1,'u.2 (t) 1 = Do A (ua, t) — o1 (uq, t)
=uz + Lycayuqiaicsylus Vi — (ug — §) VO]
+ IL{i<t<%}u{%<t}[(“2 —HV0—ua Vi —ur,
By (8) 2 = 02 A% (ug, t) — o112 (uy, 1)
=uz +Leayfuz Vg — (u2 = 3) V0]
+]l{t>%}[(u2— %)\/O—UQ\/%] —uy,
hilm (t) : = 02 A3 (ug,t) — OoIT%(uy, t)
=u2+]1{t<%}[uQ\/%— (ug — %)\/0]

+]l{t>%}[(UQ— %)VO—’LLQ\/i] —Uj .

We observe that h? <g hl =g h3 for all uy,us € [0,1], where

Ui,u2 U1,u2 U1,u2

<g denotes the Schur-ordering for functions. This implies with the Hardy-
Littlewood-Polya- Theorem (see [18, Theorem 3.21]) that

H2 V Aj(ul,UQ) = /Il’lin{hihu2 (t),O} dt + Uq

> / min{h2, . (£),0}dt +uy

= H2 \% Az(ul,UQ) 5

for 5 = 1,3 and for all (u1,uz) € [0,1]2. Further, the inequality is strict,
e.g. foruy =us = i. Hence, we obtain

I2v A = 11?2 v A3 >, I12 v A2%.

In consequence, the supermodular ordering of the constraints in does

14



not yield ordering of the risk bounds in the natural way as described in

Remark .

Note that also a pointwise ordering of the integrands in is not possible.
This demands to obtain ordering criteria for the whole integral. The identity

/O i (£), ha(t)) df = /O i (t) — ha(£),0) di + /O it dt

motivates the following lemma.

Lemma 3.2 Let f,g: [0,1] — R be integrable functions with the properties that
(i) Jy FdX= [ gdA,

(i) f,g have no (—,+)-sign change,

(iii) g — f has no (—,+)-sign change.

Then it holds that

1 1 1 1
/f_dAz/ g_d\ and /f+d/\§/ g4 d, (19)
0 0 0 0

where h_ resp. hy denotes the negative resp. positive part of a function h.
Further, every change of the sign sequence in or in produces a change
of the inequality signs in .

Proof: Conditions ({il) and provide that there exists a point s € (0,1) such
that f < g on (0,s) and f > g on (s,1). This implies f < g+ on (0, s) and
f+ > g+ on (Sa 1)

If g(s) < 0, we obtain from condition (ii) that f, = g, =0 on (0, s), hence
JfrdA= [ gy dA.

If g(s) > 0, then condition provides gy = ¢ and thus f; = f on (s,1).
Hence, it follows that

[u-smon=[G-go-[u-naz [ - oo

using Condition (i), and because f < g on (0,s) the inequality holds true due
to

{@yo<z<s, flr) <y <g@)}d{(y)|0<z<s, f(z) <y<g(z),y>0}.

If the sign sequence in condition is (+,—), then the statement follows
from the above one by changing the roles of f and g. The other cases follow by
symmetry. ]

On the basis of the previous lemma, we introduce a new ordering on C and
show in the sequel that this ordering provides supermodular ordering criteria
for the upper product of bivariate copulas.

15



Definition 3.3 (Sign sequence ordering of derivative differences)
Let D,E € Cy be bivariate copulas. Consider for u,v € [0,1] the function
fuw(t) := 0E(v,t) — 02D(u,t) for almost all t € (0,1),

1. Define that E is greater than D in the sign sequence relation of derivative
differences, written D <ga E, if for all u,v € (0,1) holds that

fuw has A-almost surely no (—,+)-sign change. (20)

2. A family (C%)aer C Ca, I C R, of bivariate copulas is increasing with
respect to the <ga-ordering if a1 < as, aj,as € I, implies C* <pa
coz

3. For copulas B', ..., B% € Cy the d-order relation B* <ga B? <ga --- <oa
B? is defined by B' <pa B? forall1 <i<j<d.

4. Analogously, define the symmetric sign sequence relation of derivative dif-
ferences D < 9a E if holds for all u =v.

For bivariate grid copulas, the relations <sa and <;ga are defined in the
same way.

The <pa-relation is a relation that is strictly stronger than the <j,,-relation.
It can easily be verified that the reverse directions in the following result do not
hold.

Proposition 3.4 For D, FE € Cy holds that
(i) D <pa FE implies D <gon E,
(ii) D <.9n F implies D <, E.

Proof: Statement (EI) is trivial. Statement follows from
E(u,v) — D(u,v) = / (02E(u,t) — 02D (u,t)) dt >0
0

because the integrand has almost surely no (—,+)-sign change in ¢ and the
integral vanishes for v =1. ]

Example 3.5 (a) Elliptical copulas: Let (X;, Z) 4 RUPA; ~ £C5(0,%;,6),
i=1,2, be elliptically distributed with ATA; = %; = (,;11 pl"') . Assume that
the radial part R has a continuous distribution function. Then the copula
Cx, .z of (Xi,Z) is uniquely determined. Assume that —1 < p; < ps < 1.
Then, from [3, Corollary 5] we obtain

Ty — PiR
Fy,z—s(@i) = Fpe | 22
TA\VI1=p

16



where RE 4 R.UW | with R, 4 (\/R2 —22|Z = z) , does not depend on
pi, UY ~U({=1,1}), and R., UM are independent for all z. This implies
for all x1, x5 that

Fxy\z=2(72) — Fx,|z=-(71) > 0
T2 — P2z 1 — P12

V1-p3 = V1-pf
e 2(piy/1— pE — pay/1— p2) > /1 — pRay — /1 — p?
Z(p1 P2 — P2 1) = Pl P1T2

= z < ,

where the last equivalence holds because p1 < ps. Hence, we obtain

Jurus (t) : = 02Cx, z(u2,t) — 02Cx, z(u1,t) >0
— P3F 5t (ur) — /1 — P%Féi(w))
piN/1=p3 = p2 /1= 3 ’

where Fre = Fx, = Fy is the distribution function of R* := RU® . But
this means that Cx, z <pa Cx, 7 .

1
<= tSFRi<

(b) Archimedean copulas: As shown in [I6, Section 4.4] the Clayton family
(4.2.1), the Gumbel-Hougaard family (4.2.4), the Frank family (4.2.5) and
the families (4.2.2) and (4.2.19) in [16] are ordered in concordance. Numer-
ical results suggest that these families are even <ga-increasing.

In the following, we show that the <sa-ordering of the constraints implies
the <g,,-ordering of the upper product if we substitute the greatest or smallest
element in the <pa-increasing sequence of constraints, see Theorem [3.10} For
the proof, we approximate the upper product by grid-copulas and use the lower
orthant ordering result given in the following proposition.

Proposition 3.6 Let A',... A% B', B% € Cy be bivariate copulas such that
A <ga B',B? and B'<.a B*, 1<j<d.
Then, it holds that
Atv...vAYY Bt >, Al ... v ATy B2 (21)
Proof: Each function fi7  (t) := 02B7(v,t) =02 A" (us,t) ,i=1,...,n,j=1,2,
has no (—,+)-sign change. Hence, also the pointwise defined functions ¢’ :=

min;{f ,}, j = 1,2, have no (—,+)-sign change. Assumption B! <5, B*
ensures that the function g' — g% has no (+, —)-sign change. Since fgl d\ =

17



J g*dX, we obtain from Lemmathat J gt dX> [ g2 dX\, hence
Atv . VAT BY(uyg, ... ug,v)
= /min{O,agBl(v,t) — ml_in{agAi(ui,t)}} dt + /miin{agAi(ui,t)}dt
_ / gL (t) dt + / min{0, A" (us, 1)} dt
> / 2 (1) dt + / min {0, A" (u;, 1)} di

/ min {0, 0,50, 1) — min{0,A'(u;, 1)} } dt + / min{dy A (u;, 1)} dt
Alv

VATV B (uy, .. ug,v) .

This holds for all (u1, ..., uq,v) € (0,1)4*! and thus A'v...vAlv Bl >, Alv
...V A?v B2 The upper orthant ordering follows analogously with Proposition

£ . .

To show the <,,-ordering of the upper product it suffices to order the grid
copula approximations w.r.t. <, as the following result states.

Proposition 3.7 Let D',...,D* E',... E% € Cy be bivariate copulas. Then,
it holds

d d d d
\ Gn(D') <am \/ Gu(E") VneN = \/D'<., \/E".

i=1 =1 i=1 =1

Proof: Proposition yields \/; G,,(D?) RN V; D" and V/, G, (E") 2, \ E¢.
Since the supermodular ordering is closed with respect to weak convergence (see
[14, Theorem 3.5]), the statement follows. [ ]

The grid-copula approximations define distributions with finite support. But
the supermodular ordering of distributions with finite support has been char-
acterized by supermodular transfers in [I3, Theorem 2.5.4]. It is clear that this
result also holds for finite signed distributions with finite support:

Proposition 3.8 Let ju and v be finite signed distributions on G% . Then, u <,
v if and only if there exist a finite number m € Ny, weights q; > 0 and points
AT G‘i, 1 <i¢<m, such that

m
w4 Zr]i =v, wheren; = q; (30,inyi + 50uivyi — (3040 + 30,i))
i=1
The signed measures 1; are called supermodular transfers and are indicated by

qi (%6mb + %631‘) — q; (%(5zLAyL + %5zlvyb) s

i.e. mass of size q; is transferred from x' and y' to ' Ay’ and 2V yt .

18



The following result states that even holds w.r.t. the <;,,-ordering in
the case of grid copulas. The technical proof is given in the appendix.

Proposition 3.9 Let A',... A B!, B% € Cy,, be bivariate grid copulas such
that

Al <pa B' and B' < B*, 1<j<d,l=1,2.

Then, there exists a finite sequence (Ei)ogigm of signed probability distribution
functions on G2 such that E° = B! | E™ = B? and

(i) for all0 <i<m —1, Pgi+1 — Pg: is a simple supermodular transfer,
(ii) B <son B forall0<i<m —1,

(iii) AT <pa E* faa. 1<j<dand0<i<m, and

(iv) ALV - VALV E >, A"V --- VA ET forall0<i<m—1.
It follows that

(v) Atv---v Al B >, Alv...vAlv B2,

Now, we can formulate the main result of this article which provides some
important properties of the <ga-ordering. In contrast to the <,,-ordering on Cy
(see Example (]ED), the <ga-ordering on Cs is sufficient for the supermodular
ordering of the upper product.

Theorem 3.10 Let A',..., A4 B', B? € Cy be bivariate copulas such that ei-
ther

(i) AV <pa B and B! <4 B*, 1<j<d,i=1,2, or
(ii) AjZQABi and BIZSQABz, 1<5<d,i=1,2.
Then, it holds that
Alv...vAivB >, Alv...vAlv B2, (22)

Proof: Assume that holds. Then, we obtain G,(47) <sa G, (B*) and
Gn(BY) <sa G,(B?) forall 1 < j < d,i = 1,2 and n € N. Thus, the
statement follows from Proposition and Proposition

If holds, then the statement follows from and Proposition with
T(t)=1-t. -

It can be shown analogously that can be generalized to

Atv...vAiyvB'v...vBt >, Alv...vAlvB?v...v B? (23)
——— ———

o-times J-times

for every 0 € Ny . Applying repeatedly, we obtain together with Proposition
the following corollary.
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Corollary 3.11 Let C',...,C% € Cy be bivariate copulas such that C* <pa
- <ga C%. Then, for 1 < di < dy < d holds

d

d
\V € < \/ D
i=1 i=1

where D' := C™ for 1 <i<dy, D' :=C" ford, < i< dy and D' := C% for
do <i<d.

Remark 3.12 (a) Theorem and Corollary indicate: The closer the
elements are together w.r.t the <ga-ordering the greater is their upper prod-
uct w.r.t. the supermodular ordering. Note that we only modify the most
extreme elements keeping the others fized.

(b) Corollary is a generalization of [2, Corollary 3 and Proposition 6] to
general classes of copulas and to the supermodular ordering.

Coming back to the comparison of solutions of w.r.t. the constraints C*
we get the following result.

Corollary 3.13 Let Wy,..., Wy, Z be real random variables such that the se-
quence of copulas (Cw, z)1<i<d s <oa-increasing. Assume that Z has a con-
tinuous distribution function. Let X; := ¢;(W;) for g; increasing. Then, for
1<dy <dy <d holds

d do—1
i=1 i=d1+1

where Y1 = Z?;l gi(FVT,il‘Z(U)) , & = F‘;,z‘Z(U) fori=di+1,...,do—1, and

Y; = Zf:dg gZ(FVT,i z(U)), U~U(0,1) independent of Z .

If dy = ds, then simplifies to

d
ZXi Scz Yl + Y3-

=1

Proof: This follows from Remark Proposition and Corollary
|

Remark 3.14 (a) In Corollary both Y1 and Ys are comonotonic sums,
but Y1 + Y3 is only conditionally comonotonic.

(b) Let (C7)yer C Ca be a <ga-increasing family of bivariate copulas. Denote
by F' the set of all univariate distribution functions and by F; the set
of all increasing functions. As a consequence of Corollary [3.13 we obtain
solutions of maximization problem @ resp. for Fi = F' resp. G; = F4
for all continuous G if we choose the sets S = {C7|y < a} fori < dy,
St ={C7y =b;} fordy <i <dy and 8" = {C"|y > ¢} for i > dy where
1§d1SdggdaﬂdafblS...dez_dl_lgc.
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4 Application

As application we consider a portfolio ¥; := Z?:l Y, of calls and puts on
different assets. More specifically, let Y;' := (S! — K%), be calls for i = 1,2,3
and Y} := (K® — S}), be puts for i = 4,5,6, on assets S; for different strikes
K' > 0, where (S});>0 denotes the asset price process of Allianz (i = 1), Daimler
(1 = 2), Siemens (i = 3), Deutsche Bank (i = 4), SAP (i = 5) resp. Adidas
(i = 6). For times to maturity 7' = 15 trading days resp. T' = 50 trading days
resp. T = 100 trading days, we aim to get improved risk bounds (w.r.t the
standard comonotonic risk bound) for X1 applying Corollary where daily
historical data are given. Denote by (S7);>0 the risk factor process which is the
DAX in our case.

We model S; = (S?,...,S¢) by an exponential process S; = Spexp(L;), t in
trading days, under the following assumptions.

Let 0 =ty <ty <ty <...witht; —t;_1 =T for all 7.

(I) The component processes (Li);>o are Lévy processes for all 7.

(II) The time T-increments (£},&}) := (LY — LY, ,L; —Lj ), 1<k<n
are identically distributed in k£ and independent in & for all 1 <4 <6.

(ITI) There exists a <gpa-increasing family (C*),es of bivariate copulas such
that for all 1 < i <6, Cgi 0 € {C%a € I} for some intervals I C T
(which are specified later).

Assumptions - are consistent. Assumption is a standard assump-
tion on the log-increments of (S}):>¢ while Assumption generalizes the de-
pendence assumptions for multivariate Lévy models because neither multivari-
ate stationarity nor independence for all increments is claimed. Assumption (LTI
describes the dependence structure of (£%,£?) by subfamily of a <pa-increasing
family of copulas (see Example which can be chosen arbitrarily.

For the estimation of the distribution of S%, we distinguish between the
following two specifications of Assumption :

1. (a) Each (S})i>0,7=0,...,7, follows a geometric Brownian motion, i.e.
2

S,f = Sé exp(Li), Li = UZ-BZ + (u; — %")t, t>0

where (B});>0 is a Brownian motion, S§ >0, o; >0, u; € R.

(b) Each (S{)i>0,i=0,...,7, follows an exponential NIG process, i.e.
Si = Siexp(Li) t>0,
where each (L);>o is an NIG process, S§ > 0.

For the estimation of upper bounds for the time T-increments (¢1,...,&7)
in supermodular ordering, we specify Assumption (III) as follows:
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3. For fixed v € (2,00], the dependence structure of (£1,£Y) is described by
a family (C?),¢p: of t-copulas with unknown correlation parameter p € I*
and v degrees of freedom for some intervals I* C [—1,1] (which we specify
later), i.e. Cei co € (Cf) ey forall 1 <i <6.

For the estimation of the intervals I’, we use the i.i.d. assumption in As-
sumption to determine (one-sided) confidence intervals for the correlation
of (&,¢9) from historical log-return data.

Compared to the basic assumptions underlying multivariate exponential
Lévy models the above assumptions are quite weak. The dependence struc-
ture among the components is not uniquely determined. For larger values of T’
(which we consider in this application), the set of historical data is too small to
determine the unknown correlation parameter reliably. Thus, we need to solve
maximization problem @ instead of maximization problem .

Such solutions lead to improved risk bounds for the portfolio X7 given the
observed starting values (S¢, . .., S5) and constraints S¢. We speak about Model
Gauss if St is modeled by Assumptions (1a)),(II) and (3) and about Model NIG
if St is modeled by Assumptions , and .

The normal inverse Gaussian (NIG) distribution has density

ad Ki(ay/82 + (2 —v)?) 5 /a2-p21p(av)

v 02 + (z — v)?

z €R

AN1G(a,8,0,0)(T) =

and convolution property for the characteristic functions given through

ONIG(a,8,6,)(tS) = ONIG(aBt5.0)(8), t>0,5€R

where K; denotes the modified Bessel function of third kind of order 1.

Note that for v — oo the t-copula passes into a Gaussian copula. In contrast
to Gaussian copulas, t-copulas exhibit tail-dependencies with equal coefficients
of lower resp. upper tail dependence

M= Ay =2t <—\/V+1\/1—p/\/1+p) (25)

where ¢, denotes the standard univariate Student's t-distribution function with
v degrees of freedom (see [1]).

Application to real market data

As data set, we take the daily adjusted close data from yahoo finance from
23/04/2008 to 20/04/2018. It contains the values of 2540 trading days for 7 as-

sets (with some missing data) which we denote by (sg, s,lw R 82)131@2540 , see
Figure More precisely, (s%)x are the adjusted close data of “DAX PERFORMANCE-
INDEX (GDAXI)”, (s))x of “Allianz SE (ALV.DE)”, (s3); of “Daimler AG
(DALDE)”, (s3)x of “Siemens Aktiengesellschaft (SIE.DE)”, (s}) of “Deutsche
Bank Aktiengesellschaft (DBK.DE)”, (s})) from “SAP SE (SAP.DE)” and (s)j

of “adidas AG (ADS.DE)”.
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Figure 1: Daily adjusted close data resp. the log-returns of the underlying as-
sets from 23/04/2008 to 20/04/2018; x-axis: n-th trading day beginning with
23/04/2008; y-axis: adjusted closing price resp. log-return of the underlying as-

set.



| i=0 i=1 i =2 i=3
K’ 180 60 105
S¢ | 12540.5 193.5399 65.12 108.3
pi | —0.0001370  —0.0001442 —0.0000121  —0.0001247
oi | 00143478  0.0210187  0.0221977  0.0187162
o; | 50.7164 26.015486  32.6959583  42.06498
Bi | 49547093  1.0846819  1.0591878 —0.6504885
b 0.0103575  0.0110434  0.0157737  0.0131712
vi | —0.0012570 —0.0008272 —0.0007756 —0.0000870
| i=4 i=5 i=6
K'| 13 90 230
Si | 11.5740 86.5199 212.1999
pi | 0.0009175  —0.0003305 —0.0005275
oi | 0.0286615  0.0150850  0.0187999
o; | 25.37659 57.057185  44.6539402
Bi | 03022331 4.0909649 —3.2505242
b 0.0202047  0.0120536  0.0151163
vi 0.0002623  —0.0013079  0.0004002

Table 1: Strikes K* (chosen), initial values S§ = sb,, (observed) and param-
eters u;, o;, a;, Bi, 8, v; describing the daily log-increments of (S¢); under

Assumption resp. (estimated).

Denote by (})k, 2}, := log shsyo_;, , — 108 shs49_y, » the historical time T-
log-returns of the i-th asset (see Figure|l|in the case T' = 1). Hence, for T' = 15
resp. T = 50 resp. T'= 100, the sequence (2%, z)x consists of 169 resp. 50 resp.
25 pairs of data. Table [2shows the empirical correlation p! of (z%,29)) (which
estimates the correlation of (¢!,&))) and a lower bound BiT for the one-sided
95%-confidence interval for pl . This justifies a determination of I' := [3?7 1]
for the unspecified intervals I in Assumption (3).

Since Y7. is an increasing resp. decreasing transformation of S% we can choose

fori=1,2,3
for i = 4,5,6.

Cy%75% = Csa‘,”s'% = Cghg? resp.

Cvisy = Cosposy = Coeig
Note that the copula Cy;” 59, may not be uniquely determined. This leads to the

sets of constraints S for Cy; go given by

fori =1,2,3, resp.
for i = 4,5,6,

S ={Cllp=p"}
S ={Cllp<p"}

%

where BT (= min;—1 23 B;TF and ﬁT = maxX;—4,56 —BT .

24



1=1 =2 i1=3 t=4 1=95 1=06
p¥ | 0.8225 0.8808 0.8573 0.7595 0.7193 0.6466
g}" 0.7767 0.8487 0.8196 0.7000 0.6519 0.5661
520 | 0.8308 0.8827 0.8264 0.6445 0.7545 0.6246
Bfo 0.7401 0.8171 0.7338 0.4823 0.6312 0.4563
5190 | 0.8437 0.9317 0.8217 0.7374 0.7320 0.5716
B;OO 0.7081 0.8671 0.6703 0.5328 0.5244 0.2905

Table 2: Empirical Pearson correlation p! between the T-days log-returns of
the i-th underlying asset and the DAX estimated from log-return data (z%, z9)
over T days for T = 15, T = 50 resp. T' = 100 trading days; BiT denotes the

lower bound of the 95%-confidence interval for p! under a bivariate normality

assumption.
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Figure 2: Histograms of the daily log-returns and fitted Gaussian (dashed) and
NIG (solid) density with estimated parameters given in Table
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Figure 3: Plots of the empirical copulas between the T-day log-returns of each
asset and the DAX for T' = 15 trading days.

Now, Corollary and (2) yield

6
ZT Scw ZF;T} (fl(Z7 5)) = E%,pT,ﬁT,v

"? (26)

<cx ZF};}(U) = %

T
i=1

for U ~ U(0,1) where

(Sé exp (FZ;@)) — Ki)Jr for i € {1,2,3},
vp (Ki — Siexp (FL_Z;(I - z)))+ for i € {4,5,6}

are the quantile functions of the calls resp. puts Y7 . Further, (f;(Z,¢)); given
by

v+t (221 -n?) _
fi(ZaE)::f<ni>VaZa5)::tV nit;1(2)+\/( + izll)(l 771) tV—il-l(E)

with n; = pT if i = 1,2,3 and n; = p” if i = 4,5,6 is the conditionally on Z
comonotonic random vector for random variables Z, e ~ U(0,1) that are inde-
pendent. Note that the distribution function of (f(p,v, Z,¢), Z) is the t-copula
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with correlation p and v degrees of freedom (see [1]). Further, the marginaliza-
tion property of elliptical distributions implies that (f(p1,v, Z,¢), f(p2,v, Z,€))
follows a t-copula with correlation parameter

M(p1,p2) == prp2 + /1 = piy/1—p3

and v degrees of freedom. Hence, (f;(Z,¢), f;(Z,€)) is comonotonicif 1 <4,5 <3
or 4 < i,j < 6 (cp. Remark 3.14lfa))). Otherwise, it follows a t-copula with
correlation M (pT,p").
As a consequence of and we obtain
U(Er) < U(ET o 57 ,) < V(ET). (27)
More specifically, let ¥ be the Average Value-at-Risk at level A (also known
as Ezpected Shortfall) defined by

1 oo

AV&R)\(S) = ﬁ \ S

(t)dt, Ae(0,1).

It is well-known that AVaR, is a convex, law-invariant risk measure. In Tables
resp. , we compare the improved risk bound AV&R/\(E%Z,(W),I,) given
by with the standard comonotonic bound AVaRy(X%) in Models Gauss
and NIG (7million simulated points) for different A and v and for T' = 15 resp.
T = 50 resp. T = 100 trading days.

We observe that both the improved and the standard portfolio risk bounds
AVaRA(ECT’pT’ﬁT’V) resp. AVaR ) (25.) depend for high levels A on the model for
the univariate margins of the summands and their tails. The fatter tails of the
NIG distribution yield higher risks. But for larger times 7" to maturity, we see
that the differences are less significant. This can be explained by the fact that
the parameters &, = T'6; and o, = «; (see Table[l)) of L%, are quite large for large
T and thus F; is approximately normal with variance d;/a; (see [3, p.153]). In
our application, Model NIG fits the data better than Model Gauss (see Figure
. In contrast, for levels A < 0.95 the results in this application nearly coincide
for Models Gauss and NIG.

Further, we observe that the improvement of the risk bounds depends on
the degree of freedom v of the constraining t-copula families S?. The smaller
the parameter v the higher is the tail-dependence of the (t-)copula of

3 6
(Z Fyl(filZ), ) Fl (fulZ, e))) ! (28)
i=1 i=4

see. This means that extreme tail events occur more often simultaneously
in the components which leads to higher risks. The empirical data exhibit tail-
dependencies, see Figure 3] Thus, a t-copula with degree of freedom v not too
large should be preferred to a Gaussian copula in this application.
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Model Gauss AVaR (255@5,?15,») AVaR, (255)
E[¥¢5] =51.5 v= | v =10 | V=00
A=05 763 (29.0%) | 76.7 (28.1%) | 76.8 (27.7%) 86.5
A=10.38 99.2 (28.1%) | 994 (27.5%) | 99.4 (27.5%) 117.5
A=0.9 114.8  (25.2%) | 1138 (26.3%) | 113.3  (26.9%) 136.1
A=0.95 120.6  (22.5%) | 126.9 (25.2%) | 125.6 (26.5%) 152.3
A =0.99 161.9 (17.0%) | 1543 (22.6%) | 150.1 (25.8%) 184.4
A=0.995 || 174.8 (15.0%) | 165.3 (21.6%) | 159.4 (25.6%) 196.6
A=0999 || 2024 (11.8%) | 189.3 (19.5%) | 179.4 (25.2%) 222.6
Model NIG AVaRy (zgwws,u) NGNS
E[S5] = 51.1 v=3 \ v=10 \ V=00
A=05 752 (28.7%) | 756 (27.7%) | 75.8 (27.1%) 85.0
A=08 98.0 (27.6%) | 982 (27.4%) | 983 (27.2%) 115.9
A=0.9 1142 (25.5%) | 1132 (26.6%) | 112.8  (27.0%) 135.7
A=0.95 130.0 (23.2%) | 127.3 (25.8%) | 126.2 (27.0%) 153.9
A =0.99 167.0  (18.5%) | 159.0 (24.1%) | 155.0 (26.9%) 193.4
A=0995 || 183.1 (16.8%) | 1726 (23.4%) | 167.2 (26.9%) 209.8
A=0999 || 2212 (13.6%) | 205.1 (21.8%) | 1959 (26.5%) 248.0

Table 3: Comparison of the improved risk bound AVaR (X3¢, 15 515 ,) with the

standard comonotonic risk bound AVaR (3$;) for AVaR(X15) in Model Gauss
resp. NIG for T' = 15 trading days for different levels A, for different v and
for fixed p'® = .7767 and p'® = —0.5661. The relative DU-improvement given
by 1 — (AVaR, (2 E[215])/(AVaR, (2$5) — E[X;5]) is displayed in

c ) _
15’315’ﬁ15”’

brackets.

Model Gauss AVaRy (ng(,?%) AVaR, (25,)

E[Z50] = 67.1 v=3 | v =10 | V=00
A=05 1101 (21.9%) | 1104 (21.3%) | 110.5 (21.1%) 122.1
A=08 1544 (22.1%) | 154.6 (22.0%) | 154.6 (21.9%) 179.2
A=0.9 185.0 (19.6%) | 183.7 (20.5%) | 182.9 (21.0%) 213.7
A=0.95 2138 (17.2%) | 2102 (19.2%) | 208.3  (20.3%) 2443
A=0.99 275.7  (12.6%) | 266.0 (16.7%) | 260.3 (19.1%) 306.0
A=0995 | 300.1 (11.1%) | 288.4 (15.8%) | 280.8 (18.7%) 329.9
A=0999 | 3548 (8.5%) | 338.1 (13.8%) | 325.4 (17.8%) 381.4
Model NIG AVaR (Ego’psoﬁsn’u> AV&R)\(EEO)

E[X50] = 66.2 V= | v =10 | V=00
A=05 1084 (21.8%) | 108.7 (21.2%) | 108.7 (21.1%) 120.1
A=0.8 1521 (22.1%) | 1523 (21.9%) | 152.3  (21.9%) 176.4
A=0.9 1828 (19.7%) | 181.5 (20.6%) | 180.8 (21.1%) 211.4
A=0.95 2122 (17.4%) | 208.6 (19.4%) | 206.7 (20.5%) 242.9
A =0.99 2774 (13.0%) | 2674 (17.1%) | 261.7 (19.5%) 309.1
A=0995 | 3045 (11.6%) | 201.9 (16.3%) | 284.3 (19.1%) 335.8
A=0999 | 366.0 (9.2%) | 349.1 (14.3%) | 336.0 (18.3%) 396.5

Table 4: Comparison of the improved risk bound AVaR (X3¢, 50 550 ,) with the

standard comonotonic risk bound AVaR (3¢,) for AVaR,(Z50) in Model Gauss
resp. NIG for T = 50 trading days for different levels A, for different v and
for fixed p°° = .7338 and p°° = —0.4563. The relative DU-improvement given
by 1 — (AVaRy (2 E[Z50])/(AVaR (3g,) — E[Xs50]) is displayed in
brackets. 28
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Model Gauss AVaR (Eioo 100 ﬁluo_,,) AVaR, (3{0)

E[Z100] = 83.8 v=3 | v =10 | v =00
A=05 145.1  (14.0%) | 145.3 (13.6%) | 145.5 (13.4%) 155.1
A=0.8 213.7  (14.6%) | 214.0 (14.4%) | 214.2 (14.3%) 235.9
A=09 260.5 (12.5%) | 259.5 (13.0%) | 259.0 (13.3%) 285.8
A=0.95 3041 (10.7%) | 301.2 (11.9%) | 299.5 (12.5%) 330.4
A=0.99 3972 (7.5%) | 389.4  (9.8%) | 384.5 (11.3%) 422.7
A =0.995 4348 (6.7%) | 425.1  (9.1%) | 418.5 (10.8%) 459.2
A = 0.999 518.0  (4.7%) | 504.6  (7.7%) | 494.4  (9.9%) 539.5
Model NIG AVaRy (S50 100 100, ) AVaR, (Z540)

E[Z100] = 82.5 v=3 | v=10 | V=00
A=05 142.6  (14.0%) | 142.9 (13.6%) | 143.0 (13.4%) 152.4
A=0.8 210.1  (14.6%) | 210.5 (14.4%) | 210.6  (14.3%) 231.9
A=0.9 256.7 (12.5%) | 255.7 (13.0%) | 255.0 (13.3%) 281.6
A=095 300.5 (10.7%) | 297.6 (11.9%) | 295.7 (12.6%) 326.6
A=0.99 395.7  (7.6%) | 388.2  (9.9%) | 382.7 (11.5%) 421.6
A = 0.995 4351 (6.7%) | 425.7  (9.1%) | 418.7 (11.0%) 460.2
A = 0.999 5244 (5.1%) | 513.2  (7.5%) | 501.1 (10.1%) 548.3

Table 5: Comparison of the improved risk bound AVaRy (XS, 100 5100 ) with
the standard comonotonic risk bound AVaR,(X,,) for AVaRy(310) in Model
Gauss resp. NIG for T = 100 trading days for different levels A, for different v
and for fixed p'% = .6703 and p'%° = —0.2905. The relative DU-improvement

given by 1-— (AvaRA(E(iOO,pmo,ﬁmo,u) — E[Zloo])/(AVaR)\( (1200) — E[Eloo]) is
displayed in brackets. N
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We see that the improvement of the standard DU-interval [EX7, AVaR ) (5]
is largest for T' = 15 trading days (about 20% to 30%) and smallest for T =
100 trading days (about 10% to 15%). A large improvement means a small
correlation parameter for which is achieved if T is small, i.e.

M (p*,5") = 0.0795 < M (p°°,p°°) = 0.2697 < M (p'*°, ') = 0.5154,

because in this case the underlying data sets (o:k)k are larger such that the lower
bounds pT for the 95%-confidence intervals for p!” are larger. Thus, the intervals
I’ could be chosen tighter for smaller 7T'.

5 Appendix

Proof of the convergence in (15): By some technical but standard arguments
of integration theory one can show that

> min {/k_l 3 h(t)d/\(t),o} nzoo, min{Ah(t),0} dA(t) (29)

(0,1)

for any B((0,1))-measurable function h with —1 < h < 1. Then, we deduce
the statement in by induction as follows: Consider measurable functions
hi,...,hqg with 0 < h; < 1. For the base case d = 2 set h = hy — hy. Due to
the convergence in it holds

Sl )

n ’n n ’n

—me{/ t)dt 0} /Olhl(t)dt

a7, / min{h(t) O}dt—l-/ ha(t dt—/ min{hy(t), ho(t)} dt.

For the induction step set h = hg — min{hy,...,hq—1}. Then, we obtain again
with and the induction hypothesis that

/ mm {h VHdt < ergqu{/ L hi(t) dt}

n
n

< Zmin{/k L, h) dt,O} +k11§131§ig_1{/(k_1 k)hi(t)dt}

n ’n) n ’'n
. 1
/ min{h(¢),0} dt +/ A rz'ngltril—l{hi(t)}dt = /O 1r£ni12d{hi(t)} dt,

where both inequalities hold true due to Jensen’s inequality. ]

Proof of Proposition [3 Denote by b* = (b},;)1<k,i<n the corresponding %—
scaled doubly stochastic matrix of B*, ¢ = 1, 2. Consider the following algorithm
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that constructs the sequence (E')1<;<,, adjusting in each step the %—scaled dou-
bly stochastic matrix b' to b? by a simple supermodular transfer that preserves
the <ga-relation with respect to each A7 .

1. Define E° = B! with %—scaled doubly stochastic matrix e’ = b' . Set i = 0
and k=n.

2. Mass compensation in line & : If ej, = b, for all 1 <1 < n, go to step @)-
Otherwise let I, := min{l|e}, < b2}, I* := max{l|e}, > b3}, t. := &

n ?

S o o
t =T, vei=1- "2 Define u, := (uyj)1<j<a and u* := (u})1<j<a by

Uy : = min{u; € GLIA2E (vs, t*) < A2 AT (uj,t")}, (30)

uj = max{u; € G| AZE (v, t,) > AZAT (uj,t)} + L. (31)

Define the transferred mass

n:= 77(621* ) 621* ) b%l* ) b%l*a (AiAJ (u;v t*))jv (AELAl(u*l - %a t*))j7
A2 (v, .), A2 E (0.,17))

: = min {bil* — €y €l — bil*,nljin{AiAj(uj,t*)} — A2Fi(u,,t,),

AL (0., °) = max (A2 (1~ 2)V 0.0}
J

Define E*! via the 1-scaled doubly stochastic matrix

ez»-i -n if (L7”€) € {(kvl*)v (k - 17l*)}a
et = el i (k) € {(k, L), (k= 1,17)}, (32)

7

' else

e

for 1,k € {1,...,n}. Set i =i+ 1. Repeat step (2).

3. If Kk = 2 set m = i and stop the algorithm. Otherwise set kK = k — 1 and
go to step .

First, we show that 7 > 0. From the definition of I, resp. I* it holds b7, —
ej;. > 0 resp. ef,. — by,. > 0. Further, since for x > k holds el;, = b2, for all
1 <1< n, we obtain

A2 E vy, t*) > A2 B%(v,, t*)

0 and
A2E (v, t) < A2B?(v,,t,) < 1.

IN IV

This yields with the definition of u} resp. u.;

AiAj(u;,t*) — A2E'(v,,t,) >0 resp.
AZE (v, t) — AZAT ((usj — 2)V 0,£%) >0

forall 1 <j<d.

31



Secondly, we observe that for each (u,t) € G2 \ {(vs,ts), (vs,t*)} holds by
construction of E*! that

AZET (ut) = Y et 1) = > el(u ) = ALE (u,t). (33)

u' <u u' <u
Thirdly, we show
E' <,9a B? (34)

for 0 < ¢ < m by induction. For i = 0, the statement is given by the assumption
that B! <,9a B?. Suppose that E* <,y B2 for an i € {0,1,...,m —1}. We
obtain with that

A2B?*(u,t) — A2ZET (u,t) = A2B*(u,t) — A2E'(u,t) =0 for u < v,.
(35)

The last equality holds because the lines of (eZ,) are for k > k, ie. u < vy,
already adjusted to the lines of (b2,).

For u > v, we obtain from that A2 B2(u,t)—A2 Bt (u,t) = A2 B2(u,t)—
A2 E(u,t) where the latter has no (—, +)-sign change as assumed.

Consider the case u = v, . Then A2B?(u,t) — A2E*(u,t) = b2, — e}, with
I = tn has exactly one sign change in ¢ which is from + to — as assumed. Hence,
it follows

Lo <1* resp. t,<t" (36)

and A2 B%(u,t,) — A2E%(u,t,) > 0 resp. A2B?(u,t*) — A2 E%(u,t*) < 0. Since
n < min{b?, — ek, ek — b7} we get together with and that

ALB?(u,t) = ARE™ (u,t) = by, — e = by, — €y, =1 >0
and

AZB?(u, t*) — AZE (u, t*) = b3y — el = b — ey + 1 <0.
Hence, also A2 B%(u,t) — A2 E**!(u,t) has no (—, +)-sign change in t.

Fourthly, we observe from the proof of that there exists a finite ¢ € N

such that mass in the lines of (e};l)kl has been adjusted to (cx;) for all k =

n,...,2. Then, since both e’ and b? are (signed) +-scaled doubly stochastic also

et; = b3, holds. Thus, it is sufficient to stop the algorithm setting m =i if k = 2
and e}, = b7, for all 1 <[ < n. This proves E™ = B2.
@i): For each i € {0,...,m} it follows by construction that > . e, =1

for all x and Y"_ e, = 1 for all .. Note that elements of e’ can get neg-
ative. Thus Pg: defines a signed probability measure on G2 for all i. Since

0 # Pgit1 — Pgi(x) = 40 for exactly 4 points € G2 and mass is transferred
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from the off-diagonal onto the diagonal, see and , Pgi+1 — Pgi indicates
a simple supermodular transfer.

({ii): For each u # v, holds due to that A2 B+ (u,t) — A2E'(u,t) =0,
and the left hand-side trivially has as a function in ¢ no sign change. Due to
and the definition of Fit! in it follows that

A2E" (v, t,) = A2E* (v, t,) +n, and
A2E T (v, t%) = A2E (v, t*) — 1.
This means that A2 E“+1(v,,t) — A2 E(v,,t) has exactly one sign change in t

which is from + to —.

(i) : We show the statement by induction. For i = 0 there is nothing to show.
Let i € {0,...,m — 1} and suppose that A7 <pn E?. Then we immediately
obtain with in the case u # v, that

A2E T (u,t) — AZAI (2,t) = A2E (u, t) — A2 A (2,1)

has no (—, +)-sign change in ¢ for all z € G, .
Consider the case u = v, . Define the functions
F@) = f () : = AL B (u,t) — AL A (2,1),
g(t) == g], .(t) : = AJEF (u,t) — A% A (2, 1)
h(t) == hi (t) : = AZE (u,t) — AL Al (2, 1),
for t,z € G}L. Due to and the definition of ¢, and t* mass in line k£ has

already been adjusted to b2 for t < t, and t > t*, i.e. e}, = eﬂl = b2, for all
Il <lyand [ > [*. Hence, it holds

f(t)=g(t)=h(t) fort<t, or t>t".

Since 1) < min{cg, — €}, €};» — Cri- } we obtain due to the construction of £+
that

f(te) = h(t.) +
f) < h(t) -

Again by construction, it holds that

h
g (37)
h g .

g(t) = h(t) forallt, <t<t*.

We need to show that g has no (—, +)-sign change.

Assume that g has exactly one sign change immediately after s € G}, i.e.
g(t) <O0fort<s,g(t) <Oforant <s, g(t) > 0fort>sand g(t) > 0 for
ant > s. If t, <s <¢*, then h(t,) < g(t.) <0 < g(t*) < h(t*), which is a
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contradiction because h has no (—,+)-sign change.

If t, <t <s, then h(t.) < g(t.) < 0 and 0 < g(t) = h(t) for an ¢t > s,
which again is a contradiction. The case s < t, < t* is analogous. Hence, the
sign change of g cannot be from — to +.

Assume that g has (at least) two sign changes, say immediately after s resp.
s’ € GL . Then there exist t; < s <ty < 8’ < t3 such that

g(t1) <0< g(t2) >0>g(ts) or g(t1) >0>g(t2) <0<g(ts). (38)

Consider the left case. Since h(t) = g(¢) for all t # ¢.,t* and h has no (—,+)-
sign change, we obtain from that t; = t* or to = t,. If t; = t*, then
f(t1) < g(t1) < 0, but f(t2) = g(t2) > 0 which is a contradiction to the as-
sumption that f has no (—,+)-sign change. If t, = t,, then f(t3) > g(t2) > 0
and f(t1) = g(t1) < 0, which again is a contradiction. The second case in
follows analogously. This completes the prove of .

(iv): Define F* := A'V---vAYVE" for 0 <i < m. We show that Pri+1 — Ppi
is indicated by a simple submodular transfer for all 0 < ¢ < m — 1. Consider
the set

S :={(u,ug11) € G F(u, ugy1) > F'* u,ugy1) }

1 L : ;
=1 (wuae)| - 3 min{ min (A2 49 (u;,0), AL (uarr. 1)}
teGl -

1 ) ,
= in{ min {A2 A7 (u;,1)}, A2 B!
> nte% min{ min (A7 A7 (us,0)}, AL E™ (g, 1)}

= )] Y7 min{min{ALA (uj, )}, ATE (uarr, 1)}

tE{t. t*}

> > min{min{A] AT (u;, 0}, A B (uai, 1))

tG{t*,t*}
= {(u,ud+1)| Ugir = Ve, A2E T (0, t,) > mjin{A%Aj(uj,t*)}, and
AZE v., ) < min{ALAY (0.0}
J
(39)
{0 s = v A2 2 min{A2A(u5,1.)  and
ALE(0..) < min{ A2 a5, ) }
J
(40)

The first equality holds by the definition of the discrete upper product. For the
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second equality we use that only the summands on the left and right hand-side
depending on t, and t* differ.

From and (fi) we obtain with Proposition [3.6]that Fi(z) — Fi*l(z) > 0
for all x € GZ*! | and furthermore holds S¢ # (). Further, the set S? is restricted
to ugy1 = v. because A2Ei(v,t) = A2E*1(v,t) for all v # v, and for all ¢,
see . Then, the third equality holds due to and due to the fact that on
the one hand A2 Bt (v, t,) + A2EH (v, t%) = AZEi(v,,t,) + A2 E (v, t7),
and on the other hand A2 Eil(v,,t,) > A2E%(v,,t.) and AZEF (v, t*) <
AZE(v,, t*).

For the fourth equality we show that

AZEH (v, %) < min{A2 A (u;, 1)}
J

=  A2FE(v.,t") < min{AZ AT (u;,t*)}
J

and

AZE" (v, t.) > min{AZ A7 (uj,t,)}
J

' , 42
e A2E (ot 2 min A AT (uy,0) )
J

Assume that the right side in holds. Then the left side follows directly from
AZEFY (v, t*) = A2 E¢(v,,t*) — n. Conversely, assume that there exist j and
u; such that A2 B (v, t*) < A2 AJ(uj,t*) < A2 E%(v.,t*). Then we obtain

AZE (v, t") — AZAT (uj, t*) > AZE (v, t*) — AZA (s j — 2,t7)
>n=A2E'(v,,t*) — A2E" (v, t7),

which is a contradiction to the assumption. The first inequality follows from the
definition of u.; using that A2 A7(-,t*) is increasing, and the second inequality
follows from the choice of 7.
Statement can be shown analogously.

For u} defined in holds uj <1 because otherwise, if u; =1 for a j, we
would have that

1> A2E T (v, t,) = A2E (v, t) + 1> A2AI (1, t) +n=1+n,

which is a contradiction. Since the set S is non-empty we obtain from that
Uy < U™
Next, we observe that

‘ ‘ —1 ifyeSt,
Fz—i—l(u) _ Fz(u) — n T u
0 else

holds by construction of E**!. Hence, Ppi+1 is obtained from Pp: by a finite

number of reverse A-antitone transfers, see [I3, Theorem 2.5.7]. We show that
these transfers can, in particular, be expressed by a reverse supermodular trans-
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fer indicated by
n n . .
o Oewn) 0@ wm) = 2 (B wr) + 0w 0n) -

Define g := 2(0(u, v.) + 0w ,v0*) — (O(u.,v*) + O(ur,0.))) - Then, we need to show
that 4([0,2]) = —2 for all z € S and ([0, z]) = 0 for all z € (§)°NGIT.

Let y € S'. Then, y441 = v, . Further, from we see that y; > u;. for
all 1 <j <d, and there exists an j* € {1,...,d} such that y;; < uj, . Hence,
we calculate ([0, y]) = —28(u. o) ([0, 4]) = —2.

Now, assume that yg41 = v« but y ¢ S*. If y; > uj for all 1 < j < d,
then M([OJJD = %(6(u*,v*)([07y]) _5(u*,v*)([07yb) =0.1If Yir < Us g for a
j e {l,...,d}, we obtain u([0,y]) =0.

Suppose that yg41 # vs . If yg41 < v, it immediately holds p([0,y]) = 0. If
Yd+1 > Us, then ygy1 > v* . But this also yields p([0,y]) = 0 independent of y; ,
1<j<d.

Now, since p is a reverse supermodular transfer; the statement follows from
Proposition u
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