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R. Kihne, L. Rischendorf

Abstract

In some recent work it has been shown how to solve optimal stopping problems
approximatively for independent sequences and also for some dependent sequences,
when the associated embedded point processes converge to a Poisson process. In
this paper we extend these results to the case where the limit is a Poisson cluster
process with random or with deterministic cluster. We develop a new method of
directly proving convergence of optimal stopping times, stopping curves, and values
and to identify the limiting stopping curve by a unique solution of some first order
differential equation. In the random cluster case one has to combine the optimal
stopping curve of the underlyintgddenPoisson process with a statistical prediction
procedure for the maximal point in the cluster. We study in detail some finite and
infinite moving average processes.

1 Introduction

The theory of optimal stopping of independent and dependent sequ&nces , X, is

a classical subject of probability theory which still has a lot of open problems and of new
applications as for instance in the context of exotic options in financial mathematics. In
some recent work a new approach has been developed in order to solve approximatively
optimal stopping problems for independent and for some types of dependent sequences
X4,...,X, (see Kihne and Rschendorf (2000a, 2000b), in the following abbreviated

by KR). The basic assumption in this approach is the convergence of the imbedded planar
point process

n
N, :Zg(%,xn,i) — N (1.1)
=1

to some Poisson proces& HereX,, ; = £i=tx is a normalization ofY; induced from

the central limit theorem for maxima. For the limiting Poisson prod€ssvhich has
accumulation points along a lower boundary curve, an optimal stopping problem in con-
tinuous time can be formulated. It is shown in KR (2000b) that the optimal solution
of this stopping problem for the Poisson process is given by a threshold stopping time
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where the threshold function is determined by a differential equation of first order. This

is in analogy to stopping problems for diffusion processes which typically lead to free
boundary value problems with differential equations of second order for the stopping
curve (Stefan free boundary problem). The differential equations for the optimal thresh-
old function in the Poisson case can be solved in several cases explicitely or numerically.
Furthermore, it has been shown in KR (2000a, 2000b) that some further uniform integra-
bility and separation conditions, a differentiability condition of the intensity measure of

N as well as an asymptotic independence condition in the dependent case ensure, that the
optimal stopping problem foK, ..., X,, can be approximated by the optimal stopping
problem for the limiting Poisson process.

This approach has been applied to obtain approximative solutions to a large class of
stopping problems of iid sequences with observation costs and/or with discount factors
(see KR (2000b)). It also has been applied to independent (non iid) sequences (KR
(2000d)), to the optimal stopping of some types of moving average processes, to hidden
Markov chains and to max-autoregressive sequences (KR (2000a, 2000b)) as well as to
best choice problems (KR (2000c)) and to optimal two stopping problems, where one
is allowed to stop two times and to choose the best of both values (KR (1999)). It is
clear from these examples that the approach should also be applicable to further related
stopping problems as for examplertestopping problems. It is of particular interest that
in this way one not only gets structural results for these stopping problems but typically
one gets explicit (approximative) optimal stopping values, optimal stopping times and in
some cases even optimal stopping distributions.

In this paper we develop an extension of the optimal stopping approach as described
above to the case where the limiting process is a Poisson cluster process. In contrast to
the previous approach we do not in the first step solve the optimal stopping problem for
the limiting Poisson cluster process and then in a second step establish an approximation
property for the optimal stopping problem &f,, ..., X,, as in the Poisson process case.

In contrast we directly identify any limiting curve of the finite optimal stopping
curves as unique solution of a differential equation which can be solved in explicit form.
This implies in particular convergence of the optimal stopping curves. We also construct
explicitly an asymptotically optimal stopping sequence. In the Poisson cluster process
case one cannot directly infer from the limiting stopping problem asymptotically optimal
stopping sequences since in the limit one looses the time structure for the points in the
cluster.

We consider in detail the optimal stopping of moving average sequences. In section 2
we deal with some examples which lead to a limiting Poisson cluster process with a ran-
dom cluster. In detail we discuss the example wh€re= Y; + Y;_; for an iid sequence
(Y;). For some type of distribution in the domain of attraction of the extreme value dis-
tribution A(z) = e~ ", x € R, it was shown in Davis and Resnick (1988) that the
point processV,, in (1.1) converges to a Poisson cluster process with random clusters of
size 2. We then relate the optimal stopping curve for(tig) to that of the underlying
Poisson process in the limit and we use the cluster structure to determine an asymptot-
ically optimal stopping sequence by a statistical prediction argument for estimating the
maximal point in the cluster. We also obtain approximatively the optimal stopping value
in explicit form. The method of proof can be extended to more general random cluster
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cases as long as one can construct similar predictions.

In section 3 we consider infinite moving average sequences with polynomial tails,
where the underlying distributiofr” is in the domain of attraction # € D(®,) —
of the extreme valu®,(x) = e~*",z > 0. The proof of the main theorem in this
case can be based upon similar ideas as in the limiting Poisson process case together
with an identification procedure for the maximal cluster points which is simpler than the
prediction rule in the random cluster case.

It seems possible to extend the methods for optimal stopping of dependent sequences
as introduced in this paper as well as in KR (2000a, 2000b) to further interesting classes
of dependent sequences which exhibit a similar limiting structure. For further examples
we refer to the thesis of thne (1997) on which this paper is based.

2 Optimal stopping in the random cluster case

For finite or infinite moving average processes of the fotfin= Zle ¢;Y;—; (resp.

E;‘;l ¢;Y;_;) where(Y;) are iid with df F' in the domain of attraction of an extreme
value distributionA(z) = e=¢ ", ®o(z) = e ",z > 0resp. U,(z) = e~ 97,

x < 0 there has been developed an extensive literature on extreme value theory and
related point process convergence (see Durrett and Resnick (1978), Davis and Resnick
(1988), Davis and Resnick (1991), Resnick (1987), or Rootzen (1986)). Under various
conditions it is established in these papers that the embedded point process

N,L:ZE(L’M) —N (2.1)
i=1 "
converges in distribution to some Poisson process or some Poisson cluster process with
random or with deterministic cluster. In KR (2000a, 2000b) it has been shown how to
use this point process convergence in order to solve approximatively the related optimal
stopping problem foX, ..., X,, in the case thad is a Poisson process. In this section
we consider the more involved case of Poisson random cluster processes. In contrast to
the previous approach we will not solve in the first step a related stopping problem for
the limiting cluster process’ and then prove in a second step convergence of the opti-
mal stopping times and values. Instead we use several achievements on convergence of
threshold stopping times etc. from KR (2000a, 2000b) and establish a direct approxima-
tion argument.

For the case wherE € D(A) we use the following point process convergence result
from Davis and Resnick (1988). Define for a distribution functiorith right endpoint
of supportwy = oc:

F € S,(v) for somey > 0 if

lim L*F(m) = de(0,00)
and lim M — e’)”y7 y € Rl_

z—oo 1 — F(x)
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S;-(0) contains the log normal distribution as well as e.g. the distribution ithi'(x) =
efm, z > 1, @ > 0. More generally suppose that— F, ,(z) ~ Kxe ",
p >0, € Rasz — oo. Then forp = 1 anda < —1 holdsF' = F, , € S,(1) while
for p € (0,1) holdsF € S,.(0) (see Durrett and Resnick (1978)).

Davis and Resnick (1988, Prop. 3.1) and Rootzen (1986) have established interesting
results in this framework with convergence in (2.1) to a Poisson process. These results
have been used in KR (2000a) for related optimal stopping problems. We shall next
consider in detail the following special case leading to a random cluster process.

Let F' € D(A)NS,-(1) with left endpoint of support» = 0 and consider the moving
average procesk; = Y; + Y;_1,4 > 1 then by Davis and Resnick (1988)

n co 2
Ny, = ZE(%vai—an) — N= Z ZE(Tk,yk+ZZ;) (2.3)
i=1 k=11=1

whereN’ = 3" ¢, ,.) is the corresponding underlying Poisson process such that the
normalized embedde(d;) processV;, with additive normalizationga,,) converges to
N/,

N! = Z E(i yiman — NV (2.4)

and(Z}! )1 are independent and independent(gf) with Z} £ y;. So we obtain
random clusters of size 2. For the optimal stopping\dfthe threshold stopping time
with critical function

u(t) = log(1 — t) (2.5)

has been shown to be optimal in KR (2000b). For the random cluster situation it turns out
that the optimal stopping curves for the finite stopping probled¥ of. . . , X, converge
to a curveu which is identical tau® if modified by just a constant

a = log/(e_‘”E((:Jc—i—Yl) V E(x +Ys)y))de, (2.6)
ut) = u™(t)+a. (2.7)

Define for random variables;, Z,
Ef(Z, + 25) = /f(21 +2)dP? (x) 2.8)

i.e. the integral is taken w.r.t. the rv with a dot.

Let T,, denote the optimal stopping time df;,..., X,, and lete, — 0 satisfy
P(Xi A AN Xz > cn) — 0 assuming that the left endpoint of the support is zero,
ap = 0, and the right endpointr = co. Furthermore, define

wn5F1<12>7 and T/)}Ln:mll’l{jg\/ﬁX]:Xl/\/\X\/ﬁ}
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From the structure oK; = Y; + Y;_1 itis quite natural to use the alternating sum of the
lastm,, alternating termsx; to predict the unobserveq.

}/i‘ = XL — Xi—l + X7',_2 —...tx X’ﬁln/\(ifl)' (29)

}Afi predicts the unobservad.
For the following theorem we define for< ¢ < 1 stopping times

T, = min{T} s T7 5} (2.10)
where
T, 1 = min{i >n — [ne]; Xa, > cn, Xi > wni},

T, o = min {z :vn <i<n-—[ne), Xn, <c,and K}Af, > 2_1 andX; —a,
> F ((}Afi—an+211) \/u(l))> or <}AQ <Y, ,andX; — a, Zu(l))]}
n n

Remark 2.1 The heuristic for the construction @i is the following. In the Poisson
cluster process points appear pairwise. If one reaches for &gmer,, approximatively

the first point of darge cluster then one has to compare it with the expected value of the
second point i.e. Wit2((Y; — a,, + Zi) v u(L)). SinceY; is not observed one has to
estimate this quantity by replacin§ by the predictofﬁ. Fori > n — [ne] we stop by a
different simple threshold rule in order to guarantee uniform integrability of the stopped
variables.

Theorem 2.2 (Optimal stopping ofY;_1 + Y;) Assume that’ € D(A) N S,.(1) and
ap = 0,wp = co. For the optimal stopping ak; = Y;_1 +Y; and the optimal stopping
timesT,, for X,..., X,, we obtain

1. EXy, —an, —a
2. 1im5_>0 hmn—wo(EXTfL — CLn) =a

i.e.T¢ is an asymptotically optimal double sequence of stopping times.

Proof: In the first part of the proof we consider the modified stopping problem w.r.t. the
enriched filtration? = o(Yy, . . ., Y;). We make use of several arguments and notations
of the proof of Theorem 2.2 in KR (2000a), but since the limiting point process in (2.2)
is a Poisson cluster process (with random cluster) we have to choose a new strategy of
proof. For the preparation of the proof we first establish two conditions.

SinceXy, X3, ... areiid with F'xy, € D(A) we obtain that the following lower curve
condition (L) holds:

Condition (L) lim inf By, g > —00,VE < 1 (2.11)
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wherev,, , = esssup{E(X;|F5), k<t <n} is the optimal stopping value after tinke

Since{Xsy_1, k € N}, {Xox; k € N} both are iid withF'x, € D(A), the normalized
maxima of both sequences are uniformly integrable and therefore this holds also for the
normalized maxima of the whole sequence: i.e., we obtain that the uniform integrability
condition (G) holds:

Condition (G) {(M,, — a,)™,n € N} is uniformly integrable.

The next step of the proof is essential. We establish directly a weak subsequence
compactness of the normalized stopping tifiggn and the normalized stopping values
X1, — ay. SinceX, yo,...andF¢ are independent we obtain

E(’Yn,[nt-‘rQ] |f[ent]) = E’Yn,[nt-ﬁ-Q] = Up, [nt+2] (212)

is the optimal stopping value after tinjet + 2]. There exists by condition(L) a
subsequence:’) C N such that for alk € [0,1) wuy, [nt42] — an — u(t) for some limit
functionu; w.l.g. let(n’) = N. Finally using the methods in Davis and Resnick (1988)
and Resnick (1987, p. 144) (see also KR (2000b)) we may assume that for some version
of the process a.s. convergence of the points holds i.e. for sefne= mJ, , (w), j =
]“"“,ij — an) — (Tk,yk + Z,]C) Here

n n,k

m

1,2, k = 1,...,n,... holds P a.s.<

m,, ; +1 =m2 ;, and we even obtain

n,i?

n ’ mfm,k n; mi,k n Tky Yk Yk | .

andei,, sl an — —0O0, Ym; =1 ap — —0OQ.

Step 1:In the first main step of this part of the proof we consider an analtﬁguﬁ T in
the enriched framework and establish convergenc(efgf, Xg — an) to some limiting

stopping time and valugl’, yxr) defined in terms of the limiting process.
Define

T, = inf {z : (Xi —ap > U (Z>, i€ {m? k}kEN) or (2.14)
n ,

(Xi —an > E ((Y —an + Z'll) Vu (;)) ie {m;k}keN)}.

Itis easy to see that no stopping point lies on the curvirst P(y; + Z7 = u(rx)) = 0
SINCED ) &(7,, . +22) IS @ Poisson process with intensity, ;) @ v1 with [z, 00) =
[e=(@=2) PZi(dz). SecondP (yr+2} > E((ys+2Z1)Vu(r))) =0SiNCeY ", €7,y +21)
is a Poisson process with Lebesgue continuous intensity. Fytthee= E((y + Z1) v
u(7k)) Is continuous, monotonically nondecreasing and- y» implies f (y1)— f (y2) >
y1 — y2. Thereforef(y) = y holds for at most ong € R.
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With 72 := inf{i : X; —a, > u(%),i € {m2,}x} we have convergence of
<§, Xﬁ% — an) by KR (2000b, Proposition 2.4) on convergence of threshold stopping
times. Similarly also convergence holds fy‘[ = inf {z X —an > E((Yi —an+ le)

Vu (%)) i€ {m}uk}k} since the right side of the inequality is continuousyinand

u (). Further the¥; converge alongm,, .} by (2.13). Defind’ = inf{7;, : yp+ 2} >

u(t) oy + ZL > E((yr + Z1) V u(t))} andjjkr the corresponding stopping value at
the stopping index induced &, k = KT

R yk+ 2% if ye+ 24 > E((yk + Z1) V u()
yKT = )
yk + 2% i ye 4+ Z2 > u(mk)

Then usingl,, = T} A T2 we obtain

<Tn,XTn — an> — (T, gKT). (215)

n
and as in KR (2000b) we see tha{7T' < 1) = 1.

Step 2: We next investigate the asymptotics of the optimal stopping curvas of., X,
and prove that asymptoticallfj, approximates the optimal stopping tiniEsin the sense
that

P(T, #T,) — 0. (2.16)
For the proof of convergence of the optimal stopping curves we first observe that
E (%,ﬁﬂ | f%”) = B (anﬂ VE (’Yn.fﬁz | f%nﬂ) | f%”)

= FE (E <7n,ﬁ,+2 | ‘7:%,,+1> | f%)
+E <E (Xﬁﬂ - B ('7n,ﬁ+2 | ]r:%nﬂ))+ | f%n)

E <’Yn,ﬁ+2|‘7:%n) = Uy Tot2 (2.17)

vV

Next we state that
E (an+1 - B (Vn,’i,-&-Q | ]:Tn+1))+ ]l{fne{mfhk}k,fngn—[ne]} — 0.
For the proof note the(tXTnH - an) L cme 1) £, . Further{ (anﬂ—an)

]l{fne{mi,k}};n € N} is uniformly integrable by condition (G}; (Vn.,ﬁbw | ]-“%LH)
> E(, 7,43 | -7:%”“) =u, 7 13 and(u, 7 3 — an) ﬂ{%glﬂg} is bounded from

belowVe > 0 as% — T andP(T < 1) = 1. Thisimplies

E <(Xﬁ+1 - kB (’Vn,iﬁrz | ]:%,L+1))+ H{Tne{mi,k}} | ]:%> -0
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From (2.17) we obtain

e P
(E (Vn,fnﬂ‘fil) - E’yn,Tn+2) ﬂ{'fne{mi,k}} -0

and therefore
(B (i 175,) = an = B (B52)) Uz, e ) = 0 (2.18)

Similarly we obtain for the stopping curves @f € {mi,k}

B (g | 75,)

- < Fot1 Y ( Yo Tutz | 77, +1) |}—%1)
Xz, 41V (X ( Tn Tt | F T, +2) | }-Tn“) | ]:%")
X7 ( <HT+3| T+2>| T+1)|]:%n)
X7 +1\/E( VT | T+1) |}—%l)
Xg o1V EY, 745 | ]:%n)
(Y + Y5 ) VEY, # 13| Yo7--~7an)

- (5 ) V).
Arguing as above this implies
(E (XTnJrl vE (XTn+2 v E( Yo Tor3 | T T, +2) |7 T +1) | }-%)
-F (an+1 vVE (E (% Fors | T3, +2) | 7%, +1> | f%n>) Lz, etm 0 =0,

Thus

¢ / T, P
(B(rgr —anlFz )= B((V7, + V70— o0 )V o(BE) ) Uiz D00
(2.19)

Thn+

E
= E
B
E

/—\/-\/—\/—\/-\

The asymptotic equivalence of the optimal stopping curve and the stopping cufye of
in (2.18), (2.19) implies as in the prove in KR(2000a, (2.1B)Y;, # T,.) — O, i.e.,
(2.16).

As consequence of (2.15) and (2.16) we conclude convergence of the normalized
optimal stopping time and value

<T‘naXTn - an) - (Ta yKT) (220)
n
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Finally from conditions (G), (L) we obtain as in the proof in KR (2000b, Theorems
4.3-4.5, (4.34)) (see also KR (20003, (2.12)))

E@\KTZt = n}l_I)noo EXTT?,[”/t] — Qp’ = U,(t) (221)

Here K72, Tj["'t] are the threshold stopping times and stopping index restricted to

the time domain> ¢ resp. > [n/t]. Thus we obtain along the subsequeliiag the
asymptotics of the optimal stopping times and values (see (2.20), (2.15)).

Step 3: The second main part of the proof is to identify the limit painas the unique
solution of a first order differential equation. This part then implies convergence of the
optimal stopping sequence as in (2.20), (2.21) along the whole segence

The argument for this step is an extension of the proof of the corresponding result for
Poisson processes in KR (2000b, proof of Theorem 2.5). We first have to determine the
distribution of the limiting Poisson cluster process in (2.2). To that purpose we introduce
a distributional version of the limiting cluster point process of points above the threshold
as in the definition off” (resp. (2.15)). LetV! = >, €l be a Poisson process with
intensity measurg;, where

w1 (ds) = /e_yP(y + Yy >u(s) or y+Y1 > E((y+Ya) Vu(s)))dyds.  (2.22)

Lety},i € N be conditionally independent give¥' with
P(y; € dy|r} = s)

eVP(y+ Yy > u(s) or y+Yi > E((y + Ya) V u(s)))
- . (2.23)
/ eTVP(y + Yy > uls) of y+Y; > E((y+ Ya) Vu(s))) dy

Let further(z}, 22) be rv's conditionally independent give¥i! andy}, i € N such that

P((z;,2)) €| NY) (2.24)
= P((Vi.Y2) €|y +Y2 2 u(r)) oryf + Y1 2 E((y} +Y2) Vu(r}))).
Then), g1 41421142 is @ Poisson process and

d
D Eh sl = 2 € (it 2+ 23): (2.25)
i

ksyk+Zg >u(ry) Of
yk+Zp > E((yr+21)Vu(ti))

To prove (2.25) we first establish finitenessgf which implies a.s. finiteness of the
number of points above the threshold. Let:= A\ 1 ® v ® P¥* ® P™1, let M C R*
be defined by

M= {(t,y,25,2%) : y+22>ut) or y+ 2 > E((y+ Z}) Vu(t)}
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and defineuy := p4(- N M) the restriction ofu, on M.
Then the projectioriuy)™ ([0, t]) < oo, V¥t < 1. To see this we introduce

M = {(t,y,2', 2% y+ 22 >u(t) or y+ 2t >u(t)}
= {(t,y,2",2%): y+ 22V >u)}.
ThenM C M"and} .., & 71225 u(r,) Eriunt 21 v 22 1S Dy Davis and Resnick (1988) a
Poisson process with intensity = X1 x v/(- N (71, m2)(M')) wherev'[z,00) =
[e~ =) PZiVZi(dz). Thus N(- N M’) is a Poisson process with intensity and
(#')™([0,t]) < oo forallt < 1 and thus finiteness follows faiy)™. Define pso
on|0,1] x R by

p2(dt,dy) = e Py + Yz > u(t) or y+Y1 > E(Y2 Vu(t))) dt dy.

Then we obtain by direct calculatign, = (u%)(™™2) and from the definition ofi, it
follows thatu; = (uy)™ . In particularu, defined above is finitgy; ([0, t] < oo, Vt < 1.

As consequence of the finiteness;af we can assume w.l.g. thaf < 71 < ...
are ordered and th&t = 7} a.s. Further as in KR (2000b, proof of Theorem 2.5) one
finds thatN? = Y, E(rlyl) is a Poisson process with intensjty and by an argument

as above applied t&» andz; one obtains the equality in (2.25).
To establish the differential equation farwe introduceh(z,y) := E((x + Y1) V
E((x+Ys2)Vy) —y). Thenh(z + z,y + z) = h(z,y), and thus
/e_g”h(x, y) dx /e_””h(:v —v,0)dx
= /e_(‘”"’y)h(xﬂ) dx
= ¥ / e *h(z,0)dx
= e Ye". (2.26)

The following identity will turn out to be useful. Let for random variabl&s, V' ((1;))
denote the optimal stopping value f@#’;), then

B((y+ Y1) 2 m(avavaton + 0+ Y2 Dy in <mstavaen) — 409)) ;

= B((y+ YD) ysmizmvavae)
=:Wh
+((y+Ya)V U(S))]l{y-}-yl<E((yk+Y2)\/u(s))}> —u(s)
~—_———
:2W2
= EWg —u(s) whereS :=inf{i € {1,2} : W; > E((y + Y2) V u(s))}
= VWi, W2) —u(s) = V(y+ Y1, (y + Y2) Vu(s)) — u(s)
assS is the optimal stopping time di/;, W,
= E((y+Y1)VE((y+Ya2)Vu(s)) —u(s)).
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Let7 =712 = Tint{i:7;>¢} denote the first stopping point @f after timet and lety
denote the value of th@y,) at the corresponding stopping indéX". Then we obtain
using the previously established identities and the distributional properties of the point
process

1
[ BT = sser =i T

t

1
— /t <u(s) +/E((3JKT +Z%)]l{yKT+Z%2E((9KT+2%)\/7¢(T))}

+ (kT + 20Ny oy 421 <B((y,r +22)vu(T))}

~U(SIT = s = AP T ) ) aPT (o

1
(2.24)
N /t (u(s) " /E((y YOy v B+ Ve vale)}

U+ Y2) Ny by, cm(yva)vacs)
—u(s) | y+Ya = uls) or y+Yi = E((y+Y2) V u(s)))

dPyKT'T—%y)) 4P (s)

1
— | (u(s) + E(AY) 4 vi > B39 vaem WYy v <m(p+¥a)vue))y ~4)+
. P(y+Ya2u(s) OF y+Yi>E((y+Y2)Vu(s)))

AP IT=4(3) ) dPT (o

(253) 22 [ (st [ BTNV By 1) v ) k)
Py +Ya > u(s) or y+ Y1 > E((y + Ya2) V u(s)))
SIS TS SRR AT
5 (s)
ey ey EQ YDV By + ) Vul) —uls)) | g
ACE| 0 )ire)
<2§2>/t1 (u(S)Jr/e—yh%“(S))dy) ‘Z;l( Yo (m (0.5 =u(10.0)) g
20) (1 (e et dpn (0,5 - (0. g
_/t<()+i;;(s))dk() ds.

By differentiation w.r.tt we obtain as in KR (2000b, proof of Theorem 2.5)
u'(t) = —e® 0 (1) = —c. (2.27)

This differential equation has by Proposition 2.6 in KR (2000b) the unique solution
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u(t) = a + log(1 — t). Since this holds for any limit of a convergent subsequence there
exists a unique limit point ofu,, ) given in (2.27) and thus,, converges ta, u,, — u.

Step 4: In the previous parts of the proof we considered stopping w.r.t. the filtréfjon
generated by th&;. In the final step we show that thé can be estimated by th¥,
to a sufficient precise order so that one can use the canonical filtigfipnto obtain
approximatively the same stopping behavior. Here we need the assumptier, i.e.,
the left endpoint of the support @f is zero. Note that foj < ¢

v, — Xi—Xi_l—‘y-Xi_g—-'-—i-Xj—Y}_l if ’L—]:O mod 2
’ Xi—Xi_1+Xi_2—"'—Xj+Yj_1 if Z—jzl m0d2,
in particular ifm,, < i
Yi=X;—Xia+Xio— £ Xp, 41 F Ya,. (2.28)

By assumptionP(X; A -+ A Xm = ¢n) — 0 for some sequenag, — 0. Asap =0
andXs, > Ys, > 0, we obtainYz,, £o. Therefore, from (2.28) we conclude that

sup {|v; —Vi|} 2o, (2.29)
Vn<i<n

ie.Y; uniformly in v/n < i < n estimates;. We next definé“v,’L by plugging inY; for
Y; in the definition ofT;,. The conditions € {m], , } for j = 1,2 are replaced by the

conditionsY; > Y;_; resp.Y; < Y;_1, which by (2.13) and (2.29) are asymptotically
equivalent. Formally,

TTIL = inf {7’ <}/>7 > ﬁ—laXi — an Z E ((ﬁ _a7L+le> \/u(l>>>
n
or (2 <Y1, Xi—an,>u (Z)>}
n

The asymptotic equivalence of the stopping thresholds imﬁl(@ = T,L) — 1. There-
fore, by (2.16)

P(T, =T,) — 1. (2.30)

By definition of 7 andT?,

T: =T
nVR<Ty<n(l-e) Xm, <cn} " /{VA<Th<n(l-e),Xm, <cn}’

Combining the convergence of the stopped variables, in (2.15), (2.20), (2.21) with (2.30)
and usinglim. o limsup,, ., E(X1e — an)-liresna-c); — 0 we obtain finally
lim. o limy oo (EX7: — ay) = a. O
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Remark 2.3 1.) The proof of Theorem 2.2 also implies convergence in distribution of
(%, Xr, — an). It seems however difficult to calculate the distribution of the stopped
variables in the limiting process.

2.) In KR (20004, 2000b) the essential idea was to solve the optimal stopping problem
for the limiting process. Using this solution it was possible to introduce some finite
stopping ruled’, which yield asymptotically the optimal stopping value for the limiting
problem. Then it was possible to establish that the optimal stopping value of the limiting
problem is asymptotically an upper bound for the finite stopping problem andthiss
asymptotically optimal.

In our present proof we use a weak compactness argument and the convergence of
threshold stopping times for the optimal stopping sequence to obtain asymptotic equiva-
lence of the optimal stopping sequence with a simple threshold stopping sequence whose
definition depends on a special weak limit poinbf the optimal threshold sequence
(ur) (cp. (2.14)). Then in a second step we identify the weak limit points by a differen-
tial equation and thus in particular get uniqueness and convergergag JofFinally by
a prediction procedure we can extend this result to the natural filtréfjo(instead of
Fo).

As mentioned in the introduction the method of proof of Theorem 2.2 works for more
general moving average sequences. The essential point is to find consistent predictors of

theY;. To consider a concrete example bet (0,1) and let(Y;);>_» be iid random
variables with dfF" € D(A)N S, (1), arp = 0 and consider the MA-sequence of length 3.

X;=Y;+0bY;_1+Y; o, ieN (2.31)
Define the analogue to the constarih Theorem 2.2:
ay = log/ (e™"E ((x + bY1 + Y2) V E(z + bY;3 + Yy)y)) d. (2.32)

Letc, > 0 be a sequence with), — 0 and
P((Xl VXQ)/\/\(X\/EVX\/E—l) ZCn)—>O

Defineu := u +a, andw,, := F~1 (1 — <), whereu” (t) = log(1 —t) is the optimal
stopping curve for the Poisson process in the corresponding iid caseFwihD(A)
(see KR (2000b, Theorem 4.3)). Further we introdéeg := min{2 < i < /n :

X,V Xio = NS00V XS0} a= (0 DM () i > 1, with M = (g :;),

and the predictoﬁA/i = Zzzi—mnﬂ Xya;—¢+1 Of theY;. Finally we introduce the
analogue of the stopping times in (2.10)

T: = min{T5,,T5,} (2.33)
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with
T,, = inf {z (0> n—[nel; Xa, > cn, Xi > wpy) }

T, o = inf {z :v/n <i<n-—[nel,Xm, <c,, and Fﬁ > )/}1_2, andX; — a,,

> E((EA/Z —a, + le + bZzl) Vu(;L))] or {fﬁ < }A’i,g, andX; —a, > u(lﬂ}

n

Then we obtain the following analog to Theorem 2.2.

Theorem 2.4 LetF, (X;), (¢,) be asin (2.31), (2.32) then

EXr —a, — a.

n

and (T¢) is an asymptotically optimal double sequence of stopping times, i.e.

lim lim (EX7: — ap) = a..

e—0n—oo

Proof: For the proof we can repeat the steps of the proof of Theorem 2.2. It remains to
establish that the estimat&suniformly approximate thé’, i.e.

sup {|v; - Vil} Do (2.34)
Vn<i<n

To that purpose we obtain by induction that tjesatisfy
(Yij ' .
}/i == (O 1)./\/1] + Z X[ A5 —p+1, 1 S i S n.
Yi’jfz l=i—j+1

In particular

o Y, i
Y, = (() 1)szmn71 <Y n ) + Z Xoai_y41. (2.35)
My —1

(=,

The minimal polynomiain of M is given by

m(z) = Det((? _11)) - (gg)) =22 +ba+1,

with rootszy® = —& — /% — 1, both of norml. Therefore{ M’ : j € N} is bounded.

From the definition of;,, and,, we conclude that

Yo, VYa, 1 £0. This implies as1 — oo
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o Y,
sup {(0 Mt < )} Lo.
Jn<i<n Y, -1
From (2.35) and the definition df; we obtain (2.34). O

The construction of similar uniformly consistent predictions should be feasible for
much more general sequences.

3 Deterministic infinite cluster case

For infinite moving average processes with polynomial tails the following point process
result was proved in Resnick (1987). l(&f) be iid with df F, leta > 1,¢; € R, j € N,
where some:; # 0. Lete; # 0andy 2, lc;|° < oo for some0d < § < a A 1. We
introduce the following conditions:

Al) F e D(®,)andallc; >0
A2) F(0—-) e D(®,)andallc; <0

A3) P(|Yi| > z) € RV_,, i.e. P([Y1| > =) is of regular variation of orderc.

P P(Yi>x) _, ; : _
Further the I|m|'r1.1mgHOO Pvisay — P exists, where some; > 0incasep =1
and some:; < 0in casep = 0.

In this section we consider the infinite moving average process
X = ZCJ‘Y;—J'H» i€ N. (3.1)
j=1

Then for the imbedded point processes convergence in distribution hojelsldr (0, oo]
to a deterministic infinite cluster proceas

Nn:;é—(%,%) - N:ZZE(W,QZ/H' (3.2)

k=11i=1

HereN' = 3", &(+, 4 IS an underlying Poisson process with intengity- (g 1} @ v,
v([z,00]) = z~ and(a,,) is the normalization of the limit law of the maximd,, =
Y v --- VY, (see Resnick (1987, chap. 4.5)).

In comparison to section 2 we have infinite deterministic clusters. For the construc-
tion of optimal stopping curves the idea is to wait after appearance of the first point of a
large cluster until the point with the biggest coefficient is observed and then to compare
it with the stopping curve. No additional estimation step is necessary compared to the
random cluster case. Denote by= u2 the asymptotically optimal stopping curve for
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the iid sequencé?,...,Y,, resp. the exact optimal curve for the Poisson prodg€ss
above given by

1

u®(t) = ( « ) (1—ite)e (3.3)

a? -1

(see KR (2000b, Theorem 4.4)),, denotes as in the first part the optimal stopping time
for the stopping ofX1, ..., X,,.

Theorem 3.1 Consider the moving average process= 2;0:1 ¢;Yi—j+1 asin (3.1):
a) Under conditions Al) or A2) and assuming w.kgp, |c;| = 1 we define

m = inf{i: ¢; =sup;{[c;|}}, w:=sup{i: |c;] > |e1]}

and the stopping time
’ . . ‘1 ¢ i
T, = inf<si>w+1:X;,>a,—u, | — | and
Cm n

1 ¢ 1
XAV VXi_w < fan—luf <>} +m — 1.
2 Tcm n

b) Under condition A3) we define
ms = inf{i: ¢; =sup;{c;}}, mye:=inf{i: ¢; = inf;{c¢;}}, and

it =inf{i: ¢; > 0}, i~ :=inf{i: ¢; <0}, Coo := 0.

We assume w.L.g(c,, )J%r +(1- p)(—cmz)é = 1 and we define the stopping time

s

T = min{T}, T?} (3.4)

n) - n

where TT} ;= inf {z X5 > ap (ci)+ ui’ (Z> andX; V-V X; .
n

1 Ci)t o[t +
st () o
and T? := inf {z =X > a, (ci)~ ui <Z) and|X; 1 V-V X; |
(¢, )— n
(i)
< — zay Uy | — +my —1
2 " (emy) - n ¢
Then in both cases a), b) holds
1
EX @ o
aTn _><oz—1> ’ (3.5)

andT!/ is an asymptotically optimal sequence of threshold stopping times.
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Furthermore in case a) holds:

1
=1 v>(52)°
Ty a1 1
P({ an <”})H o (55T et o< < ()" GO
0, <0

Remark 3.2 Theorem 3.1 states that the asymptotic optimal stopping value under the
normalizations ore; for the moving average case is identical to that of stopping the
corresponding iid sequenads, . ..,Y,,. Further convergence of optimal stopping times
holds. The idea of the definition of the stopping time is similar to that in Theorem 2.2.
As soon as the first point of large cluster is approximatively reached, then one stops
after reaching the maximal point of this deterministic cluster approximatively.

Proof of Theorem 3.1: The basic idea of this proof is to compare the optimal stopping
problem with the limiting cluster process by a majorization argument to a sequence of
stopping problems for a Poisson process.

The imbedded point process, converges to the cluster proceSs(cp. (3.2)). As
in section 2 we assume w.l.g. almost sure convergence of the points of the process. We
consider first the statement under condition A1). SREE | |c;| < oo and{i}ﬁv -V
Y, : n € N} is uniformly integrable we conclude that the maxih, = max{X;;1 <
i < n} normalized bya,, are uniformly integrable too, as

o0 o0
eV <30 ).
gg;;,{jzln ol <3 Il e (Y
J= J=

alsolim,, oo EGX no—

Forj € —N, definec; = 0. LetT denote the optimal stopping time of the underlying
Poisson procesy’ = > e(,, 4.y, .. T = inf{7;,y; > ul(7;)} (cp. KR (2000b)). We

shall use some notations from KR (2000a, proof of Theorem 2.2).

1.) Inthe first step we determine as in the first step of the proof of Theorem 2.2 the
asymptotics for the stopping timg:

Xz
— Ygr2ts (37)
Qnp

where agairil’>"* denotes the restriction of the stopping timig to the time domain
> nt, KT2! is the first stopping index after timeand y,r>: is the corresponding
stopping value after timein the limiting Poisson procesS’. For the proof of (3.7) we
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establish convergence of the point process of points over the threshold

erL = Z a(i Xi+mfl)

» n’ an
i=1, 1, X > s
nXizan Shu ()

<1

Lud(d)

X1V VX, <tan

- Z Z E(risyick) =+ N'. (3.8)

i ke{m}u{j+m—1:j>w, yic;> - ud (),
Cm

c
viej1Vve w<2—c,;u$<m}

To prove (3.8) we obtain as in Resnick (1987, chap. 4.5)

n
2. §
Nn = E(i XV Xi_1V VX Xifm—1 L)
N n’a
i=1

an ’ an Yan

. 2
- Z Z E(risenyi¥i(Ch—1V - Veh—w) YiChpm—1,¥: (2—k)4) = N7, (3.9)

i k=1
cp #0

where the convergence holds [0n1] x (0, o00) x [—o0, ]3.
Define

1
H .= {(t,xl,xg,xg,z4) eER’: te[0,1],z; > c—ué(t),xg < 2zlu2(t)}.

Then from (3.7) and®(N?2(0H) # 0) = 0 we obtain
N!=N2-nH)— N*(-nH)=N".

The last equality follows from the definition &f andm, w.
As in Resnick (1987, chap. 4.5, proof of 3.2 and p. 144) (see also (2.13)) we obtain
from (3.8) the existence of rvis:* ; such that fork € N with ¢, # 0 andk € {m} U

{j+m—1:j>w,yic; > Fu ( ) YiCj—1 V- Vj_y < l‘“—1u (i)} a.s. pointwise
convergence holds
Xk
g, (3.10)
QAp

wherem! ; = m/) ;+k—1. Note thatl, = m/, .. +m — 1. From (3.8) and (3.10) we
conclude (3.7).

2.) Inthe second step our aim is to show that the optimal stopping values for the stopping
problem of X4, ..., X,, converge to the optimal stopping curvef the Poisson process
N’. In more detail we establish th& a.s. for allt € [0,1) andn — oo

B (A ) £ ute), u(t) = ude) = By 341

To that purpose we consider as in KR (2000a, (2.4)) a majorizing stopping problem
(X%.) with limiting problem(X}*) and establish

X/z+1

pXiiiFL B op (3.12)
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In (3.12) we use the notatiali; [ = max{X,, 4i ..., X, i1} al, = [0 (E+ (1

—t)+)] and X}’ are the corresponding maxima on the discretized intefuls, a.,’,|
in the limiting problem for the Poisson cluster process with corresponding filtr&jqn
i.e., we discretize the time interval inkosubintervals and consider stopping of thex-
sequence on these subintervals. Thus we get a finite stopping problem which majorizes
the original stopping problem.

For the proof of (3.12) we first obtain as in Resnick (1987, chap. 4.5, proof of (3.2))
on 0, 1] x (0, c0] x (0, cc] point process convergence

D (e 5y 7 D D e 2-i)): (3.13)
=1 k Ci;o
and thus from the continuous mapping theoremdfef s < ¢ < 1 usingsupc¢; =1

Ying] Vo VVnt) Xy VooV Xt P

an Qn

Using independence @t;) this implies (3.12) by similar arguments as in KR (2000a,
proof of (2.7)).

As consequence of (3.12) we obtain by an induction argument from the Bellman
equation as in the proof of KR (2000a, (2.4)) convergence of the optimal stopping curves
for (X!, to the optimal stopping curveg® for (X/*) in the discretized limit problem.

The optimal stopping curvag® of this majorizing discretized problem in the limit satisfy
u® > v and by the approximation theorem KR (2000b, Theorem 3.2) we obtain

uF - (3.14)

using the normalization conditicsup ¢; = 1. Thus the optimal stopping problem for

the maxima in the limiting cluster process is identical to the optimal stopping of the un-
derlying Poisson process. As consequence of the approximation theorem in KR (2000b,
Theorem 3.2) we obtain from (3.14) by comparison with the majorizing stopping prob-

lem an upper bound for the optimal stopping curug(¢) = E (% | J—‘[m],l):

lim P (E (W

n— oo Ay

f[nt]l) < u(t) + E) —1, Ve>D0. (3.15)

By uniform integrability and the attainment of upper bound as shown in (3.7) by appli-
cation of the stopping tim&, we conclude (3.11).

In order to investigate the distributional properties of the optimal stopping tifpes
we introduce

fn ;= inf {z 1Y, > anui’ (l>}
n

and prove

P(T,e{T,+j—1:j€{l,....,m}}) — 1. (3.16)
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From KR (2000b, Theorem 4.4) we obtain with the threshold stopping Time 7%,

T, Yz
(a In ) - (Ta yKT) . (317)
n’ an

Assuming w.l.g. a.s. convergence and following the proof in KR (2000a, Theorem 2.2)
we obtain also convergence of the stopping values at random Tijesn. Considering

that after the time poiril,, + m one observes based on the clustering structure only the
maximal valueyxr Vi<, | ¢, this leads to

T, T +m1
E( L E ) STV (s V).
a | SE——

<1
As in the proof in KR (2000a, Theorem 2.2) it follows that
P(T, <Tp+m—1)—1. (3.18)

In particularlim;_; lim, .. P (1= < ¢) = 0. Further as in the proof in KR (2000a,

n

(2.16)) using a discretization argument we obtain

E(Vn.,g,’;(Tn)lfan) < E(’Yn,TnJrl ‘]:n,Tn)’ (319)
whereg;’ maps a number ifi1,...,n — 1} to the nearest point of the-grid [1 + Z£].
We obtain

(E)-s ()
() (3 (2)), o (2]

P P
Thmsomoe o0 by
n,Tnt1
 (Bonagin ) - (1117,
ay, n
<0 by (3.19)

and, therefore,

<u (T> & <w]?T>) L (3.20)
n (7% +

Using random variables as in (3.10) one can strengthen (3.13) and obtains that the
point which converges tér;, c1y;,y;) appears first in the cluster. (3.20) implies that
at time T, the stopping condition of}, is satisfied and thu®(T,, > fn) — 1. So
with (3.18) we obtain (3.16). (3.16) implies the distributional results in (3.5), (3.6) using
uniform integrability.

The proof of the other cases is similar; one has to regard the negative variabies.
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Remark 3.3 a) In contrast to section 2 it has not been shown in this prooffiia}, =
T,) — 1. In the case that for severak N, ¢; = sup; c; this property is not clear
at all. As a result one does not obtain several convergence properties of stopped vari-
ables and maximum before and after the optimal stopping time as in the independent
case (cp. KR 2000b, Theorem 3.2)).

b) The structure of the proof in Theorem 3.1 is a variation of that of Theorem 2.2. It
is relatively easy to analyse the asymptotic behaviour of the stoppingfiimé&@he
stopping values are approximated by those of the limiting underlying Poisson process.
Then we consider majorizing stopping problems defined by maxima on a finite num-
ber of subintervals. Here one obtains convergence to the corresponding discretized
problem for the limiting cluster process. Then we obtain an asymptotically upper
bound of the stopping problems by letting the widths of the discretization converge
to zero. The discretized limiting stopping problem for the cluster process converges
by the normalization conditiosup ¢; = 1 to the stopping problem for the underlying
Poisson process. Since the upper bound is reached by the stopping time sequence
(T)) we obtain optimality of 77,).

Acknowledgement: The authors are very grateful to the editor for his comments on a
first version of this paper which lead to a reorganized and better readable version.
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