From Sequential Testing

to Optimal Stopping
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Testing the Sign of the Drift of BM

W, t > 0 Brownian motion with drift —0 or 460, with 8 > 0 fixed.

Wo =0.
Testing sequentially: Ho : —0 versus H; : +0
Prior: Uniform on {0, 6}
R(T,5) = % (P-o{6 rejects Ho} + c0’E_4T)

+1 (P9{5 rejects Hy} + c6’Ey T)
Find (T*,6%) with  R(T*,6%) = (Ti?) R(T,9).

5 =lwysoy, T5 =7

Testing the Sign of
the Drift of BM



Representation of the risk:

R(T,6’}):/h(9|WT|)dQ

—2x

Wlth h(X) = 1-7—3*2’( —+ cx 1 e72: and Q 1F)g + %P—H
Note that dPG = exp(20Wr)
F

T

h has a unique minimum in a. and
RT.07) = [ noIwr) @ > h(ad)

Let T* = min{t > 0| O|W;| = a.}.

Since Q(T™ < o0) =1 it follows R(T™, 67+) = h(ac).

Testing the Sign of
the Drift of BM



The Repeated Significance Test
as Bayes Test (RST)

W, t > 0 Brownian motion with drift 8; Py underlying measure.

Testing sequentially: Hy : 6 < 0 versus H; : 6 >0
Prior: G = N(0,r %)
0
R(T,s) = / (Po{0 rejects Ho} + c0°E» T) G(d0)

—o0

oo

+/ (Po{0 rejects Hi} + c0°Ey T) G(d0)

0
Find (T*,6%) with  R(T™,6") = (rﬁig) R(T,9).

5 =8 =liwysoy T =7

PNAS, 83 (1986)

RST



Representation of the risk:

2
R(T’ 67—) - /g <TV‘-/FTI’> aQ RST

with g(x) = ®(—vx) +cx, Q= [PyG(ds), G=N(0,r").

g is convex with unique minimum b. and

R(T,57) = /g< TW+> 4Q > g(be)

Let T*=min{t > 0| W2/(t +r) = bc}.
Since Q{T* < oo} =1 it follows R(T" d7+) = g(bc).




The representation:

G=N(0,r"), Q= [PsG(d), Gwr.r=N(%D 1)

T+r ? T+r

RST

/92EeTG(d9) = /92Ee(T+r)G(d9)—1
= /(T+f)/‘92GW(T),T(d9)dQ—1

= /(T+r) ((VTV(L))Z +T1+r> dQ —1

_[w(T)
N T+r aQ




The Disruption Problem

Shiryaev (1961) studied the following problem.

Observations: W, = B, + 0(t — 7)* with
B:, t>0 standard Brownian motion,
0 >0 fixed

Filtration: Fir=o(W; 0<s<t)

Change-point: 7 random time, independent of B
with distribution m = pdo + (1 — p)F,
where F(t) =1—e

Risk: R(T)=Pr(T <7)+cE-(T —7)"
Find T* with R(T™) = mTin R(T).

The Disruption
Problem



Theorem
Let 7 = P(r <t | F:) and T*=min{t >0 | 7w > p*} .

Here p* is the unique solution in (0,1) of G'(p) = 1, where G is the

The Disruption
Problem

(finite at 0) solution of

gxz(l —x2)G"(x) + M1 — x)G'(x) = ex.

Then o
t
Tt = 7&"“ T ot
where
P ‘ L: A
e = —Lt+/ L e ds
1—p 0 Ls
with

L; = exp(OW: — 6°t/2).

¢ is a diffusion with dm, = A(1 — 7 )dt + 07:(1 — m¢)d W, where W, is a

standard Brownian motion.



[t6's formula yields:

dG(Tl't)

1
Gl(ﬂ't)dﬂ't + EG/ (7Tt)(d7Tt)2

G () [/\(1 — m)dt + 0m(1 — 7o) d W,
+ %G”(m)ezﬂm — r)dt
If G satisfies the equation
%2)(2(1 —x)?G"(x) + M1 — x)G'(x) = cx

and behaves well at 0, then

t t
G(m:) — G(mo) = c/ msds + c/ Oms(1 — s )d Ws
0 0

.
= E; [G(77) — G(m0)] = CEﬁ/ msds .



Then one obtains
P(T <7)+cE(T—1)*

= E, [(1 —7r)+ chT 7T5d5:|
= fg(ﬂr)dP — G(p) The Disruption

with g(x) = (1 — x) + G(x)

R(T)

g is convex with a unique minimum at p*.

This insight opened a new direction to Bayes tests of power one for
change point problems with continuous composite hypotheses.

(Disseration of M. Beibel (1994), Diploma thesis of I. Maahs (2008))



A Parking Problem

A So=—Q
3 Il Sn = Z Xi - Q Parking Problem
2 1 i=1
1! X; i.i.d. geometric (p)
0l p: probability of empty spot
. Park as near as possible at 0"
-2+ Find a stopping time T* of S;,i > 0 with
=Sy T E|ST*|:mTinE|ST|.
Solution: T*=min{n>1|S, > —s0}
0 with sp = min{s € N|2(1 — p)° —1 < 0}

Chow, Robbins, Siegmund (1971): Great Expectations, p. 45



Generalized Parking Problem (GPP)

Let g be a convex nonnegative function with a unique minimum at x* > 0.

Assume X; i.i.d. with EX; > 0,

Sn= ixh So =0.
i=1

Find a stopping time T™* with

Eg(S57+) = mTin Eg(ST).

M a x

Solution (Woodroofe—Lerche-Keener (1994)):

T*=min{n>0]|S, > a}

GPP



Il Overshoot and Optimality

in Sequential Testing
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Generalized Parking Problem (GPP)

Let g be a convex nonnegative function with a unique minimum at b> 0.

Assume X; i.i.d. with EX; > 0,

n
S = E Xi, So=0.
n is 0 Generalized Parking
i=1

Problem (GPP)

Find a stopping time T™* with

Eg(S57+) = mTin Eg(ST).

M a x

Solution (Woodroofe—Lerche-Keener (1994)):
T*=min{n>0]|S, > a}

with a = sup{x | H*g(x) < g(x)} where H" is the ladder-height

distribution of S,; n > 1 and H g(x) = /g(x +y)H" (dy).



z _ + .
Let K(2) :/ 1=H(y) dy with v, = /y' dH"(y), i €N.
0

V1

K is the asymptotic overshoot distribution function.
See Siegmund, Sequential Analysis (1985).

Theorem 1

If Kg(x) < oo for all 0 < x < oo, then K g(x) is minimized at x = a. Bemroneed fapiine

Example 1:

If g(x)=|x—b|forx eR=a=b—medK.

Example 2:

If g(x) = (x — b)? for x € R and v is finite = a= b — 2
Example 3:

If g(x) =e 4+ cx for x € R, with 0<c<1

= b =log(1).
|f/x2H+(dx) < o0 and ifH::/ e “K(dx)
0

= Kg(x) = ke + c(x + 32 ) and is minimized at log(£) = b — log(:).



Lorden's Result on the one-sided SPRT

Let Py # Py be equivalent and let | = E; log 5L(X) .

Py
Minimize R(T)=Po(T <o0)+clE T .
dPy
L =1 .
et l og dPr

Then by Wald’ identities
R(T)Z/eiépol-i-C/dePl :/g(f'r) dP; with g(X)Zeix-’rCX.

g is a nonnegative convex function with a unique minimum at log %
Then TZ = min{n > 1|¢, > log(%)} where k = lim Ejexp(—({-, — a))
a— oo
and 7, = min{n > 1|¢, > a}.
Then R(T)=c [(1—|—Io 1) +logk + =2
c) = g c g 2l
Lorden (AS 1977)

Generalized Parking
Problem (GPP)



Testing the Sign of the Mean with |@| known

S,, n > 0 normal random walk (02 = 1) with mean —6 or +6 and

with 6 > 0 known, So = 0.
Testing sequentially: Hy : —6 versus H; : +0.
Prior: Uniform on {-0, 6}

R(T,s) = 1 (Pfg{é rejects Ho} + c0’E_g T)
+1 (Po{0 rejects Hi} + c0’E, T)
Let RZ = min R(T,9).
(T.9)

Let 67 = 1{5T>0}.

Generalized Parking
Problem (GPP)



Then
RA(T.6") = / £.(0]57) 4@

foxland Q= 1P+ 1P .

—2x
_ _e
where gC(X) T 1te 1+e

Let a. = arg min g¢(x) and
X

let Te =min{n>1]0|S,| > a — log (1)}

with £ = lim Epe~(95—2),
a— oo
Then it holds

R(Te,67.) — R =o(c)  asc—0.

Lorden (1977),

AS

Generalized Parking
Problem (GPP)



Nonlinear Parking Problem: Discrete Case

21,25, ... a perturbed random walk, say
Zn:§n+§,, forn=0,1,2,...,
where

n
Generalized Parking
Sn — E X’_ , n 2 1 Problem (GPP)
i=1

with
X1, Xa,... i.i.d. and 0 < EXj < o0,

having a non-arithmetic distribution.

&, are slowly changing in the sense of “Woodroofe, SIAM, 1982" or
Siegmund (1985).

Let gc, 0 < ¢ < 1 denote convex functions. Find T with

Eg. (ZTC*) = mTin Eg.(Z7).



Definition

A sequence of random variables (£,,n > 1) is called slowly changing if:

i) limsup P (

510 p>1

og}(agﬁa |&ntrk — &n| > 5) =0 Ve>0

i) L max(léal, &l |al) 5 0

Example (RST)

Generalized Parking
Problem (GPP)

52
n+r
- n o,
n = 2 n — &
5 (95 29)
(S, — nb)? ~2(Sn—nO)ro nr?

r+n r+n r+n
&n, n > 1 is slowly changing.

Z, =

&n =




Overshoot for a Perturbed Random Walk

Theorem 2
Let Z, = S, + &5, where S, is a random walk with mean > 0. e
Let £&n; n > 1 be slowly changing.
Let T, =min{n>1]|2Z,> a} and 7. = min{n > 1| S, > a}.
Then
lim P, (Zr, — a<x)= lim P, (En _a< x)
a—rc0 a—rco

Lai-Siegmund (1977)



For each 0 < ¢ <1 let gc be a convex function with a unique minimum at

b = b. > 0. Assume limcjo bc = oo and there exists a convex function

h:R — R with minimum at zero and with

ge(b+ x) — ge(b)

he(x) == e

— h(x) < oco.

Y q_ + _
Let K(y) = / wdx for Sp; n > 1 as in the GPP.
0 n

Theorem 3 (Schwarz, Keener-L-Woodroofe)
Let v = argmin Kh(—x) and Tp—y =min{n > 1| Z, > b—~}.
Then as ¢ —X> 0

1) |nf Eg.(Z7) = gc(b) + ¢ Inf Eh(Zt — b) + o(c).

2) inf Eh(Zr — b) = Eh (Zr,_,) +o(1)

3) Eh(Zr,_,) = Kh(—) + o(1).

Generalized Parking
Problem (GPP)



ir_}_f Eg.(Z7) = Eg (ZT,,_,,)

gc<(bc) + cKh(—v) + o(c)

(© Lerche, Uni. Freiburg, 26 <& » DA



Testing the Mean sequentially

S,, n > 0 normal random walk with mean 6 and variance 1, S = 0.

Testing sequentially: Hy: 0 =0 versus H; : 6 # 0.

Let /(8) = Eplog %(Xl), G=N(0,r1")
0

Re(T) = Po(T < o0) + ¢ / 1(9) Es TG(d0) Lo e
dP; Sa 1 n+r
Let P, = /P@G(d@) and Z, = log aPy — m -3 o ( )

Then

R.(T) = E.g(Zr) + E. log ( T :’ ’)
with go(z) = ™% + cz.

&c is convex with minimum at b. = log (/c).



Then by Theorem 3
E.e(2r) = [ E(znGtan)
> ge(b) + ¢ (/Oo ir}f Eoh(Zr — bc)G(dO) + o(l))
with h(z) =z+e % - 1.

Zo =50+ &n where Sp=10S, — %Gﬁ and &, is slowly changing.

Then by Theorem 3 again
inf Egh(Z7 — be) > K"h(=(0)) + o(1)

Here K ist the asymptotic overshoot distribution of Sn.

~v(0) = log (Y/x(6)) where k(0) = /efXKg(dx),

Testing the Mean
sequentially



Then
Ir_‘ll_f E*g(ZT)

\Y

ge(bc) + ¢ (/Oo Kh(—~(0)) G(d6) + o(1)>

[e o]

= g.(b) +c (/w <ﬂ(9) + 2"51((09)) - 1> G(d6) + o(1)>

One can show:

Testing the Mean

Tc=inf{n>1]|2,> b —T,}, wherel,=E[y(0)]| Yi,..., Y], sequentially

assumes this lower bound.

G. Schwarz (1993)

Note: The repeated significance test does not satisfy the assumptions of
Theorem 3. In his case a stabilizing h does not exist.



1l A Martingale-Measure Transformation

Approach to Optimal Stopping

(© Lerche, Uni. Freiburg, 30 «& » DA



The Basic Idea: OS as GPP

Let (Z:, F+; t > 0) denote a continuous stochastic process on a
probability space (2, F, P).
Find a stopping time T* with

Ep (ZT* 1{T*<oo}) = m7e_;x EP (ZT]-{T<oo}) .
Idea: (Beibel-Lerche (1997))
Find a process (X, Ft; t > 0), a nonnegative martingale (M;, F;; t > 0)

with E,My = 1 and a function f with unique maximum at x™* such that
Zt == f(Xt)Mt

Then EpZrli{1<o0

E (F(XT)Mrl{T<s0y)
f(X*)EpMT].{T<OO}
f(x™

A

IA

With T* = min{t > 0 | X; = x"} the inequalities become equalities, if

EPMT* 1{T*<OO} - 1

Basic Idea



Optimality of Parabolic Boundaries

Let X; = B: + xo, t > 0 with B; standard Brownian motion. For a

measurable function g find a stopping time T that maximizes

E, <(T+ ) "g (%)) . (Moerbeke (1974))

Let H(x) = / e~ 2571 gy with 8>0
0

Parabolic
Boundaries

and assume that there exists a unique point x™ with

gx) _ glx*) _ -

s = and 0< C* <
See H(x) ~ H(x*) >




- X * e Be (2 251
(t+1) 5H< = [ X% (ezu )du
NGES o

is a positive martingale with starting value H(xo).

Thus My = (t+1)"°H ( X )/H(xo) is a positive martingale with

Vi+l
E,My =1.
Then
Parabolic
g X7 ) Boundaries
_ XT T+1
E, ((T+1)"g ()) = H(x0)E, My
d VT ()
S H(Xo)C*.

* . Xt *
LetT:|nf{t>O|:x .
VE+l }



For xo < x™ we have E, My~ =1. Thus

el (i) oo e (359)

= H(Xg)C*

Special case:

g(x)=x, =0, = % Parabolic

Boundaries

E,(X7/(T 4+ 1)) = max with

* . Xt *
T = t>0 = X
mln{ | = }

x*is solution of x = (1 — x2)/ 2 gy, Shepp (AMS 1969)
0




Perpetual American Put Option

Samuelson (1965), McKean (1965)
X; = 0B; + ut , t > 0 Brownian motion with drift ;1 and variance o°.

Find a stopping time T* which maximizes
Epe (K — &) Lreuny.
ldea:
Find M and f with Epe™"" (K — &*7)" 1{7c00y = Ep F(X7) M7 {700y,
Put Option

where f has a unique maximum at x*.

Then
T*: mln{tZO‘Xt:X*} if EP MT*::L

x* logK



How to find M; ?
It holds for all « € R
(K _ eXT)Jre*rT _ (K _ eXT)Jr(eXT)*O‘(eXT)D‘e*’T.

Choose f(x) = (K — e7)*e™® and a such that M; = e**te " is a
martingale.

This holds when
M. = exp[a(0B:) + t(ap — )]
= exp [(aU)Bt — t(aa)2/2] .
M, is a positive martingale with My = 1 iff (ao)?/2 +au—r =0

2 . .
at = i R % are the two possible solutions.

Thus we have two martingales M.

Put Option



Then we have
—r +
Ep e T (K — eXT) 1{T<oo} = EQ f(XT) 1{T<oo}

_ )t
:7(,( ¢) and dQ:

with f(x) e P,

=M, .

Let K <1+ (—a~)~". Then f has a unique maximum at

:‘:_Kl < 0. Under Q X is a Brownian motion with drift

x" = log

- 2 2 2 2
a o +pu=—0"\/5 + % <0
Put Option

This yields Q(T* < 00) =1 for T*=inf{t > 0| X; = x"}.
Then

., K—e"
sup EP (6‘ T(K — eX-,—)+ 1{T<m}) = EQ f(XT*) - 7( 7eA )
T

ga— x*



Example: Strangle Option
g(x) = (" = K)" v (L—e)"
h(x) = p* e + (1 — p")e”? with
0<p" <1, <0<

Here h is convex.

Put Option

10




Two-Sided Boundaries

Let g be measurable, X; = 0B + ut a Brownian motion with drift p,

variance o2 and Xo = x. Find a stopping time T* which maximizes

EefrTg(XT)l{T<oo}.

_ B o 2r
Let a1727—;i ;—'—; (CYQ<0<Q1)
Then Mii) = e "Xt [ =1,2 are positive martingales.

We consider boundaries of the type
1) gx)=x
2.) g(x) = max{(L — &), (¢" — K)*}
Let p € [0,1]. Let M; = pM™ + (1 — p)MP. Then

g(Xr)

Exe T g(X,) = ExM )
e " g(Xe) Tpeale+(1,p)eaQXT

Two-Sided
Boundaries



Let g(x) be nonnegative and measurable with

—a1x —aix

a) 0 <sup(e” " g(x)) < sup(e
x>0 x<0

g(x)) < oo

b) 0 < sup(e™“**g(x)) < sup(e” **g(x)) < oo.

x<0 x>0
Lemma
If a) and b) holds, there exists a p*€ (0,1) with sup Gp+(x) = sup Gp+(x),
x>0 x<0
where )
g(x
G, = .
P(X) pecix + (1 — p)ea2x
Two-Sided
Boundaries
Theorem

Let C* = sup, g Gp+(x). If there exists points x1 > 0 and x; < 0 with
Gp+(x1) = C*= Gp=(x2), then with T*=inf{t > 0| X: = x1 or Xe = x}
sup Ece™ " g(Xr) = Exe™"T g(Xr+) = C*(pe™™ + (1 — p) &™)

-

for x; < x < xa.



Stopping of Diffusions with
Random Exponential Discounting

X a regular diffusion with Xo = x and dX; = p(X¢)dt + o(X:)dB:
and B standard Brownian motion, state space I.

g : R — Ry a continuous function.
Find a stopping time T* of X with
E, (efA(T)g(XT)l{T<OO}) = max.
A(s): additive continuous stochastic process adapted to F*

A(s+t) = A(s) + A(t) o 6s

.
Ex <exp {—r/ B; dt} (B?)a 1{T<oo}) = max
0

Example:

Stopping of
Diffusions



The Main Idea Again

How to solve

Vi(x) = sup E, (e " Mg(X7) L{rcoe}) ?
T

Let h: | — R, be such that e A(V'h(X.) is a positive local

martingale and sup £ (x) = C* < co. Then

E (e " Mg(Xr) L{r<o0})

—A(T) ( T)
E, (e (T) (X )h(X ) 1{T<oo}>
C*E, (e*A(T)h(XT) 1{T<oo}) Stopping of
C™ h(x).

IA

A

If there exists a 7™ with £(X7+) = C* and
E. (e‘A h(X7+) 1{T*<oo}) = h(x) the inequalities become equalities

and the stopping problem has been solved.



How to choose the Martingales?

E. (e_A(TXU)l{TXO<OO}) for x < xp

¢+(X) = _
[EXO (e 1{TX<OO})] ! for x > xp
1[) ( ) [EXO (e 1{TX<OO})]71 for x S X0
—(x) =
E. (e 0 1{Tx0<00}> for x > xo.
Mgﬂ = 1/)+(Xt) forb>xon0<t<T
are u.i. martingales
ME*): w (X:) forx >aon0<t< 7,
E. (Mij)l{m@}) =¢.(x) forx<b
with
E. (M&;)l{ﬁ@}) = _(x) forx > a.
Note:

If A(t) = fot r(Xs)ds with r(x) > 0, then ¢+ (x) are the solutions of

Dy = r -1 with
o 1 o2
D=5 + 530 5a-

Stopping of
Diffusions



Example:
r(x) = rx* with r > 0, x = 0.
2%/4 >~ xt—t2/2i dr

e
r(1/2) Jo Vit
Then ¢(x) =V (Wx) is an increasing solution of

Let W(x) = e/

%w”(x) = rx*1h(x) with ¢(0) = 1.
t
Then exp (r/ X52d5> 1(X¢) is a local martingale and by the OST
0

E.exp (—r/OTO X2 ds> =(x) forx<0
and .
Eoexp <r/0 B% ds> =¢(x)"" forx>0.
Thus (x) = 14 (x).
Then sup [(x")*/¢+(x)] = sup [(x)* /4 (x)] < oo

x€ER

Stopping of
Diffusions



e "My (Br)(Bf)"
Py (BT)

(x")*

Yy (x*)

Thus Exexp(—A(T))(BF) *1{1<o0o} = Ex

IN

P+(x)

With x* = arg max [(x*)a/1/1+(x)] >0one has T* =inf{t > 0| X, = x"}.

Is S* = [x™, 00) the optimal stopping set?

Stopping of
Diffusions



e "My (Br)(Bf)"
Py (BT)

(x")*

Yy (x*)

Thus Exexp(—A(T))(BF) *1{1<o0o} = Ex

IN

P+(x)

With x* = arg max [(x*)a/1/1+(x)] >0one has T* =inf{t > 0| X, = x"}.
Is S* = [x™, 00) the optimal stopping set?

What is v(x)?

Stopping of
Diffusions



e My (Br)(B7)"
&+ (Br)

(x*)"

Yy (x*)

Thus Ex eXp(_A(T))(BHa]l{T@o} —E

IN

Vi (x)
With x* = arg max [(x*)a/1/1+(x)] >0one has T* =inf{t > 0| X, = x"}.
Is S* = [x™, 00) the optimal stopping set?

What is v(x)?

v(x) = \IJ((\;S%X*)W (VBre) forx <7, S o

x, for x > x™.



Characterization of the Stopping Set

For r(x) = r a complete characterization of the stopping
set has been given by Séren Christensen in his dissertation (2010).
He showed by using a Choquet-representation result for r-harmonic

functions that the optimal stopping set S* can be characterized as

S'= {x | 3 r-harmonic h with x = arg max () } .
y h(y)

It implies that the value function is the minimum of r-harmonic

functions > g.

This result has been extended by Cedric Thoms to random discounting.

Stopping of
Diffusions



Let v(x) = supy Ex(e ™ g(X7)1{7<o0}) and let an optimal T* exist.
Let S* = {x | v(x) = g(x)}, then 7" = inf{t > 0| X; € S*} is optimal
and P (7" < T*)=1forall x € I.

Define: A nonnegative function f : | — [0, c0) is A-harmonic if it holds

E. [efA(T(c,d))f(XT(c,d))] = f(x)

for all (¢,d) C I and for all x € I.

Theorem (Christensen—Irle, Thoms)
A point x € | is in S* = {v = g} if and only if an A-harmonic function h

exists (i.e. h= oy + By_, and a, 3 > 0 and a+ 3 > 0), such that

g(y)
X = arg max .
y h(}’)

Stopping of
Diffusions



Corollary

Let g, v+ and v— be continuously differentiable. Let X € S* with
£ =1 and let w(x) = P (x)1—(x) — %+ ()9 (x) # O, then

g()PL(x) — &' (x)¥+(x)

@b w(x)
and B =p8(x) = g (x)Y—(x) — g(x)v_(x)
w(x) :
S Stooing of

Using this Corollary one can show that S* = [x*,00) in the example.
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Thank you for your attention!
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